
Expressive Real-Time Intersection Scheduling

Rick Goldstein
The Robotics Institute

Carnegie Mellon University
rgoldste@cs.cmu.edu

Stephen F. Smith
The Robotics Institute

Carnegie Mellon University
sfs@cs.cmu.edu

Abstract

We present Expressive Real-time Intersection Scheduling
(ERIS), a schedule-driven control strategy for adaptive in-
tersection control to reduce traffic congestion. ERIS main-
tains separate estimates for each lane approaching a traffic
intersection allowing it to more accurately estimate the ef-
fects of scheduling decisions than previous schedule-driven
approaches. We present a detailed description of the search
space and A* search heuristic employed by ERIS to make
scheduling decisions in real-time (every second). As a result
of its increased expressiveness, ERIS outperforms a less ex-
pressive schedule-driven approach and a fully-actuated con-
trol method in a variety of simulated traffic environments.

Introduction

Traffic congestion is a widespread annoyance throughout
global metropolitan areas. It causes increases in travel time,
increases in emissions, inefficient usage of gasoline, and
driver frustration. It is estimated that in 2014, congestion
in urban America caused an additional 6.9 billion hours of
travel time and that an additional 3.1 billion gallons of fuel
were used as a result of congestion, costing roughly $160
billion (Schrank et al. 2015). Inefficient signal patterns at
intersections are one major cause of such congestion. Traf-
fic signals are inefficiently timed and often fail to react to
real-time traffic conditions.

Intersection scheduling strategies that make real-time de-
cisions to extend or end a green signal based on real-time
traffic data offer one opportunity reduce congestion and its
negative impacts. However, three factors make real-time in-
tersection scheduling difficult. Firstly, current data about
traffic is incomplete and noisy; point sensors such as in-
duction loop detectors and cameras miss vehicles, double
count vehicles, and only provide an inexact estimate of ar-
rival times. Secondly, even with perfect data, modelling the
dynamics of a multi-agent system of heterogeneous vehicles
and pedestrians is challenging. Thirdly, given perfect data
and perfect agent modelling, the problem of comparing all
possible signal timing strategies is exponentially large in the
length of the scheduling horizon. The second and third chal-
lenges are linked by a trade-off between model expressive-
ness and the requirement of real-time solvability.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Inspired by many automakers’ (including Ford, Audi, and
Tesla) decisions to integrate connected devices into vehicles,
our real-time scheduling work adopts a connected vehicle
framework as a solution to the first proposed challenge of
noisy sensors. In the connected vehicle framework, we as-
sume all vehicles are equipped with a cellphone or dedi-
cated short-range communication (DSRC) radio which con-
tinuously transmits real-time location, heading, and speed.
Receivers connected to a computer at each intersection can
collate this data into a real-time estimate of local traffic con-
ditions.

In response to the second challenge of modelling traffic,
we adopt a lane-based framework; we maintain separate es-
timates of the vehicles present in every lane approaching an
intersection. Given the above information and learned ve-
hicle dynamics, we estimate when a vehicle will reach the
intersection stop line, the probability of changing lanes, and
when it will pass through the intersection.

This lane-based framework is more expressive than prior
work in schedule-driven intersection control which com-
bines compatible movements (e.g. east and west) into a sin-
gle movement (as in Xie et al. (2012)). The increased size
of our traffic state representation ultimately makes the third
challenge of calculating an optimal schedule of signal tim-
ings more difficult. We propose a heuristic function that
exploits problem structure to quickly calculate meaningful
lower bounds on the delay associated with potential sig-
nal patterns. This heuristic is employed by an A* search
to efficiently calculate optimal schedules in real-time (ev-
ery second). We show that Expressive Real-time Intersec-
tion Scheduling (ERIS) can reduce delay by up to 20% when
compared to other real-time intersection control strategies.

The remainder of this paper is organized as follows. We
begin by explaining the real-time intersection control prob-
lem and provide an overview of intersection control re-
search. Next, we present ERIS, our strategy for the real-time
intersection control problem, and discuss our application of
A* search to solve single instances of the problem. We then
present several experiments demonstrating that ERIS out-
performs other real-time approaches in a fully connected ve-
hicle framework. We conclude with a discussion of future
work.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6177

Problem Formulation
We start by presenting the real-time intersection control
problem, introducing relevant traffic terminology, and high-
lighting several assumptions that underlie our model.

Real-time Intersection Control

In the real-time intersection control problem, we consider
an intersection, such as the one presented in Figure 1, where
traffic signals have been installed to improve mobility or in-
crease safety. A traffic light controller, located at the inter-
section, is responsible for controlling the individual traffic
signals. In the real-time intersection control problem, we
dictate to the controller how to act at every time-step. We
may prescribe that the controller extend an active green sig-
nal or end an active green signal and activate another as long
as we do not violate traffic light controller constraints (which
are detailed throughout this section).

We are interested in generating a feasible plan for allocat-
ing green time to different approaches that will minimize a
measure of disutility. We focus on minimizing average vehi-
cle delay which is how long a vehicle must wait for its turn
to pass through the intersection. This value is the difference
between a vehicle’s intended arrival time at the intersection
stop line (assuming no congestion) and when the vehicle ac-
tually passes through the intersection.

An intersection has inbound lanes from various direc-
tions. An intersection may associate a subset of lanes, re-
ferred to a movement, with a green signal to indicate to ve-
hicles in the respective lanes that it is safe to traverse the
intersection. The intersection in Figure 1 is currently provid-
ing two green movements, namely the North-straight move-
ment and the South-straight movement. (We group right turn
movements into straight movements as they typically occur
simultaneously). Green movements must satisfy prespeci-
fied minimum and maximum timing limits. Similarly, we re-
quire yellow and red clearances with fixed lengths to occur
between successive green movements for safety. The current
state of the controller, which consists of green movements
or yellow or red clearances, is referred to as the controller’s
phase.

The real-time intersection control problem assumes the
use of real-time information about vehicle locations to make
decisions. Real-time data can be gathered from a variety
of sources, including cameras, radar, underground induc-
tion loop detectors, connected vehicles transmitting infor-
mation, and intersections communicating expected outflows
to neighbors. This paper specifically examines the perfect
information connected vehicle environment; we assume that
vehicles transmit noiseless data regarding their position,
speed, and heading to the intersection every second.

Once data is gathered, it is collated into an estimate of ve-
hicle locations. Some schedule-driven approaches, ours in-
cluded, combine vehicle positions into clusters (or groups)
of vehicles traveling in the same direction within a specified
timing gap (Xie et al. 2012). Our schedule-driven approach
uses connected vehicle data as well as projected outflows
from neighboring intersections to generate these clusters.

Real-time schedule-driven methods are one type of model
predictive control. A schedule-driven method calculates a

Figure 1: Example Intersection

Figure 2: Compatible Green Phase Orderings

schedule that allows most or all vehicle clusters to pass
through the intersection while minimizing the cost function.
Once a schedule has been calculated, the first step of the
schedule is passed to the controller to implement, and pro-
jected outflows are communicated to downstream neighbors.
This process repeats every time-step.

Traffic Light Controller Assumptions

We assume that all intersections are four-sided intersections
controlled by a dual ring barrier controller. The dual ring
barrier controller may provide two compatible movements
with a green signal. Compatible movements and legal tran-
sitions between compatible pairs are presented below in Fig-
ure 2. (Yellow and red clearances between compatible pairs
are assumed). The dual ring barrier controller allows left turn
movements to end at separate times; this increases schedul-
ing flexibility but requires keeping track of green move-
ments and their respective start times separately.

In our dual ring controller, left turn movements precede
straight movements and left turn movements can be skipped
if no vehicles are present. Straight movements cannot be
skipped. Currently, we allow only protected movements at
our intersections. Vehicles that desire to turn left may only
do so when they receive a green turn arrow; similarly, right
turns on red are forbidden in our model. We discuss relax-
ations of this assumption at the end of this paper.

Related Work

A general treatment of all past intersection scheduling strate-
gies is beyond the scope of this paper; we refer the reader to
the works by Shelby (2001) and Stevanovic (2010) for more
detailed overviews of various intersection control strate-
gies. Here, we briefly summarize several control strategies
that adapt by setting high-level parameters. We then intro-
duce real-time intersection scheduling and highlight three
real-time scheduling techniques that are most similar to our
work.

6178

High-Level Intersection Control

High-level strategies set timing parameters, typically cy-
cle length for an entire network of intersections, splits be-
tween green phases at each traffic signal within the network,
and offsets which specify how to stagger the start times of
green phases across the network. TRANSYT was one of
the first non-adaptive intersection control strategies to cal-
culate these timing parameters by running a hill-climbing
algorithm to minimize an objective such as delay or num-
ber of stops on historical data (Robertson 1969). Several
more recent procedures, such as SCOOT, SCATS, and ACS
Lite perform similar optimizations that adapt timing param-
eters during execution based on observed data (Robertson
and Bretherton 1991; Lowrie 1990; Luyanda et al. 2003).

SCOOT, SCATS, and ACS Lite adapt gradually to chang-
ing traffic conditions. They do not react in real-time but
rather integrate real-time information across one or more cy-
cles and make adjustments over a timescale of several min-
utes. When realized flows on any side vary more rapidly than
expected, these methods provide unnecessary green time
that could be better allocated to busier sides.

Real-time Intersection Scheduling

Real-time intersection scheduling methods improve upon
high-level strategies by making decisions in direct response
to sensed traffic. Real-time methods are not constrained by
fixed timing requirements and can immediately adapt when
one side of the intersection is unexpectedly much busier. The
majority of these methods (including ERIS) are schedule-
driven methods. They use real-time vehicle information to
generate a schedule of phases to minimize a cost func-
tion. The first step of this schedule is then sent to the traf-
fic light controller and executed. This process repeats as
frequently as once per second, depending on the specific
method. The majority of schedule-driven methods are de-
centralized, meaning each intersection of a network is con-
trolled by a single computer making scheduling decisions
primarily based on local traffic.

Our work most closely resembles the original SURTRAC
system (Xie et al. 2012; Smith et al. 2013). SURTRAC is
a decentralized schedule-driven method which runs a for-
ward dynamic program to calculate an optimal schedule
for known vehicle clusters in real-time (as often as every
second) by treating each intersection as a single-machine
scheduling problem. To ensure that the forward dynamic
program can run in real-time, SURTRAC makes simplifi-
cations to the underlying scheduling problem. SURTRAC
schedules a simpler controller that requires left turn move-
ments to end simultaneously which reduces the branching
factor of the dynamic programming search. Additionally,
SURTRAC combines vehicle clusters travelling in compat-
ible directions (e.g. east and west) into larger clusters. This
reduces the dimensionality of the search space, but some-
times leads to solutions that mistakenly allocate too much
time to clusters that could be served simultaneously.

By scheduling a dual ring controller and maintaining sep-
arate counts of clusters in each lane, ERIS is able to maintain
a more accurate representation of the underlying traffic con-
ditions. ERIS must solve a more challenging problem; the

Figure 3: ERIS Control Flow

state space is much larger, so instead of using forward dy-
namic programming to calculate schedules, ERIS applies an
A* search.

In addition to being a decentralized schedule-driven
method, ERIS adopts several underlying design choices of
SURTRAC, namely the parameterization of clusters as jobs
with arrival times, flow rates, and sizes and the neighbor
communication protocol.

There are several real-time branch and bound schedule-
driven methods. Shelby (2001) proposes a branch and bound
method that uses linear and neural networks to rank states to
dictate which states are most promising to expand. Unlike
ERIS which runs an A* search with an admissible heuris-
tic, this ranking function can both over-estimate and under-
estimate remaining cost to goal, so there are no guarantees
on the optimality of the returned schedule without incorpo-
rating additional pruning logic. Additionally, this model re-
quires fixed timing steps of 5 seconds and looks at a fixed
planning horizon of 15 time-steps. Such course granular-
ity can distort actual traffic conditions rather significantly.
ERIS, like SURTRAC, is able to efficiently calculate sched-
ules that are several minutes in duration without compromis-
ing granularity.

Al Islam and Hajbabaie (2017) propose a mixed-integer
linear programming method to solve for optimal schedules
within a connected vehicle framework. They assume a re-
laxed underlying traffic model that drops several practical
constraints. They have no fixed phase ordering, no required
yellow or red clearances, and no phase minimum or maxi-
mum requirements. As such, they are able to instantaneously
jump between phases. In our work, we respect common in-
tersection dynamics such as the fixed phase ordering, dual
ring barrier controller logic, and fixed yellow and red clear-
ances. The underlying traffic model presented in their work
is similar to the relaxation step of our heuristic calculation.

Expressive Real-time Intersection Scheduling

Expressive Real-time Intersection Scheduling (ERIS) is a
decentralized, schedule-driven real-time intersection control
method that makes a decision every second based on cur-
rent traffic conditions and passes this information to the con-
troller to execute. This section summarizes the overall con-
trol flow of an ERIS controlled intersection. The control flow
is depicted in Figure 3 below. Every second, the ERIS Ex-
ecutor runs an outer loop that executes the necessary mod-
ules to make a scheduling decision. The Executor first cal-

6179

Figure 4: Intersection for Clustering

Figure 5: West-Origin Turn Ratios

culates a prediction of vehicle clusters in each lane using
nearby vehicle broadcasts of position, speed, and heading as
well as information shared from neighboring intersections
about predicted future outflows. Historical turning propor-
tions and a model of expected travel times are learned from
past vehicles flows. They are used to estimate travel times
and applied in cluster construction to estimate desired lane.
An example of cluster construction is presented in the fol-
lowing sub-section.

Once clusters are obtained, they are passed to the Schedul-
ing Module to obtain an optimal schedule of phases that
allows all vehicle clusters to pass through the intersection
while minimizing total delay. Clusters are scheduled in ac-
cordance with programmed traffic dynamics including the
fixed phase orderings, minimum and maximum times, and
start-up lost time (the delay vehicles experience when accel-
erating from a full stop). The scheduling procedure is ex-
plained in more detail in the following section.

Once a schedule is obtained, the first step of the schedule
is formatted into a command to either stay in the same phase
or switch to another phase. This command is sent to the con-
troller to execute. Similarly, scheduled cluster outflows are
broadcast to and received from neighboring intersections for
use during the next time-step when building vehicle clusters.

Cluster Construction Example

During each iteration of the Executor, ERIS constructs clus-
ters based on current traffic conditions. Clusters contain in-
formation about a group of nearby vehicles travelling along
the same lane. Each cluster has an intended arrival time
at the intersection, a size, and a flow rate describing how
quickly we expect the vehicles in the cluster to pass through
the intersection. An example intersection and the resulting
clusters are presented below in Figure 4 and Figure 6, re-
spectively.

Figure 6: Arrival Time Line and Clusters

The intersection presented in Figure 4 has three nearby
blue vehicles travelling along the South-straight lane. We
group them into one cluster for the South-straight lane. This
cluster is currently waiting at the intersection, so it is as-
signed a start time of 0. The cluster consists of three ve-
hicles, so it is assigned a size of 3. Assuming an observed
average flow rate of 1 vehicle per second, this cluster is as-
signed an equivalent flow rate of 1 vehicle per second.

The East-straight lane has two vehicles separated by
roughly 5 seconds. Since the vehicles are farther apart than
a fixed cut-off of 3 seconds, we place them into two sepa-
rate clusters. Each cluster has a start time corresponding to
the cluster’s predicted arrival at the intersection (0 and 5, re-
spectively), a size of 1, and a flow rate of 1.

The west side of the intersection has two turquoise ve-
hicles. Since the vehicles just entered the lane, they might
change lanes. Thus we divide these vehicles according to
historically observed splits (as shown in Figure 5). We ob-
tain two turquoise clusters, one for the West-straight lane
and one for the West-left lane. Both clusters have an ar-
rival time of 10. Each cluster has a size corresponding to
the expected number of vehicles travelling along the lane
(1.5 and 0.5, respectively). Flow rates are also appropriately
weighted (0.75 and 0.25, respectively).

Scheduling Module

The Scheduling Module runs an A* search to calculate an
optimal schedule with respect to the provided vehicle clus-
ters, traffic light controller dynamics, and the current con-
troller state. Search states keep track of vehicle clusters that
have been scheduled on each lane as well as other impor-
tant information. This section explains our overall search,
individual search states, the start state, and the ending cri-
terion. We then describe state transitions. Next, we describe
our heuristic function which allows us to efficiently calcu-
late this optimal schedule. We conclude this section with a
brief discussion of our dominance check algorithm.

Search Overview

The search aims to calculate an optimal, feasible schedule
of phases that provides all vehicle clusters within each of
the L lanes adequate time to pass through the intersection,
while minimizing total delay. The search requires knowl-
edge of where vehicle clusters are currently located in order
to schedule them. As mentioned above, each cluster has a
corresponding lane, an intended arrival time, a size, and a
flow rate. We define Ai as the sequence of ordered clusters
in the i-th lane and Ni as the cardinality of this sequence.
�A = (A1, A2, ..., AL), denoting the sequences of ordered
clusters across all lanes.

6180

Our search also requires the actual state of the real-world
controller. The search requires the current phase of the con-
troller, which consists of two compatible green movements,
which we define as �ma = (ma

1,m
a
2). Additionally, the

search requires the respective start times of each of these
movements, which we define as �ta = (ta1, t

a
2).

Search States

We define a search state as a tuple: (�c, �m,�t, T, g, h, f,PS).
�c = (c1, c2, ..., cL), where ci represents the number of clus-
ters that have been served on lane i. Because vehicle clus-
ters cannot pass through each other on a lane, cluster or-
der is maintained and the number of clusters that have been
served on a given lane uniquely determines which clusters
have been served.

A dual ring barrier controller requires that we keep track
of two compatible green movements and their respective
start times. �m = (m1,m2) represents the currently ac-
tive or upcoming green movements for the controller and
�t = (t1, t2) defines the respective start times of these move-
ments. During an active green movement, mi indicates the
movement and ti indicates when the movement began (to en-
sure we remain within minimum and maximum timing lim-
its). During a yellow or red clearance interval, mi indicates
the next green movement that will occur after the clearance
interval, and ti indicates the time that this movement will
begin. This is based on the end time of the previous green
movement and the fixed yellow and red clearances.
T defines the end time of the most recent scheduling de-

cision. We note that during a green movement, ti ≤ T ; dur-
ing a yellow or red clearance, ti > T to represent that the
green movement has not yet started. Each state also has a g
value, which is the total delay incurred thus far, an h value
which is an underestimate of the remaining delay, and an f
value which is the sum the g value and h value. Furthermore,
search states maintain the underlying schedule (PS), which
is a set of phases and their respective start times. Once we
determine the optimal goal state, we can use the underlying
schedule to calculate projected downstream arrivals.

Start State

We begin our search at T = 0, to represent now. At T = 0,
no clusters in any lane have passed through the intersec-
tion. We initialize delay to 0 to minimize cumulative de-
lay incurred from now into the future. The actual controller
state (the movements, �ma, and respective start times, �ta)
is communicated by the controller. Our start state is thus:
(�0, �ma,�ta, 0, 0, calcHeuristic(...), calcHeuristic(...), { }).

Goal State

A goal state requires that all clusters have been assigned a
time to pass through the intersection. Formally, we require
that �c = (N1, N2, ..., NL).

State Transitions

Our state transition algorithm is presented below in Algo-
rithm 1.

Algorithm 1 Calculate State Transitions
1: procedure CALCULATE STATE TRANSITIONS(�cp, �mp, �tp, Tp, gp, PSp, �A)
2: children = { }
3: possiblePhaseTransitions = getPhaseTransitions(�cp, �mp,�tp, Tp, �A)

4: for each (�m,�t,ΔT) ∈ possiblePhaseTransitions do

5: �c = �cp , T = Tp , g = gp, PS = PSp
6: PS = PS ∪ {(�m,�t)}
7: Δ�c,ΔDelay = serveClusters(�c, �m,�t, T,ΔT, �A)
8: �c = �c+Δ�c

9: g = g +ΔDelay
10: T = T +ΔT

11: h = calcHeuristic(�c, �m,�t, T, �A)
12: f = g + h

13: children = children ∪ {(�c, �m,�t, T, g, h, f, PS)}
14: return(children)

Our algorithm expands a parent state (whose elements are
denoted with the subscript p), calculating all possible child
states to ultimately add to our search’s open list. In addition
to the parent state, our algorithm also requires arrival infor-
mation, namely �A, to generate child states.

Our algorithm begins by initializing an empty set of child
states (line 2). To calculate child states, our algorithm first
must calculate possible traffic phase transitions from the par-
ent state based on the traffic light controller logic (line 3).
Each phase transition contains information regarding a pos-
sible future configuration of the controller, namely the ac-
tive green movements, the respective green movement start
times, and how much time to advance the search.

We present an example of such transitions in Figure 7.
If both movements are left turn green movements (Figure
7, state A), we can transition to stay in the phase and step
forward in time the duration necessary to serve the next ve-
hicle cluster (3 seconds for state B) or instantaneously end
one (states C and D) or both of the green movements (state
E). When ending a green movement, we replace the current
green movement with the next green movement according
to the compatible phase ordering (as presented in Figure 2).
We calculate the future start time of this green movement
by adding the fixed duration of yellow and red clearances (5
seconds in our example) to the current time. Vehicles may
not pass through the intersection in this direction during the
transition.

When in a state with two green movements that are wait-
ing to begin (state E), we step forward to the earlier start
time (state G). However, if in a state where one green move-
ment is active and the other is waiting to begin (state C), we
cannot automatically jump forward. We must allow the cur-
rent green movement to serve the next vehicle cluster (state
F) and then branch on whether to maintain the current move-
ment and advance the search forward in time (state H) or to
end the active green movement (state I).

For each of these valid phase transitions (which consists
of the active green movements, the respective start times,
and how much time to advance the search), we will cal-
culate one child state (Algorithm 1, line 4). To calculate a
child state, we first recall parent state information as a start-
ing point (line 5) and then perform several steps to calcu-
late the child state. We add the new controller state to our

6181

hh

Figure 7: Phase Transitions Example

overall schedule of phases (line 6). Given the new controller
state and amount of time to advance, we calculate how many
clusters (or partial clusters) will advance through the inter-
section along the active green movements of the intersection
and the delay incurred by these clusters (line 7). This in-
formation is then used to update the cumulative number of
clusters served and cumulative search state delay (lines 8-
9). We next update the time-step according to how far we
have advanced (line 10). Given the child state’s new count
of clusters served, controller state, and current search time,
we calculate a lower bound heuristic estimate on the child
state’s remaining delay (line 11). We then add cumulative
delay to the heuristic to obtain the child state’s f value (line
12) and add the child state to our set of child states (line 13).
This process then repeats for each possible controller phase
transition. After all child states have been calculated, they
are returned by the algorithm (line 14).

Heuristic Function

Crucial to any A* search is the effectiveness of the heuristic
function. We apply a heuristic function that exploits prob-
lem structure to efficiently calculate lower bounds on the
remaining delay that will be encountered by the unserved
vehicle clusters. Our heuristic function begins by converting
the problem into a tighter problem after calculating earli-
est cluster start times. We decompose this tighter problem
into two independent, additive sub-problems and quickly
solve a relaxation of each sub-problem as a pre-emptive job
scheduling problem. This section describes the pipeline for
our heuristic calculation in more detail. We present a graphic
of the pipeline in Figure 8.

Our heuristic function operates on the current search state.
In the example presented in Figure 8, we have three unserved

Figure 8: Heuristic Calculation Pipeline

vehicle clusters: a pink cluster with one vehicle, a purple
cluster with two vehicles, and an orange cluster with one
vehicle. Each cluster is travelling along a separate direction
and has an expected arrival time at the intersection (e.g. 35
for the pink cluster, 0 for the purple cluster). In this example,
we assume all flow rates are 1 vehicle per second and omit
them for brevity.

Given information about which clusters are remaining,
the current controller phase, and the current world time, we
first calculate the earliest possible start time for all green
movements. This involves using the fixed phase orderings,
phase minimum times, and forced yellow and red clearances.
For example, the North-straight and South-straight move-
ments are currently active and began at time 10. They are
assigned an earliest possible start time equal to the current
time, which is also 10. The North-straight and South-straight
directions have a minimum green time requirement of 10
seconds. Yellow and red clearances are a combined 5 sec-
onds. Thus the next phases in sequence, namely the West-
left and East-left phases, cannot begin before time 25.

In step 2, we calculate the earliest start time of each clus-
ter. A cluster’s earliest start time is the maximum of its ar-
rival time at the intersection, the movement’s earliest start
time, and the end time of any preceding clusters along the
same lane. Earliest cluster start times are also used to cal-
culate unavoidable delays for each cluster. For example, the

6182

Figure 9: Sub-problem splits

pink cluster arrives at time 35, after the West-left turn move-
ment’s earliest possible start time (25). The pink cluster
maintains its earliest possible start time of 35 and experi-
ences no delay. The purple cluster arrives at time 0, but can-
not receive a green signal until time 35, meaning the earliest
possible start time of each vehicle in the cluster is pushed
back by 35 seconds. Thus, both vehicles in the purple clus-
ter experience 35 seconds of delay for a total of 70 seconds
of delay.

Once cluster start times are obtained, we replace the ar-
rival times with the earliest start times in our original prob-
lem. As noted earlier, the pink cluster is not delayed so it
maintains its prior start time. The purple cluster is delayed
and is assigned the later start time of 35. This step makes
the calculations from future steps tighter yet still admissible
because no feasible start times are eliminated.

In step 4, we divide this new problem into two additive
sub-problems based on non-compatible movements. Each
sub-problem is composed of the clusters corresponding to
green movements from exactly four of the eight directions.
A graphic of one such split is presented in Figure 9. Other
sub-problem divisions are possible, but splitting into two
sub-problems leads to tighter bounds. Sub-problems are ad-
ditive because no cluster appears more than once across
the sub-problems. The movements within a sub-problem all
conflict with each other; this provides the important prop-
erty that within each sub-problem, at most, one movement
can receive a green signal at any given time. For example,
observe that in the right sub-problem, the pink vehicle turn-
ing left and the purple vehicles travelling straight cannot si-
multaneously receive a green signal.

Next, we relax each sub-problem by dropping several con-
straints: we ignore forced yellow and red clearances, phase
orderings, and start-up penalties. This relaxation ensures fast
calculation, and is not necessary to establish admissibility.
Once these constraints are relaxed, our problem is equivalent
to a single pre-emptive machine scheduling problem with
no switch-over costs. Vehicle clusters become pre-emptible
jobs with arrival times, sizes, and deterministic service rates.

In step 6, we solve each sub-problem with a polyno-
mial time pre-emptive job scheduling algorithm, minimizing
weighted average job start time, to calculate a lower bound
on the delay of each original sub-problem. In the right sub-
problem, the pink and purple clusters cannot both receive
service at time 35. One possible optimal solution is to serve
the pink vehicle first, followed by the purple vehicles. Each
vehicle in the purple cluster is delayed by 1 second, leading
to an overall sub-problem delay of 2 seconds.

In our final step, we combine these sub-problem delays
with the unavoidable delay (from step 2) to obtain a lower

bound on remaining delay for the original search state.

Closed List & Dominance Checks

A* search typically maintains a closed list to ensure that
search states are not expanded more than once. Our search
states are defined by two discrete features, namely the two
movements of the controller, and several continuous fea-
tures, including the fractional clusters completed on each
lane, the world time, and the movement start times. Visiting
the exact same state twice is less likely than in typical graph
search as world time and clusters completed are monotoni-
cally increasing state features. Checking if a state is on the
closed list is hence unlikely to return an exact match. For
this reason, we do not run a closed list check as is typical in
A* search.

ERIS performs dominance checks on states prior to ex-
pansion. By hashing states based on �m and discretizations
of T , the scheduler can obtain a set of states that might
dominate the candidate to expand. If the search identifies
an equivalently hashed state having served more clusters in
every direction, having a lower cost, and with more timing
flexibility, the candidate state is not expanded.

Experimental Evaluation

In this section, we compare ERIS to two other real-time
scheduling methods in a perfect information connected
vehicle environment. First, we compare ERIS to a less-
expressive real-time scheduling method based on the SUR-
TRAC model. Second, we compare to a variant of fully-
actuated control, which we refer to as connected fully-
actuated control. In traditional fully-actuated control, a traf-
fic light controller will terminate a green movement when
it has been several seconds (e.g. 4 seconds) since the most
recent vehicle passed over a detector (Tarnoff and Parson-
son 1981). In a connected vehicle environment, comparing
to traditional fully-actuated control is unfair as the phase
must wait several seconds to end, but the controller could
have used information about future arrivals (i.e. knowing no
vehicles would arrive in the next 4 seconds) to end earlier.
In connected fully-actuated control, we assume that vehicles
only send a message to an intersection when they are within
4 seconds of the intersection. If a message is received, the
movement continues; otherwise, the movement ends. Us-
ing these models as comparisons presents a more compet-
itive comparison than using simpler algorithms such as tra-
ditional fully-actuated control or fixed timing plans that have
previously been shown to significantly underperform SUR-
TRAC (Xie et al. 2012).

We ran evaluations of the three methods on the Simula-
tion of Urban MObility (SUMO) (Krajzewicz et al. 2012).
SUMO is a microscopic traffic simulator that simulates the
dynamics of vehicles and traffic light controllers. We inter-
face with SUMO through Python, using the Traffic Control
Interface (TraCI) (Wegener et al. 2008). TraCI provides real-
time data about vehicle locations and allows external control
of traffic decisions.

All simulations run for an hour of simulated time. For
each simulation, we report average time loss, per vehicle.

6183

Time loss varies from our earlier definition of delay as time
loss also includes other factors that we do not aim to im-
prove, such as time loss from driving behind a vehicle with
a lower cruising speed. To eliminate the effects of simula-
tion start up and termination, we only report the time loss
of vehicles arriving within the middle 40 minutes. Results
for a given experiment are averaged across ten simulation
runs with different random seeds. Identical random seeds are
used when comparing the three methods to generate identi-
cal traffic arrivals. Vehicle arrivals are modelled as a Poisson
process where the average arrival rate is set according to the
desired level of congestion.

We present a comparison of these methods on two sepa-
rate networks, a discussion of statistical significance, and a
timing analysis on components of the Scheduling Module.

Single Intersection

We first examine a network consisting of a single intersec-
tion with one joint straight and right turn lane and one ded-
icated left turn lane on each of its four sides (identical to
the intersection presented in Figure 1). Average delay per
vehicle (in seconds) and standard errors across a range of
vehicle volumes are presented in Table 1 below. We also
present ERIS’ improvement when measured against the bet-
ter of SURTRAC and actuated control at each level of con-
gestion.

Vehicles/Hour 160 400 800 1200 1600
ERIS 18.4± 0.4 25.5± 0.4 33.0± 0.3 39.9± 0.3 49.6± 0.4
SURTRAC 22.9± 0.6 28.7± 0.4 35.1± 0.3 41.9± 0.4 51.3± 0.7
Actuated 26.8± 0.6 29.6± 0.3 35.1± 0.3 41.5± 0.3 51.1± 0.5
% Improvement 20.0% 11.2% 5.8% 3.8% 3.0%

Table 1: Single Intersection Comparisons

ERIS outperforms SURTRAC and connected fully-
actuated control for all tested levels of congestion. ERIS’
performance improvement is largest, at 20.0%, at the low-
est level of congestion. With light and medium congestion,
more exact vehicle information is useful to exactly place
clusters of vehicles into a schedule of green phases. It is im-
portant to know if two vehicles are arriving on the same lane
or different lanes. If they are arriving on different lanes, it is
possible to schedule them simultaneously once both have ar-
rived, but SURTRAC’s simplified clustering method groups
these clusters to be served in sequence.

With increased congestion, the value of exact cluster es-
timation diminishes and ERIS outperforms the baselines by
3.0% and 3.8% in the two most congested scenarios. It is
more likely that there are vehicles waiting in queues at the
stop line on different lanes of the intersection. SURTRAC’s
clustering simplifications are more accurate for queued ve-
hicles. Similarly, when vehicles form queues, fully-actuated
control holds green movements until queues empty, which is
often the best strategy in high congestion situations.

3 x 3 Grid of Intersections

In this experiment, we model a 3 x 3 grid of intersections.
As before, each intersection has one joint straight and right

turn lane and one dedicated left turn lane on each of its four
sides. We present our results in Table 2.

Vehicles/Hour 500 1300 2700 4000 5300
ERIS 39.4 ± 0.3 55.6 ± 0.6 78.3 ± 0.5 103.8± 0.6 146.0 ± 1.4
SURTRAC 48.5 ± 0.5 63.8 ± 0.7 85.1 ± 0.4 109.4± 0.6 146.7 ± 1.3
Actuated 57.8 ± 0.3 67.5 ± 0.5 85.3 ± 0.6 110.1± 0.5 149.0 ± 1.6
% Improvement 18.9% 12.8% 7.9% 5.2% 0.5%

Table 2: Network Comparisons

We observe similar results to the above experiment. ERIS
outperforms the two comparison algorithms on all levels of
congestion. This improvement is largest, at 18.9%, for the
least congested setting. This experiment demonstrates that
the advantages of ERIS extend to network settings.

Statistical Significance

We ran 20 two-sided paired t-tests comparing ERIS’ perfor-
mance with each of the other methods. Each test compared
ERIS’ average vehicle time loss to a competing method’s
average vehicle time loss at a single congestion level on a
single network. (We did not compare SURTRAC to actuated
control and we did not compare across different congestion
levels). We applied the Holm-Bonferroni method to main-
tain an overall error rate of 5% (Holm 1979). In 19 of the 20
comparisons (all except ERIS vs SURTRAC for 5300 vehi-
cles/hour in the 3 x 3 grid setting), ERIS’ average vehicle
time loss is statistically significantly different than the com-
parison method’s average vehicle time loss.

Timing Analysis

This subsection presents a brief demonstration of the im-
portance of the heuristic function and the minor importance
of the dominance checks. Table 3 presents run-time perfor-
mance percentiles in the most congested (and hardest) case
for the single intersection model. All timings are presented
in milliseconds.

Method Mean 25%tile 50%tile 75%tile 90%tile 95%tile
Dominance Checks & Heuristic 3.6 2.0 2.8 4.4 6.7 8.5
Heuristic Only 4.1 2.3 3.2 5.1 7.7 9.5
Dominance Checks Only 105.0 7.6 17.1 43.8 114.1 237.2

Table 3: Run-time Comparisons, Single Intersection

Running our scheduling method with both dominance
checks and the heuristic is fairly efficient, requiring under 9
milliseconds 95% of the time for the congested single inter-
section model. Applying dominance checks provides a small
speed-up over only using the heuristic function. The heuris-
tic function is quite important. Without using the heuristic
function, ERIS requires an order of magnitude increase in
run-time to find the optimal schedule. This increase in run-
time is larger for more complicated problems.

Conclusion

This paper presented ERIS, a real-time schedule-driven
adaptive traffic scheduling framework. ERIS’ increased flex-
ibility and powerful A* search heuristic allow it to quickly

6184

make intelligent traffic scheduling decisions. We demon-
strated that ERIS outperforms other real-time intersection
scheduling methods and can reduce vehicle delay by as
much as 20% when compared to other methods. The un-
derlying model of ERIS is general, making it easy to extend,
and the A* search is well-suited to solve more complicated
problem representations than other intersection scheduling
techniques.

This paper made several modelling assumptions that we
intend to relax in the future. First, we assumed that all ve-
hicles noiselessly communicate their position, speed, and
heading every second that can then instantaneously be used
by ERIS to calculate an optimal decision for the next time-
step. While this was a useful assumption for demonstrating
the improvement of ERIS over other scheduling methods, it
is not completely realistic. On-board GPS data can be im-
precise; according to the US Department of Defense (2001),
95% of the time, GPS readings will be within a 7.8 meter ra-
dius. The average lane is 3 meters wide; this margin of error
means that we might estimate the wrong lane for a vehicle.
Additionally, with realistic communication protocols, mes-
sages will be dropped and ERIS will need to make schedul-
ing decisions on stale data. In future work, we will relax the
perfect information assumption and examine performance
on stale, noisy data, possibly by incorporating Bayesian state
estimation techniques (e.g. Kalman filtering).

We also assumed all intersections were four sided inter-
sections with protected movements. Allowing unprotected
left turns and right turns on red present another source of
uncertainty to our model. Similarly, we intend to look at in-
tersections with single lanes in each direction, namely lanes
that jointly serve left turn, straight, and right turn move-
ments. If a vehicle in front of the lane is unable to turn
left (due to oncoming traffic), all traffic behind this vehicle
is blocked. We hypothesize that our expressive model will
perform better at estimating such blockages and know if it
should provide one movement with a delayed green signal.

Finally, we intend to examine weighting different types
of traffic. Policy makers may have a hierarchy on traffic pri-
orities. Perhaps emergency vehicles should always receive
priority even if it requires delaying an arterial road. On the
other hand, buses should receive some priority, but not to the
extent of emergency vehicles. We intend to measure the im-
pacts of such policies on each priority group and the overall
system as a whole.

References

Al Islam, S. B., and Hajbabaie, A. 2017. Distributed coordi-
nated signal timing optimization in connected transportation
networks. Transportation Research Part C: Emerging Tech-
nologies 80:272–285.
Holm, S. 1979. A simple sequentially rejective multiple test
procedure. Scandinavian journal of statistics 65–70.
Krajzewicz, D.; Erdmann, J.; Behrisch, M.; and Bieker, L.
2012. Recent development and applications of SUMO -
Simulation of Urban MObility. International Journal On
Advances in Systems and Measurements 5(3&4):128–138.
Lowrie, P. 1990. Scats, sydney co-ordinated adaptive traf-

fic system: A traffic responsive method of controlling urban
traffic. Roads and Traffic Authority of New South Wales-
Traffic Control Section.
Luyanda, F.; Gettman, D.; Head, L.; Shelby, S.; Bullock,
D.; and Mirchandani, P. 2003. Acs-lite algorithmic ar-
chitecture: applying adaptive control system technology to
closed-loop traffic signal control systems. Transportation
Research Record: Journal of the Transportation Research
Board 1856:175–184.
Robertson, D. I., and Bretherton, R. D. 1991. Optimiz-
ing networks of traffic signals in real time-the scoot method.
IEEE Transactions on vehicular technology 40(1):11–15.
Robertson, D. I. 1969. Transyt: a traffic network study tool.
Road Research Laboratory Report, LR 253.
Schrank, D.; Eisele, B.; Lomax, T.; and Bak, J. 2015. 2015
urban mobility scorecard. Technical report, Texas A&M
Transportation Institute.
Shelby, S. G. 2001. Design and evaluation of real-time
adaptive traffic signal control algorithms. Ph.D. Disserta-
tion, The University of Arizona.
Smith, S.; Barlow, G.; Xie, X.-F.; and Rubinstein, Z. 2013.
Surtrac: Scalable urban traffic control. In Transportation Re-
search Board 92nd Annual Meeting Compendium of Papers.
Transportation Research Board.
Stevanovic, A. 2010. Adaptive traffic control systems: do-
mestic and foreign state of practice. Project 20-5 (Topic
40-03). National Cooperative Highway Research Program.
Tarnoff, P. J., and Parsonson, P. S. 1981. Selecting traffic
signal control at individual intersections. NCHRP Report
233.
US Department of Defense. 2008. Global positioning sys-
tem standard positioning service performance standard.
Wegener, A.; Piórkowski, M.; Raya, M.; Hellbrück, H.; Fis-
cher, S.; and Hubaux, J.-P. 2008. Traci: An interface for
coupling road traffic and network simulators. In Proceed-
ings of the 11th Communications and Networking Simula-
tion Symposium, CNS ’08, 155–163. New York, NY, USA:
ACM.
Xie, X.-F.; Smith, S. F.; Lu, L.; and Barlow, G. J. 2012.
Schedule-driven intersection control. Transportation Re-
search Part C: Emerging Technologies 24:168–189.

6185

