
A Recursive Algorithm to Generate
Balanced Weekend Tournaments

Richard Hoshino
Quest University Canada,

Squamish, British Columbia, Canada

Abstract

In this paper, we construct a Balanced Weekend Tournament,
motivated by the real-life problem of scheduling an n-team
double round-robin season schedule for a Canadian university
soccer league. In this 6-team league, games are only played
on Saturdays and Sundays, with the condition that no team
has two road games on any weekend.
The implemented regular-season schedule for n = 6 was
best-possible, but failed to meet an important “compactness”
criterion, as the 10-game tournament required more than five
weekends to complete. The motivation for this paper was to
determine whether an optimal season schedule, satisfying all
of the league’s constraints on compact balanced play, could
be constructed for sports leagues with n > 6 teams.
We present a simple recursive algorithm to answer this ques-
tion for all even n > 6. As a corollary, our construction
gives us an explicit solution to a challenging and well-known
graph theory question, namely the problem of decomposing
the complete directed graph K∗

2m into 2m−1 directed Hamil-
tonian cycles of length 2m.

Introduction

Sports scheduling has emerged as a growing field of AI re-
search over the past two decades (Kendall et al. 2010), es-
pecially since the introduction of the Traveling Tournament
Problem by the head schedulers of Major League Baseball
(Easton, Nemhauser, and Trick 2001). Integer programming,
constraint programming, metaheuristics, and hybrid meth-
ods have been successfully applied to solve complex prob-
lems in sports scheduling (Goerigk et al. 2014).

The majority of sports scheduling research deals with
the organization and optimization of professional sports
leagues, as these leagues generate worldwide audiences and
are multi-billion dollar industries. However, a much larger
percentage of individuals competing in sports leagues are
students playing on varsity teams against other schools, with
their games fixed in certain time slots (e.g. weekends).

The author is employed by a small Canadian univer-
sity competing in the Pacific Western Athletic Associa-
tion (PACWEST), consisting of six soccer teams playing a
season-long double round-robin tournament such as this:

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Team 1 2 3 4 5 6 7 8 9 10
t1 t6 t3 t5 t2 t4 t6 t3 t5 t2 t4
t2 t5 t6 t4 t1 t3 t5 t6 t4 t1 t3
t3 t4 t1 t6 t5 t2 t4 t1 t6 t5 t2
t4 t3 t5 t2 t6 t1 t3 t5 t2 t6 t1
t5 t2 t4 t1 t3 t6 t2 t4 t1 t3 t6
t6 t1 t2 t3 t4 t5 t1 t2 t3 t4 t5

Table 1: A 5-weekend 6-team tournament

Table 1 illustrates an example of a double round-robin
tournament, where each team plays in 2(n − 1) different
time slots, with one home game and one road game against
each of the other n − 1 teams. Home games are marked in
bold, e.g. t1 is the home team versus t6 in slot #1.

In the PACWEST league, the student-athletes on the n =
6 teams complete their regular-season games over n−1 = 5
weekends, due to academic priorities during the week that
prevent weekday games from being scheduled.

The major weakness with this schedule is that four teams,
namely t1, t2, t3, t6, have one weekend where they play two
road games (e.g. t1 in time slots #5 and #6). Playing back-
to-back road games is problematic for the teams, given the
academic and social commitments of the student-athletes on
weekends. There is sometimes the additional cost of having
to book a hotel room on the Saturday night, depending on
the length of time it would take to make an additional back-
and-forth trip in a single weekend.

To mitigate this issue, the PACWEST league approached
the author, who had previously helped the Japanese profes-
sional baseball league reduce their carbon emissions by de-
veloping a regular-season schedule to minimize total travel
distance (Hesse 2012).

The challenge for this sports scheduling problem was to
have each team play 2(n − 1) games over (n − 1) week-
ends where every team plays at most one road game in a sin-
gle weekend, thus ensuring that the student-athletes could
make a short trip on either the Saturday or Sunday, and re-
turn home immediately following the game. For obvious rea-
sons, such a schedule is applicable to more than just an inter-
university soccer league in British Columbia, Canada; given
the popularity of soccer (i.e., football) throughout the world,
such a schedule would be relevant to any n-team league
playing back-to-back games on weekends.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6195

The paper proceeds as follows: we first define the n-team
Balanced Weekend Tournament Problem (BWTP). Though
no solution exists for n ≤ 6, we provide a recursive algo-
rithm to generate a solution Sn to the BWTP for all even
n ≥ 8. As a corollary, we show that our construction pro-
vides an explicit solution to the Hamiltonian cycle decom-
position problem of the complete directed graph K∗

n, which
works for all even n ≥ 8.

Inspired by the p-norm in functional analysis, we then de-
fine a similar p-norm to measure the effectiveness of a fea-
sible solution, to show that some schedules are more “bal-
anced” than others. We prove that our recursive construction
generates an n-team schedule Sn for which ||Sn||1 < 7

4n
2

and ||Sn||p < n1+1/p for p ≥ 2, upper bounds that we con-
jecture are close to optimal. Finally, at the end of each sec-
tion of this paper, we conclude with an open problem.

Problem Statement

The schedulers of the PACWEST league requested a double
round-robin schedule satisfying the following constraints.
Here are the criteria, in decreasing order of importance.

(a) Each-Venue: Each pair of teams plays twice, once in each
other’s home venue.
(b) Each-Half: Each pair of teams plays one game in the first
half of the season, and one game in the second half.
(c) No-Repeat: A team cannot play against the same oppo-
nent in two consecutive games.
(d) No-Two-Road: Each team plays at most one road game
each weekend.
(e) Compactness: The tournament takes place over n − 1
weekends, with two games each weekend.

We note that condition (e) requires n to be even, since
every team must play one game in each time slot.

It is straightforward to create a schedule that satisfies all
the conditions except for (c). To do this, we apply the well-
known canonical schedule (de Werra 1981) to generate a
single round-robin tournament for the first half of the season,
and use the “English construction” (Kendall et al. 2010) to
produce the second half. Here is the construction for n = 6.

Team 1 2 3 4 5 6 7 8 9 10
t1 t6 t3 t5 t2 t4 t4 t6 t3 t5 t2
t2 t5 t6 t4 t1 t3 t3 t5 t6 t4 t1
t3 t4 t1 t6 t5 t2 t2 t4 t1 t6 t5
t4 t3 t5 t2 t6 t1 t1 t3 t5 t2 t6
t5 t2 t4 t1 t3 t6 t6 t2 t4 t1 t3
t6 t1 t2 t3 t4 t5 t5 t1 t2 t3 t4

Table 2: A tournament violating the No-Repeat condition

A simple computer program proves that there exist no 6-
team tournaments satisfying all five conditions.

Because of this, the PACWEST decided to adopt the
almost-optimal 10-game 6-weekend schedule given in Ta-
ble 3, which met all of the criteria except for (e). In this
schedule, two weekends have only a Saturday game and no
Sunday game, corresponding to slots 1 and 6.

Team 1 2 3 4 5 6 7 8 9 10
t1 t4 t6 t3 t5 t2 t4 t6 t3 t5 t2
t2 t3 t5 t6 t4 t1 t3 t5 t6 t4 t1
t3 t2 t4 t1 t6 t5 t2 t4 t1 t6 t5
t4 t1 t3 t5 t2 t6 t1 t3 t5 t2 t6
t5 t6 t2 t4 t1 t3 t6 t2 t4 t1 t3
t6 t5 t1 t2 t3 t4 t5 t1 t2 t3 t4

Table 3: The 2016-17 PACWEST Soccer Schedule

For each pair of teams ti and tj , let h(i, j) be the slot in
which ti plays a home game against tj , and r(i, j) be the
slot in which ti plays a road game against tj . Notice that
|h(i, j) − r(i, j)| = 5 for all 1 ≤ i < j ≤ 6. This is known
as a mirrored schedule (Ribeiro and Urrutia 2004), and there
has been much analysis done on the construction of n-team
schedules that require |h(i, j)−r(i, j)| to always equal n−1,
for all (i, j). Later in the paper, we explain why a mirrored
schedule cannot satisfy conditions (d) and (e).

While the PACWEST scheduling problem was solved
and implemented, there was little satisfaction as no double
round-robin schedule satisfied all five constraints. But in-
spired by this, we pose the Balanced Weekend Tournament
Problem (BWTP), on whether there exists a feasible tourna-
ment satisfying these five conditions for n > 6.

Since there are n teams with n
2 teams playing at home and

n
2 teams playing on the road in any given time slot, condition
(d) implies that each team must play exactly one home game
and one road game every weekend.

A computer search generated numerous solutions to the
BWTP for the case n = 8, including the following:

Team 1 2 3 4 5 6 7 8 9 10 11 12 13 14
t1 t6 t3 t8 t2 t4 t7 t5 t3 t6 t4 t8 t2 t7 t5
t2 t8 t4 t3 t1 t6 t5 t7 t8 t4 t3 t5 t1 t6 t7
t3 t5 t1 t2 t4 t7 t8 t6 t1 t5 t2 t6 t7 t4 t8
t4 t7 t2 t5 t3 t1 t6 t8 t5 t2 t1 t7 t8 t3 t6
t5 t3 t7 t4 t6 t8 t2 t1 t4 t3 t7 t2 t6 t8 t1
t6 t1 t8 t7 t5 t2 t4 t3 t7 t1 t8 t3 t5 t2 t4
t7 t4 t5 t6 t8 t3 t1 t2 t6 t8 t5 t4 t3 t1 t2
t8 t2 t6 t1 t7 t5 t3 t4 t2 t7 t6 t1 t4 t5 t3

Table 4: S8, a solution to the BWTP for n = 8

By inspection, we can check that all five criteria of the
BWTP are satisfied in the above schedule. To produce this
schedule, we enumerate all possible single round-robin tour-
naments (slots 1 to 7) and determine for each option all pos-
sible ways to assign home and away slots so that each team
plays one home game and one road game each weekend.
We then check whether there exists a complementary single
round-robin schedule (slots 8 to 14) for which h(i, j) ≤ 7 if
and only if r(i, j) ≥ 8 for all (i, j) with 1 ≤ i < j ≤ 8.

In the next two sections, we present recursive algorithms
that generate a solution to the BWTP for the cases n = 2k
and n = 2k − 2, given a feasible solution for n = k. Com-
bined with the demonstration that there exist feasible solu-
tions for the cases n = 10 and n = 12, the above two algo-
rithms solve the BWTP for all even values of n ≥ 8.

6196

Generating S2k from Sk

Let n = k be even. Suppose that Sk is a feasible solution to
the BWTP, with teams t1, t2, . . . , tk. We now construct S2k,
a feasible solution to the BWTP for the case n = 2k.

First we create a second copy of the k teams, and label
them u1, u2, . . . , uk.

In slots 1 ≤ s ≤ k, ti plays against us+i−1, with all
arithmetic calculated mod k. If s is odd, then ti is the home
team, and if s is even, then ti is the away team.

Table 5 illustrates this construction for the case k = 8,
where the first 8 slots are given for the schedule S16.

Team 1 2 3 4 5 6 7 8
t1 u1 u2 u3 u4 u5 u6 u7 u8

t2 u2 u3 u4 u5 u6 u7 u8 u1

t3 u3 u4 u5 u6 u7 u8 u1 u2

t4 u4 u5 u6 u7 u8 u1 u2 u3

t5 u5 u6 u7 u8 u1 u2 u3 u4

t6 u6 u7 u8 u1 u2 u3 u4 u5

t7 u7 u8 u1 u2 u3 u4 u5 u6

t8 u8 u1 u2 u3 u4 u5 u6 u7

u1 t1 t8 t7 t6 t5 t4 t3 t2
u2 t2 t1 t8 t7 t6 t5 t4 t3
u3 t3 t2 t1 t8 t7 t6 t5 t4
u4 t4 t3 t2 t1 t8 t7 t6 t5
u5 t5 t4 t3 t2 t1 t8 t7 t6
u6 t6 t5 t4 t3 t2 t1 t8 t7
u7 t7 t6 t5 t4 t3 t2 t1 t8
u8 t8 t7 t6 t5 t4 t3 t2 t1

Table 5: Slots 1 to 8 of S16

The schedule for slots 2k + 1 ≤ s ≤ 3k is identical,
except the home and away teams are switched. Table 6
illustrates this construction for the case k = 8.

Team 17 18 19 20 21 22 23 24
t1 u1 u2 u3 u4 u5 u6 u7 u8

t2 u2 u3 u4 u5 u6 u7 u8 u1

t3 u3 u4 u5 u6 u7 u8 u1 u2

t4 u4 u5 u6 u7 u8 u1 u2 u3

t5 u5 u6 u7 u8 u1 u2 u3 u4

t6 u6 u7 u8 u1 u2 u3 u4 u5

t7 u7 u8 u1 u2 u3 u4 u5 u6

t8 u8 u1 u2 u3 u4 u5 u6 u7

u1 t1 t8 t7 t6 t5 t4 t3 t2
u2 t2 t1 t8 t7 t6 t5 t4 t3
u3 t3 t2 t1 t8 t7 t6 t5 t4
u4 t4 t3 t2 t1 t8 t7 t6 t5
u5 t5 t4 t3 t2 t1 t8 t7 t6
u6 t6 t5 t4 t3 t2 t1 t8 t7
u7 t7 t6 t5 t4 t3 t2 t1 t8
u8 t8 t7 t6 t5 t4 t3 t2 t1

Table 6: Slots 17 to 24 of S16

In slots k + 1 ≤ s ≤ 2k, we make two copies of the first
k columns of Sk. Specifically, if ti plays at tj in slot s, then

in our schedule S2k, ti plays at tj in slot s+ k, and ui plays
at uj in slot s+ k.

Table 7 illustrates this construction for the case k = 8,
where we construct slots 9 to 16 of S16 using the schedule
S8 given in Table 4.

Team 9 10 11 12 13 14 15 16
t1 t6 t3 t8 t2 t4 t7 t5 t3
t2 t8 t4 t3 t1 t6 t5 t7 t8
t3 t5 t1 t2 t4 t7 t8 t6 t1
t4 t7 t2 t5 t3 t1 t6 t8 t5
t5 t3 t7 t4 t6 t8 t2 t1 t4
t6 t1 t8 t7 t5 t2 t4 t3 t7
t7 t4 t5 t6 t8 t3 t1 t2 t6
t8 t2 t6 t1 t7 t5 t3 t4 t2
u1 u6 u3 u8 u2 u4 u7 u5 u3

u2 u8 u4 u3 u1 u6 u5 u7 u8

u3 u5 u1 u2 u4 u7 u8 u6 u1

u4 u7 u2 u5 u3 u1 u6 u8 u5

u5 u3 u7 u4 u6 u8 u2 u1 u4

u6 u1 u8 u7 u5 u2 u4 u3 u7

u7 u4 u5 u6 u8 u3 u1 u2 u6

u8 u2 u6 u1 u7 u5 u3 u4 u2

Table 7: Slots 9 to 16 of S16

Finally, in slots 3k + 1 ≤ s ≤ 4k − 2, we make two
copies of the last k − 2 columns of Sk. Specifically, if ti
plays at tj in slot s, then in our schedule S2k, ti plays at
tj in slot s + 2k, and ui plays at uj in slot s + 2k. This
is illustrated in Table 8 below, once again for the case k = 8.

Team 25 26 27 28 29 30
t1 t6 t4 t8 t2 t7 t5
t2 t4 t3 t5 t1 t6 t7
t3 t5 t2 t6 t7 t4 t8
t4 t2 t1 t7 t8 t3 t6
t5 t3 t7 t2 t6 t8 t1
t6 t1 t8 t3 t5 t2 t4
t7 t8 t5 t4 t3 t1 t2
t8 t7 t6 t1 t4 t5 t3
u1 u6 u4 u8 u2 u7 u5

u2 u4 u3 u5 u1 u6 u7

u3 u5 u2 u6 u7 u4 u8

u4 u2 u1 u7 u8 u3 u6

u5 u3 u7 u2 u6 u8 u1

u6 u1 u8 u3 u5 u2 u4

u7 u8 u5 u4 u3 u1 u2

u8 u7 u6 u1 u4 u5 u3

Table 8: Slots 25 to 30 of S16

From this construction, we have generated a tournament
with 4k−2 slots, with each team having a different opponent
in each time slot.

We complete the construction by replacing each ui with
tk+i, for each 1 ≤ i ≤ k. This gives us our solution S2k.

In the next section, we recursively construct our solution
S2k−2 using the known solution Sk.

6197

Generating S2k−2 from Sk

Label the teams t1, t2, . . . , tk−1, u1, u2, . . . , uk−1. Table 9
illustrates this construction for the case k = 8, with S14

recursively generated from our schedule S8 in Table 4.

Team 1 2 3 4 5 6 7 8 9 10 11 12 13 14
t1 u2 u3 u4 u5 u6 u7 t6 t3 u1 t2 t4 t7 t5 t3
t2 u3 u4 u5 u6 u7 u1 u2 t4 t3 t1 t6 t5 t7 u2

t3 u4 u5 u6 u7 u1 u2 t5 t1 t2 t4 t7 u3 t6 t1
t4 u5 u6 u7 u1 u2 u3 t7 t2 t5 t3 t1 t6 u4 t5
t5 u6 u7 u1 u2 u3 u4 t3 t7 t4 t6 u5 t2 t1 t4
t6 u7 u1 u2 u3 u4 u5 t1 u6 t7 t5 t2 t4 t3 t7
t7 u1 u2 u3 u4 u5 u6 t4 t5 t6 u7 t3 t1 t2 t6
u1 t7 t6 t5 t4 t3 t2 u6 u3 t1 u2 u4 u7 u5 u3

u2 t1 t7 t6 t5 t4 t3 t2 u4 u3 u1 u6 u5 u7 t2
u3 t2 t1 t7 t6 t5 t4 u5 u1 u2 u4 u7 t3 u6 u1

u4 t3 t2 t1 t7 t6 t5 u7 u2 u5 u3 u1 u6 t4 u5

u5 t4 t3 t2 t1 t7 t6 u3 u7 u4 u6 t5 u2 u1 u4

u6 t5 t4 t3 t2 t1 t7 u1 t6 u7 u5 u2 u4 u3 u7

u7 t6 t5 t4 t3 t2 t1 u4 u5 u6 t7 u3 u1 u2 u6

Team 15 16 17 18 19 20 21 22 23 24 25 26
t1 u2 u3 u4 u5 u6 u7 t6 t4 u1 t2 t7 t5
t2 u3 u4 u5 u6 u7 u1 t4 t3 t5 t1 t6 t7
t3 u4 u5 u6 u7 u1 u2 t5 t2 t6 t7 t4 u3

t4 u5 u6 u7 u1 u2 u3 t2 t1 t7 u4 t3 t6
t5 u6 u7 u1 u2 u3 u4 t3 t7 t2 t6 u5 t1
t6 u7 u1 u2 u3 u4 u5 t1 u6 t3 t5 t2 t4
t7 u1 u2 u3 u4 u5 u6 u7 t5 t4 t3 t1 t2
u1 t7 t6 t5 t4 t3 t2 u6 u4 t1 u2 u7 u5

u2 t1 t7 t6 t5 t4 t3 u4 u3 u5 u1 u6 u7

u3 t2 t1 t7 t6 t5 t4 u5 u2 u6 u7 u4 t3
u4 t3 t2 t1 t7 t6 t5 u2 u1 u7 t4 u3 u6

u5 t4 t3 t2 t1 t7 t6 u3 u7 u2 u6 t5 u1

u6 t5 t4 t3 t2 t1 t7 u1 t6 u3 u5 u2 u4

u7 t6 t5 t4 t3 t2 t1 t7 u5 u4 u3 u1 u2

Table 9: S14, a solution to the BWTP for n = 14

In slots 1 ≤ s ≤ k − 2, ti plays against us+i, with all
arithmetic calculated mod k − 1. If s is odd, then ti is the
away team, and if s is even, then ti is the home team. The
schedule for slots 2k − 1 ≤ s ≤ 3k − 4 is identical, except
the home and away teams are switched.

In slots k − 1 ≤ s ≤ 2k − 2, we make two copies of
the first k columns of Sk, with the bottom half teams (all
the ui’s) inverting home and road positions. Specifically, if
ti plays at tj in slot s, then in our schedule S2k−2, ti plays
at tj in slot s+ k − 2, and uj plays at ui in slot s+ k − 2.

In slots 3k − 3 ≤ s ≤ 4k − 6, we make two copies of
the last k − 2 columns of Sk, with the bottom half teams
inverting home and road positions once again. Specifically,
if ti plays at tj in slot s, then in our schedule S2k−2, ti plays
at tj in slot s+2k− 4, and uj plays at ui in slot s+2k− 4.

Finally, for each 1 ≤ i ≤ k − 1, whenever ti is matched
up against tk, replace tk with ui. Similarly, whenever ui is
matched up against uk, then replace uk with ti.

We then replace each ui with tk−1+i, for each 1 ≤ i ≤
k − 1, to arrive at our solution S2k−2.

Proof of Correctness

We now justify that the two constructions given in the previ-
ous section are indeed feasible, i.e., that S2k−2 and S2k are
solutions to the Balanced Weekend Tournament Problem.

Consider Sk, a solution to the BWTP for the case n = k
satisfying the five conditions given in Section 2. For each
1 ≤ i < j ≤ k, let h(i, j) be the slot in which ti plays
a home game against tj , and r(i, j) be the slot in which ti
plays a road game against tj .

As Sk is a feasible schedule, we know that the Each-
Venue condition is satisfied, i.e., h(i, j) and r(i, j) exist for
all pairs (i, j). Furthermore, the Each-Half condition ne-
cessitates that 1 ≤ h(i, j) ≤ k − 1 if and only if k ≤
r(i, j) ≤ 2k − 2, and the No-Repeat condition implies that
|h(i, j)− r(i, j)| ≥ 2 for all i and j.

We first notice that in both S2k−2 and S2k, the Compact-
ness condition is trivially satisfied. For the No-Two-Road
condition, we notice that every team plays exactly one home
game and one road game each weekend, in each of our
four “blocks”. For example, in S2k−2, the four blocks are
s ∈ [1, k− 2], s ∈ [k− 1, 2k− 2], s ∈ [2k− 1, 3k− 4], and
s ∈ [3k− 3, 4k− 6]. The first and third blocks are balanced
as we used parity to determine the home and away assign-
ments, while the second and fourth blocks are guaranteed to
be balanced as they were recursively constructed from Sk.

We have now dealt with conditions (d) and (e). To justify
that conditions (a), (b), (c) are satisfied in S2k, we define
h′(i, j) and r′(i, j) for each 1 ≤ i < j ≤ 2k.

From our construction for the first and third blocks of S2k,
for all 1 ≤ i ≤ k and k + 1 ≤ j ≤ 2k, we have h′(i, j) =
(j− i mod k)+1 and r′(i, j) = (j− i mod k)+2k+1, or
r′(i, j) = (j− i mod k)+1 and h′(i, j) = (j− i mod k)+
2k + 1. In both cases, conditions (a), (b), (c) are satisfied,
since |h′(i, j)− r′(i, j)| = 2k.

From our construction for the second and fourth blocks of
S2k, we have for all 1 ≤ i < j ≤ k, h′(i, j) = h(i, j) + k
if 1 ≤ h(i, j) ≤ k and h′(i, j) = h(i, j) + 2k if k + 1 ≤
h(i, j) ≤ 2k − 2. We also have the same equations relating
r′(i, j) to r(i, j). As Sk satisfies condition (b), if h′(i, j) =
h(i, j) + k, then we must have r′(i, j) = r(i, j) + 2k, and
vice-versa.

Therefore, for each pair (i, j) with 1 ≤ i < j ≤ k,
we have |h′(i, j) − r′(i, j)| = |h(i, j) − r(i, j)| + k, with
the exception of the k pairs (i, j) for which h(i, j) = k or
r(i, j) = k. In these cases, we have h′(i, j) = h(i, j) + k
and r′(i, j) = r(i, j)+k, implying that |h′(i, j)−r′(i, j)| =
|h(i, j)− r(i, j)|.

And if k+1 ≤ i < j ≤ 2k, the same argument shows that
|h′(i, j)− r′(i, j)| = |h(i− k, j − k)− r(i− k, j − k)| or
|h′(i, j)− r′(i, j)| = |h(i− k, j− k)− r(i− k, j− k)|+ k,
since the indices tk+1, . . . , t2k are simply u1, . . . , uk, and
reduces to the case in the previous two paragraphs.

From these equations, we see that conditions (a), (b), (c)
are satisfied for all 1 ≤ i < j ≤ 2k.

Similarly, we can prove that the three conditions (a), (b),
(c) are satisfied in the schedule S2k−2, for all 1 ≤ i < j ≤
2k − 2. Since the case analysis is virtually identical to the
S2k case, we omit the details.

6198

To complete the proof that the BWTP has a solution for all
n ≥ 8, it suffices to find a solution for the base cases n = 8,
n = 10, and n = 12. The case n = 8 was found in Ta-
ble 4. The next two tables demonstrate computer-generated
solutions for n = 10 and n = 12, thus completing our proof.

Team 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
t1 t2 t0 t3 t6 t4 t8 t5 t7 t9 t6 t7 t4 t8 t5 t9 t2 t0 t3
t2 t1 t3 t0 t4 t9 t5 t7 t6 t8 t7 t5 t6 t9 t8 t3 t1 t4 t0
t3 t4 t2 t1 t5 t6 t0 t9 t8 t7 t4 t9 t7 t6 t0 t2 t8 t5 t1
t4 t3 t5 t9 t2 t1 t7 t8 t0 t6 t3 t0 t1 t7 t6 t8 t5 t2 t9
t5 t6 t4 t7 t3 t8 t2 t1 t9 t0 t8 t2 t9 t0 t1 t7 t4 t3 t6
t6 t5 t7 t8 t1 t3 t9 t0 t2 t4 t1 t8 t2 t3 t4 t0 t9 t7 t5
t7 t8 t6 t5 t9 t0 t4 t2 t1 t3 t2 t1 t3 t4 t9 t5 t0 t6 t8
t8 t7 t9 t6 t0 t5 t1 t4 t3 t2 t5 t6 t0 t1 t2 t4 t3 t9 t7
t9 t0 t8 t4 t7 t2 t6 t3 t5 t1 t0 t3 t5 t2 t7 t1 t6 t8 t4
t0 t9 t1 t2 t8 t7 t3 t6 t4 t5 t9 t4 t8 t5 t3 t6 t7 t1 t2

Table 10: S10, a solution to the BWTP for n = 10
(Note: for improved readability, we replaced t10 with t0.)

Team 1 2 3 4 5 6 7 8 9 10 11 12
t1 t2 t12 t3 t6 t4 t9 t5 t11 t8 t10 t7 t4
t2 t1 t3 t4 t12 t5 t11 t10 t6 t7 t8 t9 t7
t3 t4 t2 t1 t5 t12 t6 t7 t8 t10 t9 t11 t8
t4 t3 t5 t2 t11 t1 t7 t8 t10 t9 t6 t12 t1
t5 t6 t4 t7 t3 t2 t10 t1 t9 t11 t12 t8 t9
t6 t5 t7 t8 t1 t9 t3 t11 t2 t12 t4 t10 t11
t7 t8 t6 t5 t9 t10 t4 t3 t12 t2 t11 t1 t2
t8 t7 t9 t6 t10 t11 t12 t4 t3 t1 t2 t5 t3
t9 t10 t8 t11 t7 t6 t1 t12 t5 t4 t3 t2 t5
t10 t9 t11 t12 t8 t7 t5 t2 t4 t3 t1 t6 t12
t11 t12 t10 t9 t4 t8 t2 t6 t1 t5 t7 t3 t6
t12 t11 t1 t10 t2 t3 t8 t9 t7 t6 t5 t4 t10

Team 13 14 15 16 17 18 19 20 21 22
t1 t6 t8 t12 t3 t11 t2 t10 t5 t9 t7
t2 t11 t10 t5 t9 t6 t1 t3 t4 t12 t8
t3 t9 t6 t4 t1 t7 t11 t2 t10 t5 t12
t4 t10 t12 t3 t7 t8 t5 t11 t2 t6 t9
t5 t7 t11 t2 t10 t12 t4 t8 t1 t3 t6
t6 t1 t3 t10 t8 t2 t9 t7 t12 t4 t5
t7 t5 t9 t8 t4 t3 t12 t6 t11 t10 t1
t8 t12 t1 t7 t6 t4 t10 t5 t9 t11 t2
t9 t3 t7 t11 t2 t10 t6 t12 t8 t1 t4
t10 t4 t2 t6 t5 t9 t8 t1 t3 t7 t11
t11 t2 t5 t9 t12 t1 t3 t4 t7 t8 t10
t12 t8 t4 t1 t11 t5 t7 t9 t6 t2 t3

Table 11: S12, a solution to the BWTP for n = 12

Although this recursive construction generates a valid
solution Sn for all n ≥ 8, perhaps there is a more elegant
solution that can be determined combinatorially or geomet-
rically. This motivates the first open problem of this paper.

Problem #1: Determine a “canonical” schedule Sn for
which a simple function f(i, j) determines the slot in which
ti plays a home game against tj , where the resulting sched-
ule Sn is a valid solution to the n-team BWTP.

Hamiltonian Decompositions

Let G be a graph with n vertices. We say that G is Hamil-
tonian if it contains a Hamilton cycle, i.e., a cycle passing
through each of the n vertices of G. Hamiltonicity is one
of the most well-studied concepts in graph theory, due to its
applications to the Traveling Salesman Problem. Deciding
whether a given graph G is Hamiltonian is one of Karp’s 21
celebrated NP-complete problems (Karp 1972).

A generalization of Hamiltonicity is to decide whether a
given graph G has a Hamiltonian decomposition, i.e., a par-
tition of the edge set of G into disjoint Hamilton cycles.

For example, the complete graph K5 has a Hamiltonian
decomposition, since K5 can be decomposed into the cycles
1 − 2 − 3 − 4 − 5 − 1 and 1 − 3 − 5 − 2 − 4 − 1. To
make our notation easier, we will represent these cycles as
(12345) and (13524), respectively.

Clearly, a Hamiltonian decomposition is only possible
when every vertex of G has degree r, for some even r. Since
the complete graph Kn has degree n − 1, a natural ques-
tion is to determine the odd values of n for which Kn has a
Hamiltonian decomposition. In 1890, Walecki demonstrated
an explicit construction for all odd n (Alspach 2008).

We can generalize this problem by considering Hamilto-
nian decompositions of directed complete graphs K∗

n, where
all n(n − 1) directed edges, or arcs, are drawn. For all odd
n, K∗

n must have a Hamiltonian decomposition by Walecki’s
Theorem; for example, in the case n = 5 above, we have
the decomposition {(12345), (15432), (13524), (14253)},
which we get by turning each of the n-cycles in our undi-
rected Kn decomposition into two directed n-cycles.

For even n, the problem of whether K∗
n has a Hamiltonian

decomposition was a long-standing open problem in graph
theory. A partial solution showed that a Hamiltonian decom-
position does not exist for n = 4 or n = 6 but does for each
8 ≤ n ≤ 18 (Bermond and Faber 1976).

By considering four possible cases for n (i.e., their re-
mainder mod 8), Tillson used difference sequences to prove
the existence of a Hamiltonian decomposition of K∗

n for all
even values of n ≥ 8 (Tillson 1980).

As the Tillson construction is both lengthy and complex,
a natural question is whether this Hamiltonian decomposi-
tion of K∗

n could be generated more simply. We answer this
question in the affirmative, as a corollary of our recursive
construction to the Balanced Weekend Tournament Problem.

Label the n vertices of K∗
n as t1, t2, . . . , tn, and let Sn be

a solution to the n-team BWTP. Consider the n
2 + n

2 = n
matches played on any weekend, i.e., time slots 2s − 1 and
2s for each 1 ≤ s ≤ n− 1. If ti plays at the home of tj , this
corresponds to the directed edge ti → tj in K∗

n.

6199

Thus, in Table 4, the games in Slot #1 are represented by
the edges t2 → t8, t3 → t5, t6 → t1, and t7 → t4, and
the games in Slot #2 are represented by the edges t1 → t3,
t4 → t2, t5 → t7, and t8 → t6.

By the definition of an n-team Balanced Weekend Tour-
nament, every team plays one home game and one road
game each weekend, i.e., the n edges in slots #1 and #2
must combine to form a directed graph where each vertex
has indegree 1 and outdegree 1. In the example above, the
resulting digraph is a Hamiltonian cycle.

t1 → t3 → t5 → t7 → t4 → t2 → t8 → t6 → t1

Using our earlier notation, we represent this cycle as
(13574286). We can readily show that the seven-weekend 8-
team BWTP solution in Table 4 has the following Hamilto-
nian decomposition: (13574286), (12345678), (14625837),
(15482763), (16875324), (18473652), and (17264385).

We have shown that the 7 weekends of S8 generate a
Hamiltonian decomposition to K∗

8 .
We might conjecture that the problem of finding a Hamil-

tonian decomposition to K∗
k is isomorphic to the problem of

determining a solution to the k-team BWTP. Unfortunately
this is not the case, as many BWTP solutions do not yield
Hamiltonian decompositions.

Nevertheless, we can use our recursive construction to
show that if the k − 1 weekends of Sk generate a Hamil-
tonian decomposition, then so do the 2k − 3 weekends of
S2k−2. In other words, our recursive construction produces,
as a corollary, a Hamiltonian decomposition of K∗

2k−2.
To establish this result, for each 1 ≤ i, j ≤ k − 1, de-

fine an intra-league game to be ti → tj or ui → uj , and
an inter-league game to be ti → uj or tj → ui. From our
construction (see Table 9), we see there are k − 2 weekends
consisting of exclusively inter-league games, while the other
k− 1 weekends have all intra-league games with the excep-
tion of two inter-league games (e.g. t2 → u2 and u6 → t6
in slots #7 and #8).

In Table 9, the 2k−2 = 14 inter-league games of slots #1
and #2 trace out a directed cycle with 2k − 2 = 14 edges.

u3 u4 u5 u6 u7 u1 u2

↙ ↑ ↙ ↑ ↙ ↑ ↙ ↑ ↙ ↑ ↙ ↑ ↙ ↑
t1 t2 t3 t4 t5 t6 t7 t1

Because of how these inter-league games are scheduled
(i.e., ti plays us+i in slot s, with all arithmetic calculated
mod k − 1), there is no way for these 2k − 2 edges to form
anything other than a Hamiltonian cycle; specifically, it is
impossible for these 2k − 2 edges to split into two directed
k−1 cycles, or any other non-Hamiltonian graph with every
vertex having indegree 1 and outdegree 1. If the cycle starts
at t1, it must return to t1 after exactly 2k − 2 steps.

In Table 9, the 2k−2 = 14 games of slots #7 and #8 trace
out a directed cycle with 2k − 2 = 14 edges.

t6 → t1 → t3 → t5 → t7 → t4 → t2
↑ ↓
u6 ← u1 ← u3 ← u5 ← u7 ← u4 ← u2

By our induction hypothesis, the weekend games of Sk

decompose into Hamiltonian cycles. For example, the first
weekend of our schedule S8 is represented by the 8-cycle
(13574286), which, when we remove t8, turns into the
7-path [6, 1, 3, 5, 7, 4, 2], precisely the sequence described
above in both the t and u sequences.

In general, if [p1, p2, . . . , pk−1] is the (k − 1)-path that
arises by removing vertex tk from a Hamiltonian cycle of
Sk, then the corresponding weekend of S2k−2 becomes
tp1 → tp2 → . . . → tpk−1

→ upk−1
→ . . . → up2 →

up1 → tp1 , i.e., a Hamiltonian cycle with 2k − 2 vertices.
In our recursive construction of S2k−2 from Sk, we en-

sured that there exist two distinct indices p1 and pk−1 for
which tpk−1

→ upk−1
and up1

→ tp1
, which shows that

the weekends of S2k−2 consisting of all but two intra-league
games forms a Hamiltonian cycle with 2k − 2 vertices.

Thus, we have found an explicit solution to the problem of
decomposing the complete directed graph K∗

2k−2 into 2k−3
directed Hamiltonian cycles. For example, the columns of
Table 9 yield a Hamiltonian decomposition of K∗

14.
Unfortunately, a similar argument does not work in our

recursive construction of S2k, as this schedule splits into k
weekends of only inter-league games and k − 1 weekends
of only intra-league games. Though the former decompose
into Hamiltonian cycles of length 2k, the latter do not; it is
easy to see that each of the k−1 intra-league weekends (e.g.
slots #9 and #10 in Table 7) decompose into two k-cycles,
via our induction hypothesis that the k − 1 weekends of Sk

decompose into Hamiltonian cycles of length k.
To fix this, we employ the “cocktail graph” construction

(Tillson 1980) where we turn two k-cycles into one 2k-cycle
by identifying edge u1 → v1 from cycle C1 and edge u2 →
v2 from cycle C2, and replacing them with the edges u1 →
v2 and u2 → v1. The Tillson construction demonstrates how
the edges can be partitioned so that the 2k − 1 subgraphs
form a Hamiltonian decomposition of S2k.

Therefore, we have shown how to generate a Hamilto-
nian decomposition of K∗

n for all even values of n ≥ 8,
although our recursive construction requires edge-switching
when n ≡ 0 (mod 4).

It appears that our two constructions for S2k and S2k−2

have different “topologies”, as one requires edge-switching
to generate a Hamiltonian decomposition while the other
does not. This inspires the following open problem.

Problem #2: Determine a recursive construction of S2k

from Sk for which each of the 2k − 1 weekends directly
forms a Hamiltonian cycle, without any switching of edges.

The p-norm

Let Sn be a solution to the BWTP. Recall that h(i, j) is the
slot in which ti plays a home game against tj , and r(i, j) is
the slot in which ti plays a road game against tj .

In Table 4, the schedule for n = 8 has seven pairs (i, j)
with 1 ≤ i < j ≤ n for which |h(i, j) − r(i, j)| = n − 1,
the ideal distance between these pairs of games. As men-
tioned earlier, the most balanced tournament is mirrored,
where |h(i, j)− r(i, j)| = n− 1 for all pairs (i, j).

6200

Let us define the p-norm of an n-team schedule Sn as

||Sn||p :=

⎛
⎝ ∑

1≤i<j≤n

||h(i, j)− r(i, j)| − (n− 1)|p
⎞
⎠

1/p

.

This function, inspired by the p-norm in Lp space, equals
0 if and only if Sn is mirrored. We can check by inspection
that in the schedule given in Table 4,

||S8||p = (7 · 0p + 12 · 1p + 7 · 2p + 2 · 3p)1/p .
This implies that ||S8||1 = 32, ||S8|2 =

√
58, and

||S8|p → 3 as p→∞.
Suppose there exists a schedule Sn that satisfies all the

conditions of the BWTP, for which ||Sn||p = 0. Let ti be a
team that plays at home in slot #1. Then by the condition that
each team plays exactly one home each weekend, as well as
the mirroring requirement, ti plays on the road in slot #2, at
home in slot #(n+1), on the road in slot #(n+2), at home in
slot #3, on the road in slot #4, at home in slot #(n+3), etc.

Continuing this process, we see that each team that plays
at home in slot #1 must play at home in all odd slots and on
the road in all even slots. Therefore, if teams ti and tj start at
home, then they can never play against each other, which is
a contradiction. Hence, no schedule can satisfy ||Sn|p = 0,
i.e., no solution to the BWTP is perfectly balanced. A natural
question is to find the Sn for which ||Sn||p is minimized.

Based on our recursive construction, we determine a for-
mula for ||S2k||p and ||S2k−2||p as a function of ||Sk||p, and
show that our schedule has a small p-norm.

In S2k, define h′(i, j) and r′(i, j) for each 1 ≤ i < j ≤
2k. From our construction, we know that if 1 ≤ i ≤ k and
k + 1 ≤ j ≤ 2k, then |h′(i, j) − r′(i, j)| = 2k. Also, if
1 ≤ i < j ≤ k or k + 1 ≤ i < j ≤ 2k, then |h′(i, j) −
r′(i, j)| = |h(i, j)− r(i, j)|+ k, except for k pairs (i, j) for
which |h′(i, j)−r′(i, j)| = |h(i, j)−r(i, j)| ≥ 2. We have:

(||S2k||p)p =
∑

i<j≤2k

||h′(i, j)− r′(i, j)| − (2k − 1)|p

= k2 · 1p + 2
∑

i<j≤k

||h′(i, j)− r′(i, j)| − (2k − 1)|p

< k2 + 2
∑

i<j≤k

||h(i, j)− r(i, j)| − (k − 1)|p

+k · (|2− (2k − 1)|)p

Therefore, we have shown that (||S2k||p)p < k2 +
2 (||Sk||p)p + k · (2k − 3)p. Similarly, we can prove that
(||S2k−2||p)p < (k − 1)(k − 2) + 2 (||Sk||p)p + (k − 1) ·
(2k − 5)p.

To derive the latter inequality, notice that in S2k−2, we
have |h′(i, j)− r′(i, j)| = 2k − 2 for all 1 ≤ i ≤ k − 1 and
k ≤ j ≤ 2k − 2, provided j − i 	= k − 1. And for all other
pairs (i, j), |h′(i, j)−r′(i, j)| = |h(i, j)−r(i, j)|+(k−2),
except for the (k − 1) pairs for which |h′(i, j)− r′(i, j)| =
|h(i, j)− r(i, j)| ≥ 2.

From these two inequalities, we use induction to prove
that for all n ≥ 8, ||Sn||1 < 7

4n
2 and ||Sn||p < n1+1/p for

p ≥ 2. The base cases n = 8, 10, 12 follow by inspection,
using the schedules given in Tables 4, 10, and 11.

Therefore, our recursive construction produces an in-
finite set of schedules Sn for which ||Sn|1 is bounded
by a quadratic function. Given that there are

(
n
2

) ∼ n2

2
pairs of teams, we see each Sn has the property that, on
average, each pair of teams plays their two games less
than 7

2 slots apart from the “optimally-balanced” solu-
tion that is impossible to attain. But can we do better than
a quadratic function? This motivates our final open problem.

Problem #3: Determine whether there exists a function
f(n) = c · nr, with r < 2, for which some valid schedule
Sn satisfies ||Sn||1 < f(n) for all n ≥ 8.

Acknowledgements

The author thanks the Pacific Western Athletic Association
(PACWEST) for the opportunity to consult on the project
that inspired this paper, and thanks the AAAI-18 review-
ers for their insightful comments that significantly improved
this final product.

References

Alspach, B. 2008. The wonderful Walecki construction.
Bulletin of the Institute of Combinatorial Mathematics and
its Applications 52:7–20.
Bermond, J., and Faber, V. 1976. Decomposition of the
complete directed graph into k-circuits. Journal of Combi-
natorial Theory B 21:146–155.
de Werra, D. 1981. Scheduling in sports. Annals of Discrete
Mathematics 11:381–395.
Easton, K.; Nemhauser, G.; and Trick, M. 2001. The travel-
ing tournament problem: description and benchmarks. Pro-
ceedings of the 7th International Conference on Principles
and Practice of Constraint Programming 580–584.
Goerigk, M.; Hoshino, R.; Kawarabayashi, K.; and West-
phal, S. 2014. Solving the traveling tournament problem by
packing three-vertex paths. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, AAAI
14, 2271–2277.
Hesse, S. 2012. Canadian uses math to green Japanese base-
bal. [Online; accessed 30-March-2017].
Karp, R. 1972. Reducibility among combinatorial problems.
Complexity of Computer Computations 85–103.
Kendall, G.; Knust, S.; Ribeiro, C.; and Urrutia, S. 2010.
Scheduling in sports: An annotated bibliography. Computers
and Operations Research 37:1–19.
Ribeiro, C., and Urrutia, S. 2004. Heuristics for the mir-
rored traveling tournament problem. Proceedings of the 5th
International Conference on the Practice and Theory of Au-
tomated Timetabling 323–342.
Tillson, T. 1980. A Hamiltonian decomposition of K∗

2m with
2m ≥ 8. Journal of Combinatorial Theory B 29:68–74.

6201

