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Abstract

In this paper, we consider the challenging problem of risk-
aware proactive scheduling with the objective of minimizing
robust makespan. State-of-the-art approaches based on proba-
bilistic constrained optimization lead to Mixed Integer Linear
Programs that must be heuristically approximated. We opti-
mize the robust makespan via a coherent risk measure, Con-
ditional Value-at-Risk (CVaR). Since traditional CVaR opti-
mization approaches assuming linear spaces does not suit our
problem, we propose a general branch-and-bound framework
for combinatorial CVaR minimization. We then design an
approximate complete algorithm, and employ resource rea-
soning to enable constraint propagation for multiple samples.
Empirical results show that our algorithm outperforms state-
of-the-art approaches with higher solution quality.

1 Introduction

Real-world scheduling applications often face dynamic sit-
uations due to the existence of considerable amounts of
uncertainty, such as equipment breakdowns, delays of cer-
tain tasks, unforeseen weather conditions, etc. Therefore,
practical scheduling approaches should take uncertainty into
account. Specifically, the scheduling problem we consider
is the challenging Resource-Constrained Project Schedul-
ing Problem (RCPSP) with uncertain activity durations. In
line with (Beck and Wilson 2007; Fu et al. 2012; Varakan-
tham, Fu, and Lau 2016; Fu, Varakantham, and Lau 2016),
we investigate proactive scheduling approaches for optimiz-
ing a risk-aware objective, i.e. minimization of the α-robust
makespan, which focuses on controlling the probability that
the actual makespan exceeds the α-robust makespan within
a predefined risk parameter α ∈ (0, 1). Compared to the
expected makespan as adopted in (Lombardi, Milano, and
Benini 2013; Creemers 2015; Song et al. 2017), α-robust
makespan is more practical since the actual makespan may
be much worse than the expected value with a high chance.

The incorporation of uncertainty brings additional chal-
lenges to the already intractable RCPSP, since it is hard to
even evaluate a solution (Beck and Wilson 2007). Existing
approaches often resort to sampling-based techniques to mit-
igate the complexity. For example, Beck and Wilson (2007)
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and Fu et al. (2012) use sampling and simulation to evalu-
ate solutions. State-of-the-art approaches (Varakantham, Fu,
and Lau 2016; Fu, Varakantham, and Lau 2016) consider α-
robust makespan minimization as a probabilistic constrained
problem, which can be approximated by Sample Average
Approximation (SAA) with the guarantee of converging to
the optimal solution (Luedtke and Ahmed 2008). However,
these approaches result in Mixed Integer Linear Programs
(MILP) which are computationally prohibitive even with
sophisticated solvers. To scale up the MILPs, the summa-
rization heuristic is applied to aggregate the samples into a
representative one. However, this heuristic compromises the
convergence guarantee, and decreases solution quality.

In this paper, we propose to optimizing the α-robust
makespan via Conditional Value-at-Risk (CVaR), a popu-
lar measure in risk-sensitive applications (Rockafellar and
Uryasev 2002). Our approach scales up to hundreds of sam-
ples without the need of sample summarization, hence can
provide better robust makespan and better control of the risk
parameter α. Based on the expectation form of CVaR mini-
mization, we approximate the proactive problem using SAA.
However, we show that the resulting problem is NP-hard due
to the combinatorial nature of RCPSP. This also excludes
the traditional CVaR minimization approaches that assume
the decision space is linear (Hong, Hu, and Liu 2014). Thus,
we design a general branch-and-bound framework for CVaR
minimization in combinatorial space. We then instantiate
this framework to develop a branch-and-bound algorithm
based on constraint propagation and the network flow theory,
by extending the related components in (Leus and Herroelen
2004) designed for single resource problems. Our algorithm
shares similarities with the Precedence Constraint Posting
(PCP) approaches in (Laborie 2005; Lombardi, Milano, and
Benini 2013). However, existing PCP approaches are de-
signed for deterministic RCPSP where temporal reasoning
can be applied for branching and constraint propagation. In
contrast, our problem is built on multiple duration samples,
which makes temporal reasoning very difficult. Thereby, our
algorithm purely reasons with resource constraints, except
the lower bound computation.

Finally, we conduct extensive experiments on benchmark
instances and commonly used uncertainty models. The re-
sults show that our approach scales well to a large number
of samples, and can produce solutions with lower α-robust
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makespan than state-of-the-art approaches, especially when
the uncertainty level is high.

2 Preliminaries

This section introduces the basic concepts and notations.

2.1 Minimization of VaR and CVaR

We first describe two widely used measures for risk manage-
ment, Value-at-Risk (VaR) and Conditional Value-at-Risk
(CVaR). Let x be a decision vector with domain X , and
g = g(x,y) be the loss function of x on a random vector
y. Given a confidence level β ∈ (0, 1), the β-VaR of x is
defined as ζβ(x) = min{ζ|Pr(g ≤ ζ) ≥ β}, which is the β
quantile of the random loss g. The β-CVaR of x is defined as
φβ(x) = E[g|g ≥ ζβ(x)], which is the expected loss beyond
β-VaR. For risk-aware settings, x with smaller VaR or CVaR
is more preferable. Hence, the best decision x∗ can be found
by minimizing VaR or CVaR in X .

In the theory of risk management, CVaR is believed to be
a more realistic and desirable objective than VaR, mainly for
two reasons. Firstly, CVaR is computationally more tractable
than VaR since it is mathematically coherent. Also, CVaR is
an upper bound for VaR (i.e. φβ(x) ≥ ζβ(x)), and the deci-
sion with a smaller CVaR tends to have a smaller VaR too.
Secondly, VaR only provides a bound for loss g but does
not quantify the loss beyond that bound. In contrast, by def-
inition, CVaR explicitly captures this using the conditional
expectation. Detail discussion about the superiority of CVaR
over VaR can be found in (Rockafellar and Uryasev 2002).

The minimization of CVaR is often done by minimizing a
function Fβ = Fβ(x, ω) defined as follows:

Fβ(x, ω) = ω +
1

1− β
E{[g(x,y)− ω]+}, (1)

where ω is an additional real variable and [·]+ = max{·, 0}.
It has been shown in (Rockafellar and Uryasev 2002) that
CVaR minimization in X has an equivalent form:

(x∗, ω∗) = argmin
(x,ω)∈X×R

Fβ(x, ω), (2)

where x∗ minimizes CVaR. Since Fβ has an expectation
form, Sample Average Approximation (SAA) (Kleywegt,
Shapiro, and Homem-de Mello 2002) is immediately ap-
plicable to approximate Problem (2), by optimizing F̂β =

F̂β(x, ω) defined below in the joint space X × R:

F̂β(x, ω) = ω +
1

(1− β)Q

Q∑
q=1

[g(x, yq)− ω]+, (3)

where (y1, ..., yQ) is Q samples independently drawn from
y. Guaranteed by the property of SAA, the optimal solution
(x̂∗, ω̂∗) is proven to converge to (x∗, ω∗) in Equation (2)
exponentially fast as the increase of sample size Q.

2.2 RCPSP with Uncertain Durations

Deterministic RCPSP involves N non-preemptive activi-
ties A = {a1, ..., aN} and K renewable resources R =

{r1, ..., rK}. Throughout its fixed duration d0i , each ai ∈ A
requires bik ∈ N units of rk ∈ R with limited capacity
Ck ∈ N. Two dummy activities a0 and aN+1 with zero du-
rations are often added to represent project start and finish.
Precedence constraints (i, j) could be imposed on any two
activities ai, aj ∈ AP = A∪{a0, aN+1}, indicating aj must
start after the completion of ai, i.e. sj ≥ si + d0i , where si
is the start time of ai. Let EP be the set of all precedence
constraints, then the temporal relations of the project can
be represented using the Activity-On-Node (AON) network
GP = (AP , EP ), which is a Directed Acyclic Graph (DAG)
with vertex set AP and edge set EP . Below we will use
V (G), E(G), and Tr(G) to represent the vertex set, edge
set, and transitive closure of a graph G.

A (start-time) schedule is a vector S = (s0, ..., sN+1).
Without loss of generality, we assume a0 always starts at 0,
then the makespan is MS(S) = sN+1. A schedule is fea-
sible if no precedence or resource constraint is violated. A
feasible schedule is optimal if it has the minimal makespan.
Under duration uncertainty, each ai has a random duration
di instead of a fixed one. Let d = (d1, ...,dN ) be the vec-
tor of random durations, and d = (d1, ..., dN ) be a real-
ization of d. Since di may not equal to d0i , a feasible start-
time schedule may become infeasible in execution. Alter-
natively, a project can also be executed following a partial
order schedule (POS), a flexible policy that determines ac-
tivity start times during execution.

A POS GH = (AP , EP ∪ EH) is an augmented DAG of
GP with additional precedence constraints in EH , such that
any temporal feasible schedule is resource feasible (Policella
et al. 2004). In other words, all possible resource conflicts
are removed by the edges in EH . Hence the start time of
each ai can be determined at the execution time very easily:

si = max{sj + dj |(j, i) ∈ E(GH)}, (4)

i.e. ai starts right after the completion of all predeces-
sors specified by GH . Along with execution, a feasible
schedule with respect to the actual durations d is obtained.
Let S(GH , d) and MS(GH , d) be this schedule and its
makespan. Since d is random, the makespan of GH is also a
random variable MS(GH ,d). Let GH be the set of POSs.

Another concept used here is the AON-flow Network (Ar-
tigues, Michelon, and Reusser 2003), which is also an aug-
mented DAG GF = (AP , EP ∪ EF ) of GP , but EP ∩ EF

is not necessarily ∅. For each (i, j) ∈ EF , a flow vector
fij = (fij1, ..., fijK) is associated to denote the amount of
rk transfered from ai to aj . Let the requirement for each
rk of the two dummy activities be b0k = bN+1,k = Ck.
Then GF should satisfy the below conditions: 1) Positive
flow:

∑
rk∈R fijk > 0, ∀(i, j) ∈ EF ; 2) Inflow balance:∑

(j,i)∈EF
fjik = bik, ∀rk ∈ R, ai ∈ Ap \ {a0}; 3) Outflow

balance:
∑

(i,j)∈EF
fijk = bik, ∀rk ∈ R, ai ∈ Ap\{aN+1}.

Let GF be the set of AON-flow Networks. Apparently, for
any GF ∈ GF , GH = (AP , E(GF )) is a POS since the
resource conflicts are resolved by the flows. In Section 5.1
we will show that we can determine if a DAG GV is a POS,
by checking if it can accommodate a feasible flow.
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3 CVaR based Proactive Scheduling
As mentioned, we aim to optimize the α-robust makespan.
Here we give its definition following the one in (Beck and
Wilson 2007) for job-shop problems. Given a risk parameter
α ∈ (0, 1), a real value D is α-achievable for POS GH if
Pr(MS(GH ,d) ≤ D) ≥ 1 − α, i.e. the probability that
the random makespan exceeds D is bounded by α. Then
the α-robust makespan of GH is the minimum of all the α-
achievable D, i.e. Dα(GH) = min{D|Pr(MS(GH ,d) ≤
D) ≥ 1− α}. The proactive problem can be formulated as:

G∗
H = argmin

GH∈GH

Dα(GH). (5)

It is easy to verify that Dα(GH) is the β-VaR of GH on
d, with β = 1 − α and the loss being MS(GH ,d). Hence
Problem (5) is equivalent to minimizing the β-VaR.

The typical way for VaR minimization is to transform it
into a chance constrained optimization problem (Hong, Hu,
and Liu 2014). However, for Problem (5), this results in
MILPs that are computationally prohibitive, as presented in
(Varakantham, Fu, and Lau 2016; Fu, Varakantham, and Lau
2016). Therefore, we take a different approach here which
optimizes CVaR instead of VaR. To be more specific, we op-
timize the approximate function F̂β defined in Equation (3)
on independent samples {d1, ..., dQ} drawn from d:

(Ĝ∗
H , ω̂∗) = argmin

(GH ,ω)∈GH×R

F̂β(GH , ω). (6)

Then the optimal solution (Ĝ∗
H , ω̂∗) for the above problem

converges to the actual CVaR minimizing solution (G∗
H , ω∗)

exponentially fast with the increase of Q.
As mentioned in (Hong, Hu, and Liu 2014), most CVaR

optimization approaches assume that the decision space X

is linear. In this case, the optimization of F̂β can be trans-
formed to a linear program which can be solved efficiently.
However, our problem does not comply with this assump-
tion since the POS space GH is combinatorial. In fact, we
can show that it is NP-hard to optimize F̂β(GH , ω):
Proposition 1. The optimization problem (6) is NP-hard.

Proof. Our proof follows the one for RCPSP in (Blazewicz,
Lenstra, and Kan 1983), which reduces the NP-complete
problem Partition Into Triangles (PIT) to RCPSP. The PIT
problem is: given graph G = (V,E) with |V | = 3t, can
we partition G into t disjoint subsets, each containing three
pairwise adjacent vertices? For any PIT instance, we con-
struct an instance of Problem (6) as follows. First, we cre-
ate a RCPSP as in (Blazewicz, Lenstra, and Kan 1983): for
each i ∈ V , create an activity ai; for each (i, j) /∈ E,
create a resource rij with Cij = 1, which is consumed
by ai and aj only, with a requirement of 1. Next, we add
one sample d with di = 1 for all ai, and obtain an in-
stance of problem (6) with the objective F̂β(GH , ω) =
ω + 1/(1− β)[MS(GH , d)− ω]+.

We claim that this problem has a solution (GH , ω) with
F̂β(GH , ω) ≤ t if and only if the corresponding PIT in-
stance has a solution. Firstly, if the PIT instance has a so-
lution, then a feasible schedule S can be obtained immedi-
ately with MS(S) ≤ t. Then on each resource unit, we sort

the consuming activities in ascending order based on their
start times in S, and create a POS GH by adding precedence
constraints for each activity and its immediate successor on
each resource it consumed. Clearly MS(GH , d) ≤ t, hence
we have a solution (GH , ω) with ω = MS(GH , d) and
F̂β(GH , ω) = MS(GH , d) ≤ t. Secondly, if problem (6)
has a solution (GH , ω) with F̂β(GH , ω) ≤ t, then we must
have MS(GH , d) ≤ t. This is because if MS(GH , d) =

t′ > t, then function F̂β(ω) = ω+1/(1−β)[t′−ω]+ has an
infimum t′, indicating F̂β(GH , ω) > t for any ω ∈ R. Hence
schedule S = S(GH , d) has a makespan MS(S) ≤ t, indi-
cating the PIT instance has a solution.

Therefore, linear approaches cannot be applied to Prob-
lem (6). In the next section, we design a general branch-and-
bound framework for combinatorial CVaR minimization.

4 A Branch-and-bound Framework for

Combinatorial CVaR Minimization

In general, a branch-and-bound algorithm iteratively par-
titions the solution space into smaller pieces, and uses a
bounding function to fathom searching in certain solution
pieces. Here we aim at designing a branch-and-bound frame-
work for minimizing F̂β defined in Equation (3) in the so-
lution space X × R where X is combinatorial. Our frame-
work only partitions X , since ω is an unbounded real vari-
able which is relatively easy to optimize.

The core component of a branch-and-bound algorithm is
the bounding function. Below we design a lower bound-
ing function for minimizing F̂β . Given a subset of decisions
X ′ ⊆ X , suppose we can lower bound the loss function g on
each sample yq for X ′, by calling a function gLB(X

′, yq).
Next, we define an auxiliary function Lβ as follows:

Lβ(X
′, ω) = ω +

1

(1− β)Q

Q∑
q=1

[gLB(X
′, yq)− ω]+. (7)

Then we can have the following conclusion:
Proposition 2. Define LB(X ′) as follows:

LB(X ′) = min
ω∈R

Lβ(X
′, ω), (8)

then LB(X ′) is a lower bound for X ′.

Proof. For any decision x ∈ X ′ and sample yq , we have
gLB(X

′, yq) ≤ g(x, yq) since gLB is a lower bound. Then
for any ω ∈ R, we have Lβ(X

′, ω) ≤ F̂β(x, ω). In other
words, for any x ∈ X ′, function Lβ is pointwise smaller
than or equal to F̂β with respect to ω. Therefore the min-
imum value of Lβ with respect to ω, i.e. LB(X ′), should
satisfy LB(X ′) ≤ F̂β(x, ω) for any (x, ω) ∈ X ′ × R.

Remark. We can also conclude that if gLB is stronger,
then LB(X ′) is also stronger which leads to more effective
pruning. For any X ′ and yq , if g1LB(X

′, yq) ≤ g2LB(X
′, yq),

then the corresponding two functions L1
β and L2

β satisfy
L1
β(X

′, ω) ≤ L2
β(X

′, ω) for any ω ∈ R. Therefore,
minω∈RL

1
β(X

′, ω) ≤ minω∈RL
2
β(X

′, ω).
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According to Proposition 2, the lower bound value can be
computed in two steps: 1) compute the lower bound on each
sample; 2) solve the optimization problem (8). It is easy to
verify that Lβ is convex (though not differentiable) with re-
spect to ω, therefore (8) is a univariate convex optimization
problem, which can be solved by standard techniques such
as the subgradient method. Nevertheless, we can show that
Problem (8) can be solved more efficiently by simply rank-
ing the sample lower bounds.
Proposition 3. If Q sample lower bound values are ranked
ascendingly as g1LB ≤ ... ≤ gQLB , then ω∗ = gk

∗
LB with

k∗ = 
βQ� solves Problem (8) optimally.

Proof. The ranked sample lower bounds split R into a set of
intervals (−∞, g1LB ],...,[g

k
LB , g

k+1
LB ],...,[gQLB ,∞). It is easy

to verify that Lβ is linear in each interval, and is continuous
in R. We can then write the derivative of Lβ with respect to
ω: when ω ≤ g1LB , L′

β = −β/(1 − β) < 0; for any integer
k ∈ [1, Q−1], when ω ∈ [gkLB , g

k+1
LB ], L′

β = (k−βQ)/(Q−
βQ); when ω ≥ gQLB , L′

β = 1 > 0. Hence, along with the
increase of ω in R, L′

β increases from negative to positive.
The smallest k that makes L′

β ≥ 0 is k∗ = 
βQ�, meaning
that Lβ stops decreasing in [gk

∗
LB , g

k∗+1
LB ] and ω∗ = gk

∗
LB is

an optimal solution to Problem (8).

Therefore, LB(X ′) can be obtained very easily after com-
puting the sample lower bounds. With proper branching
functions to partition the solution space X , the branch-and-
bound process can be executed correctly to find the opti-
mal solution (x̂∗, ω̂∗). Note that when a feasible decision
x′ ∈ X is reached, a candidate (x′, ω′) for the optimal so-
lution can be obtained by fixing the loss g(x′, yq) in Equa-
tion (3) for each sample, and minimizing F̂β with respect
to ω following a similar ranking procedure as minimizing
Lβ . The sample losses can also be used to retrieve the (ap-
proximate) β-VaR of x′ on the samples (y1, ..., yQ), i.e.
φ̂β(x

′) = max{g(x′, yq)|g(x′, yq) ≤ ω′} (Rockafellar and
Uryasev 2002). This framework is general and applicable for
any combinatorial CVaR minimization problem, as long as
the sample bounding function gLB is available.

5 The Proactive Scheduling Algorithm

In this section, we instantiate our CVaR minimization frame-
work to solve Problem (6). We first describe how to check if
a given augmented DAG is a partial order solution (POS).

5.1 POS Checking

When there is only one resource r with capacity C, it has
been shown in (Leus and Herroelen 2004) that for a given
augmented DAG GV = (AP , EP ∪ EV ), the existence of a
feasible flow can be checked by computing a maximum flow
in a transformed network G′

V constructed as follows: 1) cre-
ate two vertices is and it for each ai ∈ A, and one vertex
for a0 and aN+1 named as 0s and (N + 1)t, respectively;
2) create two vertices, s and t with an edge (t, s) as the
virtual source and sink, and add edges (s, is), (it, t) for all
ai ∈ AP ; 3) for each (i, j) ∈ E(GV ), add an edge (is, jt).

Figure 1: An example of network transformation (left: orig-
inal DAG GV ; right: transformed network G′

V , where inte-
gers beside edges represent capacities)

Each (s, is) and (it, t) has a capacity bi that is equal to
the resource requirement of ai, while the capacities of other
edges are +∞. An example of this transformation is shown
in Figure 1. Let f(G′

V ) be the maximum (s, t) flow value
in G′

V , then there exists an AON-flow Network GF with
E(GF ) ⊆ E(GV ) if and only if f(G′

V ) = fmax, where
fmax = C +

∑
ai∈A bi. Moreover, a feasible flow in GV

can be obtained by setting fij to the flow value on the edge
(is, jt) in G′

V . Due to the integrality property of the max-
imum flow problem, all fij should be integers. The above
procedure can be done efficiently using maximum flow al-
gorithms (e.g. Edmonds-Karp algorithm).

Here we extend the above procedure to support multiple
resources. For each rk, we maintain a transformed network
G′k

V for a given DAG GV . Notice that these networks have
the same edge sets, while the edge capacities are set to bik
for the corresponding G′k

V . Let fk
max = Ck +

∑
ai∈A bik

for rk, then we can conclude that there exists an AON-
flow Network GF with E(GF ) ⊆ E(GV ) if and only if
f(G′k

V ) = fk
max holds for all rk ∈ R. Furthermore, we can

show that whether a DAG is POS can be checked in polyno-
mial time, by checking the existence of AON-flow Network.

Proposition 4. For any POS GH ∈ GH , there must be an
AON-flow Network GF ∈ GF such that E(GF ) ⊆ E(GH).

Proof. If no such AON-flow Network exists, then there must
be a resource rk ∈ R with f(G′k

H) < fk
max. This means

there must be some activity ai which cannot secure enough
amount of rk by the edges in E(GH), since the flow in G′k

H
is already maximized. Hence in the actual execution, it is
possible that rk is not enough for ai to start at the time de-
termined by GH , which implies that potential precedence
constraints are needed to resolve resource conflicts.

5.2 Branching Scheme

Starting from GP , our algorithm employs a depth-first
branch-and-bound process to add edges to GP until a POS
is obtained1. Since a POS must be acyclic, the set of feasible
edges that can be added is FS = {(i, j) /∈ E(GP )|(j, i) /∈
Tr(GP )}. For each (i, j) ∈ FS, we maintain lower bound
fL
ijk and upper bound fU

ijk of the (integer) flow fijk that

1Note that when a POS GH is reached, the algorithm can
backtrack safely. Because for any G′

H with E(GH) ⊆ E(G′
H),

MS(GH , d) ≤ MS(G′
H , d) holds for any sample d, therefore

minω∈RF̂β(GH , ω) ≤ F̂β(G
′
H , ω) holds for any ω.
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can be imposed on it for rk, with 0 ≤ fL
ijk ≤ fU

ijk. Ini-
tially, fL

ijk = 0 and fU
ijk = min{bik, bjk}. During search-

ing, these bounds are tightened by constraint propagation
which will be detailed in Section 5.3. The flow bounds are
also imposed to the transformed networks: for G′k

V trans-
formed from GV , for any (i, j) ∈ E(GV ), the flow of rk
carried by edge (is, jt) should be within [fL

ijk, f
U
ijk]. Let

sumL
ij =

∑
rk∈R fL

ijk and sumU
ij =

∑
rk∈R fU

ijk. Then
sumL

ij > 0 means there must be a flow on (i, j) while
sumU

ij = 0 indicates (i, j) cannot carry flow for any rk.
Based on the bound values and branching decisions, an edge
(i, j) ∈ ES has four status: 1) included, if sumL

ij > 0; 2)
banned, if sumU

ij = 0; 3) undecided, if sumL
ij = 0 and

sumU
ijk > 0; 4) conflicted, if (j, i) ∈ Tr(GV ) where GV is

the current partial solution.
The skeleton of our algorithm is described by the pseudo

code in Algorithm 1. The first step is to check if the current
partial solution GV is a POS, using the procedure in Sec-
tion 5.1. If true, meaning a feasible solution is reached, then
we compute an optimal candidate (GV , ω) using the ranking
procedure in Section 4, and compare it with the incumbent
(G∗

H , ω∗) to check if a better solution is found. Otherwise,
GV is not a POS and more edges need to be added, which
leads the algorithm to a two-level branching scheme.

In the first level, an eligible edge (i, j) ∈ FS is chosen
for branching (Line 6), if it is undecided and does not con-
flict with GV . The heuristic for choosing edge will be dis-
cussed in Section 5.4. Then the lower bound of adding (i, j)
to GV is computed to determine if the search path should be
pruned or not (Line 7). If not, Algorithm 1 enters the sec-
ond level where (i, j) is first included in GV by imposing
fL
ijk = 1 for a chosen resource rk, until all rk ∈ R have

been tried, i.e. chooseResource returns null (Lines 9-13).
Then, (i, j) is banned by removing it from GV and impos-
ing fU

ijk = 0 (which automatically imposes fL
ijk = 0) for all

rk ∈ R (Lines 14-16). When a lower (upper) bound needs
to be tightened, a function propagateLB (propagateUB) is
called in Line 11 (15) to maintain the consistency of the flow
bounds. The search path is expanded by calling BnB if the
propagation successes, otherwise it is pruned. The searching
process starts by calling BnB(GP , null, null,+∞). Upon
termination, the β-VaR of the best solution is also returned
as the α-robust makespan.
Lower Bound. In function computeLB (Line 7), we only
need to compute the lower bounds of adding (i, j) to GV on
each sample dq . To this end, we relax all resource constraints
and compute MS(ḠV , d

q) for each dq as the sample lower
bounds, where ḠV = (AP , E(GV ) ∪ {i, j}).

5.3 Constraint Propagation

For single resource problems, Leus and Herroelen (2004)
propose to maintain the flow bound consistency by conduct-
ing constraint propagation on the remainder network GR =
(AP , EP ∪ER), where ER = {(i, j) ∈ ES|fU

ij > 0} is the
set of edges not banned by the current branching decisions.
For (i, j) ∈ E(GR), let Oij = {(i, l) ∈ E(GR)|l 
= j} and
Iij = {(l, j) ∈ E(GR)|l 
= i} be the set of other edges in

Algorithm 1: BnB(GV , G
∗
H , ω∗, F̂ ∗

β )

Input: GV : current partial solution; G∗
H : current best

POS; ω∗: the best ω with G∗
H ; F̂ ∗

β : current best
objective

1 if GV is a POS then
2 (GV , ω) ←minimizeF(GV );
3 if F̂β(GV , ω) < F̂ ∗

β then

4 Update G∗
H , ω∗, and F̂ ∗

β ;

5 else
6 (i, j) ←chooseEdge(GV );
7 if computeLB(GV , i, j) < F̂ ∗

β then
8 GV ← (AP , E(GV ) ∪ {(i, j)});
9 k ←chooseResource(GV );

10 while k �= null do
11 if propagateLB(i, j, k)=true then

12 BnB(GV , G∗
H , ω∗, F̂ ∗

β ); restore();
13 k ←chooseResource(GV );

14 GV ← (AP , E(GV ) \ {(i, j)});
15 if propagateUB(i, j)=true then

16 BnB(GV , G∗
H , ω∗, F̂ ∗

β ); restore();

17 return;

E(GR) that starts from ai and ends at aj , respectively. Since
an AON-flow Network must satisfy inflow and outflow bal-
ance, the bounds of fij can be tightened as:

fL
ij = max

⎧⎨
⎩fL

ij , bi −
∑

(i,l)∈Oij

fU
il , bj −

∑
(l,j)∈Iij

fU
jl

⎫⎬
⎭ (9)

fU
ij = min

⎧⎨
⎩fU

ij , bi −
∑

(i,l)∈Oij

fL
il , bj −

∑
(l,j)∈Iij

fL
jl

⎫⎬
⎭ (10)

Consistency can be achieved by updating bounds for all
edges in E(GR) till no bound changes. The network G′

R
transformed from GR using the procedure in Section 5.1 is
also used for detecting infeasibility in (Leus and Herroelen
2004). If f(G′

R) < fmax, then clearly the current branching
decisions cannot lead to any AON-flow Network.

For our problem with multiple resources, we maintain the
flow bounds independently for each rk based on Equations
(9) and (10). The branching decisions in the second level of
Algorithm 1 enable the independent bound updates: when
an edge (i, j) is included, fL

ijk of a chosen rk changes from
0 to 1 which makes the positive flow condition satisfied,
and function propagateLB only maintains consistency for
rk; when (i, j) is banned, function propagateUB maintains
consistency for all resources by setting fU

ijk to 0 (so as fL
ijk)

for all rk and propagating to other bounds. If any bound in-
feasibility (i.e. fU

ijk < fL
ijk) is detected during propagation,

a false value is returned to signal the algorithm for back-
tracking. Note that constraint propagation may imply that
certain edges (i, j) /∈ E(GP ) should be included in GV (if
sumL

ij > 0) or banned (if sumU
ij = 0). If the flow bounds
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are updated successfully, propagateLB and propagateUB try
to detect flow infeasibility. For each rk, we maintain trans-
formed network G′k

R for GR, and try to maximize flows in
G′k

R and G′k
V for rk affected by constraint propagation. If

f(G′k
R ) < fk

max or G′k
V is an infeasible network, then ac-

cording to Proposition 4, the current branching decisions
cannot lead to any POS and a false value is returned.

5.4 Heuristics

Essentially, by adding edges to a partial solution GV , we
wish to increase the maximum flow in each G′k

V to fk
max so

that a POS is obtained. Hence, we prefer the edge that can
bring the largest increment for each f(G′k

V ) so that a solution
is reached as early as possible. Here we design a heuristic
Resource Score to estimate the contribution that an eligible
edge (i, j) could have for the flow increment as follows:

RS(i, j) =
∑
rk∈R

{
RSk(i, j) =

fR
ijk

fk
max − f(G′k

V )

}
, (11)

where RSk is a normalized estimate for the contribution of
(i, j) to rk, with the nominator fR

ijk being the flow for rk on
edge (i, j) in the remainder network GR and the denom-
inator being the current flow gap for G′k

V to reach fk
max.

Function chooseEdge in Line 6 of Algorithm 1 returns the
edge (i, j) with the highest RS value as the next branching
choice, and chooseResource in Line 9 returns the unexplored
rk with the highest RSk value for (i, j).

6 Experimental Results

In this section, we empirically evaluate our approach on
benchmark instances, and compare with two state-of-the-
art approaches SORU-H (Varakantham, Fu, and Lau 2016)
and BACCHUS (Fu, Varakantham, and Lau 2016). SORU-
H computes start-time schedule, while BACCHUS generates
POS as our approach does. Our algorithm is implemented in
JAVA 1.8, while SORU-H and BACCHUS are coded using
Java API for CPLEX 12.7.1. All algorithms run on an Intel
Xeon E5 Workstation (3.5GHz, 16GB).

We generate RCPSP instances using RanGen2 (Van-
houcke et al. 2008), which requires five parameters: num-
bers of activities N and resources K, order strength OS,
resource factor RF, and resource-constrainedness RC.2 OS
specifies the density of GP , RF describes the average num-
ber of resources required per activity, and RC indicates the
average fraction of resource capacities consumed per ac-
tivity. N and K are chosen from {10, 20, 30} and {1, 2,
3} respectively, while RF, OS, and RF are chosen from
{0.2, 0.7} which denote the “low” and “high” levels. For
each parameter configuration, we generate 10 instances as
a subset, hence totally 720 instances are generated. Two
distributions are used to model the uncertainty: 1) a nor-
mal distribution N (d0i , σ

2) with d0i being the deterministic

2Here we use this test set instead of public benchmarks such
as PSPLIB, because we intend to evaluate the performance of
our algorithm against different problem parameters, especially the
resource-related ones (K, RF and RC) since our algorithm mainly
reasons on the resource constraints.
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Figure 2: Results for sample size test

duration of ai (an integer in [1, 10] in the generated in-
stances) and σ = 0.5, which is used in (Fu et al. 2012;
Varakantham, Fu, and Lau 2016); 2) an exponential distri-
bution Exp(1/d0i ) used in (Creemers 2015; Leus and Her-
roelen 2004). The uncertainty level of Exp is higher than
N , since its squared coefficient of variance (SCV) is much
higher (Creemers 2015)3.

Following (Varakantham, Fu, and Lau 2016), we em-
ploy two evaluation metrics: 1) α-robust makespan (α-
RM) output by an algorithm, and 2) Probability of Failure
(PoF) which is the ratio of instances either having an actual
makespan larger than α-RM (for POS) or violating any con-
straint (for start-time schedule). PoF is computed on a large
number of Qt = 2000 testing samples. Time limits for all
algorithms are 10 minutes, and the returned best results are
used for analysis.

6.1 Analysis of Our Algorithm

We first examine our algorithm against different Q and α.
Impact of sample size. Since we (approximately) optimize
Fβ , we evaluate the impact of Q on Fβ based on the gap esti-
mator ρ of SAA (Kleywegt, Shapiro, and Homem-de Mello
2002). Specifically, we solve problem (6) Qr = 20 times in-
dependently, and let (Gr

H , ωr) be the solution with the low-
est F̂β . Then ρ is estimated as ρ = |F̂ ′

β − F̂ r
β (G

r
H , ωr)|,

where F̂ ′
β is the average objective of the Qr replications, and

F̂ r
β (G

r
H , ωr) is computed on Qt testing samples. The vari-

ance of ρ is estimated as varρ = S2
r/Qr+S2

t /Qt, where S2
r

and S2
t are variances of the Qr objectives and the Qt values

of function ωr + 1/(1− β)[g − ωr]+, respectively.
We plot the average gap, variance and execution time of

our algorithm on a representative subset (10 instances) with
Exp and α = 0.2 in Figure 2, which clearly shows the trade-
off between solution quality and computational effort. This
is an expected observation, which is theoretically guaranteed
by the properties of SAA. As shown, while the gap is rela-
tively stable, its variance drops with the increase of Q, in-
dicating the solution becomes more stable. The increase of
execution time is not vary fast, which shows good scalabil-
ity of our approach on large Q. Intuitively, this is because the
samples are only used for lower bound computation which is
very efficient in our CVaR minimization framework. We also

3SCV of a distribution is defined as σ2/μ2, where σ and μ are
the standard deviation and mean, respectively.
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Figure 3: PoF distributions for different risk levels

have similar observations in other instance subsets. Here we
use this instance set for illustration because all instances in
this set are solved optimally in all replications for all Q val-
ues, which is more ideal for computing the gap estimator. In
the remaining experiments, we set Q = 100.

Table 1: Results for different risk levels
N Exp

α α-RM PoF #Vio 1 #Vio-ε 2 α-RM PoF #Vio #Vio-ε

0.2 65.74 0.13 5 0 88.36 0.19 21 4
0.15 65.86 0.09 8 0 92.76 0.14 26 2
0.1 66.72 0.06 6 0 100.79 0.09 24 1

1 The number of instances with PoF> α.
2 The number of instances with PoF> α when ε = 0.05.

Impact of risk parameter. To examine the impact of α,
we select 72 instances by randomly picking one in each
subset. In Table 1, we present the average α-RM and PoF
for the two distributions, with different risk levels α ∈
{0.2, 0.15, 0.1}. We can observe that with stricter risk re-
quirement (smaller α), α-RM increases since it needs to tol-
erate more execution scenarios. The increase of α-RM is
higher for Exp than N , since the uncertainty level of the
former is higher. On average, PoF is close to α which shows
a precise risk control. We plot the PoFs of the 72 instances
in Figure 3, which shows most of PoFs are below the re-
quired level α. But still, some instances have higher PoF
than α, as shown in the columns “#Vio” of Table 1, and
Exp has more violations than N . This is because Problem
(6) is built on limited samples which cannot cover all situ-
ations. This is also observed in (Luedtke and Ahmed 2008;
Varakantham, Fu, and Lau 2016), and they propose to solve
the SAA problems with stricter risk level α′ than required,
i.e. α′ = α− ε. Following this idea, we set ε = 0.05 for our
algorithm, as can be observed in the columns “#Vio-ε” in
Table 1 that this value can effectively reduce PoF violations.

6.2 Comparison with other Approaches

We first tune the parameter ε for SORU-H and BACCHUS.
α is set to 0.2 in this section. We conduct experiments on
the 72 instances used in Section 6.1, with ε ∈ {0, 0.05, 0.1}.
We report the number of violations in Table 2. As shown,
ε = 0.05 is reasonable for BACCHUS with a violation ratio
of at most 12/72 = 16.7% for both N and Exp. For SORU-
H, ε = 0.1 leads to satisfying results for N , which is also the
recommended value in (Varakantham, Fu, and Lau 2016).
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But for Exp which has a higher uncertainty level, all test in-
stances are violated with ε = 0.1. This is because SORU-H
generates start-time schedule as proactive solution, which is
too rigid and has a high chance to violate when the duration
uncertainty level is high. In contrast, BACCHUS and our ap-
proach generate flexible solution POS, which provides better
robustness (Bidot et al. 2009). In the remaining experiments,
we only report the results of SORU-H on N .

Table 2: Number of violations for different ε values
N Exp

ε BACCHUS SORU-H BACCHUS SORU-H

0 43 71 24 72
0.05 0 57 12 72
0.1 0 14 2 72

Table 3: Summary of results
N Exp

Ours BACCHUS SORU-H Ours BACCHUS

PoF≤ α (%) 98.06 98.19 86.94 82.08 84.44
α-RM 1 64.66 65.85 68.4 102.97 133.12

LowestRM (%) 2 77.81 26.99 7.78 89.71 14.12

1 The average α-RM on instances that are successful for all algorithms.
2 The ratio of successful instances with the lowest α-RM among all algorithms (sum-

mation may larger than 100% since different algorithms may give the same α-RM).

We then execute the three algorithms on all the 720 in-
stances, and summarize the results in Table 3. We say an
instance test is successful, if its PoF≤ α. For distribution
N , BACCHUS and our algorithm succeed on over 98% of
the instances, which are more than SORU-H. On the 604 in-
stances that are successful for all three algorithms, the aver-
age α-RM values are comparable. However, our algorithm
achieves the lowest α-RM in over 77% of the successful
instances, which is significantly higher than the other two.
For distribution Exp, BACCHUS and our algorithm are able
to succeed on over 80% of the instances. However, on the
517 instances successfully solved by both algorithms, the
average α-RM produced by our algorithm is significantly
lower than that of BACCHUS, with a 25% improvement. In
fact, our algorithm achieves lower α-RM on nearly 90% of
the successful instances. We believe this performance gap is
caused by the summarization heuristic used in BACCHUS.
To verify our intuition, we plot the 720 PoF values produced
by BACCHUS and our algorithm with Exp in Figure 4.
As shown, PoF values of our algorithm distribute densely
around the required level α = 0.2, with over 93% PoFs
within [0.1, 0.3] and 0.6% (4 instances) higher than 0.3. In
contrast, PoFs of BACCHUS distribute rather sparsely, with
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28% PoFs within [0.1, 0.3], 5% higher than 0.3, and nearly
67% smaller than 0.1. In addition, most of the instances with
OS=0.7 have PoFs smaller than 0.1. These results indicate
that the summarization heuristic tends to over-compensate
for α, i.e. produces α-RM that is higher than required, es-
pecially for instances with higher OS. Since our algorithm
solves SAA problems with tens to hundreds of samples in-
stead of a representative one, better estimation and control
of the risk level can be achieved.

Finally, we briefly report the computational efficiency.
Note that while our algorithm solves Problem (6) with hun-
dreds of samples, SORU-H and BACCHUS essentially solve
a much simpler deterministic RCPSP since only one summa-
rized sample is used. In general, our algorithm finds the opti-
mal solutions of Problem (6) for nearly 60% of all instances,
while SORU-H and BACCHUS optimally solve over 90%
of the corresponding deterministic instances. However, it
is common in the experiments that a sub-optimal solution
given by our algorithm is much better than the optimal solu-
tions given by SORU-H and BACCCHUS. We plot the per-
centage of time-out instances with the problem parameters
in Figure 5. As shown, the three algorithms share the same
trend, i.e. the hardness increases with N , K, RF and RC,
but decreases with RF. For BACCHUS and our approach,
this is perhaps because higher RF and RC implies more al-
ternatives for generating POS hence a larger search space,
while higher OS means the AON network GP is denser and
already contains many edges that should present in a POS
hence a smaller search space. The reason for N and K is
straightforward, since they decide the size of an instance.

7 Conclusions and Future Work

In this paper, we propose a novel approach for risk-aware
project scheduling, by exploiting a mathematically coher-
ent measure CVaR. We design a general branch-and-bound
framework with efficient bound computation for combina-
torial CVaR minimization, and instantiate it to solve the
proactive scheduling problem. Empirical results show that
our approach scales well to a large number of samples,
and provides better risk control and robust makespan. For
future work, firstly we plan to improve the computational
efficiency using stronger lower bounds and more effec-
tive heuristics; secondly, we will extend our approach to
RCPSP/max, which is considered in (Varakantham, Fu, and
Lau 2016; Fu, Varakantham, and Lau 2016).
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