
Task-Specific Representation Learning for
Web-Scale Entity Disambiguation

Rijula Kar,* Susmija Reddy,* Sourangshu Bhattacharya*
Anirban Dasgupta,†, Soumen Chakrabarti‡

* IIT Kharagpur, India, †IIT Gandhinagar, India, ‡IIT Bombay, India
rijula.cse@iitkgp.ac.in, {jsreddy,sourangshu}@cse.iitkgp.ernet.in, anirbandg@iitgn.ac.in, soumen@cse.iitb.ac.in

Abstract

Named entity disambiguation (NED) is a central problem
in information extraction. The goal is to link entities in a
knowledge graph (KG) to their mention spans in unstruc-
tured text. Each distinct mention span (like John Smith, Jor-
dan or Apache) represents a multi-class classification task.
NED can therefore be modeled as a multitask problem with
tens of millions of tasks for realistic KGs. We initiate an in-
vestigation into neural representations, network architectures,
and training protocols for multitask NED. Specifically, we
propose a task-sensitive representation learning framework
that learns mention dependent representations, followed by
a common classifier. Parameter learning in our framework
can be decomposed into solving multiple smaller problems
involving overlapping groups of tasks. We prove bounds for
excess risk, which provide additional insight into the problem
of multi-task representation learning. While remaining prac-
tical in terms of training memory and time requirements, our
approach outperforms recent strong baselines, on four bench-
mark data sets.

Introduction and Related Work

Named entity disambiguation (NED) (Mihalcea and Cso-
mai 2007; Cucerzan 2007; Milne and Witten 2008; Kulka-
rni et al. 2009; Hoffart and others 2011; Hoffart, Altun, and
Weikum 2014; Lazic et al. 2015; Globerson et al. 2016; Li et
al. 2016; Ganea and Hofmann 2017; Ji 2014) is a key prob-
lem in information extraction. The goal is to link canonical
entity nodes (such as en.wikipedia.org/wiki/Albert Einstein)
in a knowledge graph (KG), which may have aliases like
“Einstein” and “the dopey one”, to their mention spans in
unstructured text (such as “Albert”), using the mention con-
text to disambiguate from other entities with similar aliases.
For a given mention, NED is a multi-class classification
problem, where the input is obtained from the mention con-
text, and the output is an entity which has an alias matching
the mention.

NED is a standard tool offered by IBM (IBM 2017),
Google (Google 2017) and Microsoft (Microsoft 2017)
cloud services. NED has seen sustained research since 2006,
and much recent interest. (Durrett and Klein 2014) present a
CRF model unifying NED with coreference resolution and

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

entity type inference. (Lazic et al. 2015) describe Google’s
NED system, which uses a form of attention on context to-
ken features. (Globerson et al. 2016) describe an enhance-
ment based on an attention mechanism on neighboring men-
tions. It outperforms the systems of (Durrett and Klein 2014)
and (Lazic et al. 2015). Entity embeddings have proved use-
ful to NED. (He et al. 2013) have used Wikipedia definition
pages to embed entities. Like (Lazic et al. 2015), (Ganea
and Hofmann 2017) have focused attention on specific con-
text words while also embedding words and entities to get
the best benchmark accuracy to date.

By regarding the disambiguation of each distinct men-
tion string as a task, NED can be formulated as a multi-
task learning (MTL) problem. Ideally, a model for the men-
tion Jordan that can distinguish people from rivers and
countries should inform the model for Washington. Such
information sharing between mentions is a very natural
idea, but it is surprisingly unexplored. (Bunescu and Pasca
2006) demonstrated that a limited form of information shar-
ing through types of candidate entities can improve accu-
racy. Ideally, MTL should be achieved without (being lim-
ited to) the explicit agency of types or other feature engi-
neering. Of specific interest are MTL techniques that build
shared representations by combining information from dif-
ferent tasks. Note that this form of sharing between tasks
is quite distinct from collective NED (Kulkarni et al. 2009;
Hoffart and others 2011; Ratinov et al. 2011; Globerson et
al. 2016), which seeks to maximize a joint compatibility
score over the entity labels chosen for the mentions in a doc-
ument.

Recently, (Maurer, Pontil, and Romera-Paredes 2016)
proposed and analyzed a multitask representation learning
(MTRL) framework. They learned a common representa-
tion for instances of each task and used different classifiers
for each task. Using this technique for NED requires large
representation dimensions, which leads to massive param-
eter matrices. It also violates the intuition (Jin et al. 2014;
Lazic et al. 2015) that each mention has only a few impor-
tant features. Another baseline approach would be to ran-
domly project (Weinberger et al. 2009) raw mention context
features onto a lower dimensional space using random pro-
jections, followed by standard MTL techniques.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

5812

Our contributions: In this paper, we propose an un-
conventional MTL framework particularly suited to NED,
called task-specific representation learning (TSRL). We first
convert the raw input to a task-specific representation, and
then apply a classifier shared within groups of tasks to get
an entity label. Tasks can influence each other in flexible
grouping schemes. In one such scheme, tasks (mentions)
which share candidate labels (entities) can influence each
other. Thus the problem naturally decomposes into overlap-
ping groups of tasks with shared labels, thus helping man-
age extremely large task and label spaces with limited RAM.
Our TSRL framework may be regarded as a generalization
of (Maurer, Pontil, and Romera-Paredes 2016). Building on
their analysis technique, we give bounds, in a multiclass set-
ting, on the excess risk of our approach. Despite the signif-
icant reorganization of how network weights are shared, we
show that the dependence on the number of tasks does not
change from MTRL to TSRL. Also, the dependence on the
number of labels is larger for the “classifier cost” (term con-
taining complexity of final layer function class, Q) as com-
pared to the “representation cost” (term containing complex-
ity of first layer function class, G(H)).

We report extensively on the accuracy of TSRL for the
NED task over the standard CoNLL, MSNBC, AQUAINT
and ACE data sets (Hoffart and others 2011; Guo and Bar-
bosa 2016). In terms of both micro- and macro-averaged
accuracy, TSRL surpasses standard MTL and MTRL ap-
proaches, as well as the best feature-engineered baselines,
in most cases. TSRL is particularly effective at boosting the
accuracy of rare entities by ‘borrowing’ from easier tasks.
Our code is available1.

Methods

Problem definition and notation

In the NED task, we have to annotate token spans in un-
structured text (e.g., “In May, Jordan scored more points
than anyone else in NBA.”) with a unique entity ID (here
Jordan refers to the basketball player, not the Berkeley pro-
fessor, country or river) from a knowledge graph (KG). The
string Jordan is called the mention, which occurs in a longer
textual context or mention instance. The context contains
vital features (like ‘scored’ and ‘NBA’) which makes the
NED task possible. The entity ID is the label to be predicted.
Wikipedia will be our prototypical KG. It provides two kinds
of data. First, it specifies a bipartite many-to-many relation
between entities and their aliases (e.g., New York City is
also called the Big Apple). An entity becomes a candidate
label for a mention if the mention string closely matches at
least one of its alias strings. Second, the KG gives us two
forms of corpus text associated with each entity:
• Text in the entity’s definition page, and
• Token spans linked to the entity, appearing on any page

(which we call gold mentions).
Raw features extracted from these texts can be words in the
context of a mention, the URL of the page where the mention

1Visit https://github.com/rijula/tsrl-aaai18 and https://goo.gl/
vw6C6g

occurs, topics (supervised or unsupervised) present in the
page, other entities, etc. These features are collected into a
raw mention context representation denoted x. The typical
x ∈ X = R

D is a sparse (hundreds of present features)
vector in a space of millions of raw features (we call this
number D).

At first glance, disambiguating each distinct alias string
(given context features) appears to be a multiclass classifi-
cation problem. (For simplicity, here we will ignore the pos-
sibility that the true entity is outside the KG, i.e., the reject
option. Various standard techniques are used to handle nil
labels.) Suppose there are U distinct aliases in the KG, in-
dexed u ∈ [1, U]. We can think of each distinct alias as a
task, with its space of labels Yu as the entities known by
this alias. A NED system is given 〈u, x〉 as input and has
to predict a y ∈ Yu. Let Y = Y1 ∪ Y2 · · · ∪ YU denote
the global set of labels with |Y| = E, the total number of
KG entities. Note that entities can be shared across multiple
tasks. Henceforth, we use task and alias, as well as entity
and label, interchangeably.

In multi-task learning, we are interested in jointly learn-
ing models for performing multiple labeling tasks. Aliases
u1 = ‘Jordan’ and u2 = ‘Washington’ can each refer to
people, states, and lakes. Therefore, some form of repre-
sentation sharing may facilitate one task to assist the other.
Note that this form of interaction is quite distinct from col-
lective NED. Collective NED algorithms seek to maximize
some form of compatibility between the entity labels chosen
throughout a document. E.g., if a document mentions both
“Edward Lee” and “Michael Jordan”, they are more likely
to be professors at U.C. Berkeley, rather than a horror nov-
elist and an American basketball player.

While multitask learning is a tempting approach to NED,
NED poses several challenges specific to the application.
• The number of tasks is much larger than standard

multi-task learning problems. U ranges into millions for
Wikipedia alone, and can be orders of magnitude larger
for commercial knowledge graphs.

• The total number of entities E may range between hun-
dreds of thousands to millions, which makes it an extreme
classification problem. However, depending on the task u,
only a subset of the labels Yu are admissible. The typical
|Yu| ranges from a handful to hundreds. In public data
sets involving Wikipedia, the occurrence-weighted aver-
age |Yu| is over 70 (i.e., popular aliases tend to be more
ambiguous).

• Machine learning has been applied intensively to NED.
Most recent systems (Ganea and Hofmann 2017; Lazic
et al. 2015; Globerson et al. 2016; Ganea and Hof-
mann 2017) convey the intuition that a small number of
mention-dependent features yields the best performance.
However, this idea is contrary to popular MTRL settings
(Maurer, Pontil, and Romera-Paredes 2016), where learn-
ing a single feature representation for multiple tasks is
proposed and analyzed.

In the rest of this section, we will develop a series of for-
mulations that introduce synergy among tasks in the NED
setting, starting with none.

5813

Per-alias classifier (PAC) baseline

It is possible to train a multi-class classifier (such as logistic
regression or linear SVM) for every task, to use the raw (lex-
icalized) features in x directly. Let Z̄ = Z1∪· · ·∪ZU be the
entire training dataset for named entity recognition, with Zu

being the subset for uth task. Here Zu = {Zu1, . . . , Zunu
}

and Zui = (Xui, Yui), Yui ∈ Yu, is the ith example for the
uth task. For training, we optimize for each task u:

W ∗
u = argmin

Wu

nu∑
i=1

l(Wu;Zui) + λ‖Wu‖2F (1)

Here l is the loss function, for which we use the multi-class
hinge loss (Krammer and Singer 2001) Wu is a D × |Yu|
matrix with the jth column as the weights for jth class.
This is one of our baseline methods (called per-alias classi-
fier), and works very well in practice (see results). However,
this approach does not benefit from related tasks on enti-
ties. Also, for task u, this results in D |Yu| model weights,
or D

∑U
u=1 |Yu| = U Ē D parameters overall, where Ē =∑

u |Yu|/U denotes the average number of possible labels
per task. This exceeds RAM on even lavishly appointed
servers. No plausible caching scheme for per-alias models
exists. Therefore, such models are usually distributed over
multiple servers. On the positive side, each of the tasks can
be trained independently.

Multitask learning (MTL) with signhash

Signhash (Weinberger et al. 2009) is one of the earliest
systems to apply feature hashing for large-scale multitask
learning. While the original signhash multi-task learning
was proposed for binary classification, here we describe a
natural multi-class generalization for the same. Multi-task
signhash introduces dependencies between tasks by assum-
ing that the classifier parameter w can be expressed as the
sum of a general parameter w0 and the task specific parame-
ters wu. This in turn is shown to be equivalent to project-
ing each feature vector Xui using two hashing functions
φ0(Xui) and φu(Xui), or using a single large model vec-
tor wh. We use the second interpretation. Hence, for every
feature vector Xui, we compute the task specific hashing
function h : RD → R

R as hu(Xui) = φ0(Xui) + φu(Xui).
Hence, our multitask learning with signhash (MTL-SH) can
be trained as W ∗ =

argminW

U∑
u=1

nu∑
i=1

lu(W ; (hu(Xui), Yui)) + λ‖W‖2F .

Here, R is the representation dimension which is a crucial
quantity for tradeoff between expressiveness of the model
and scalability of the algorithm. W is the R × E param-
eter matrix with one parameter vector for each entity. The
classification score for a given test point x from task u,
and a test entity y ∈ Yu is computed as: f(hu(x), y) =
WT

y hu(x). The final classification label is computed as:
y∗ = argmaxy∈Yu

f(hu(x), y). The loss function lu is
the multi-class hinge-loss with the class labels restricted to
Yu. Note that for a given task, parameters corresponding to
non-admissible will neither be evaluated nor updated. We

also note that the final score function for a given mention
and entity pair gu(x, y) is a composition of two functions
gu = f ◦ hu, where hu is a fixed random hash function.

Multi-task representation learning (MTRL)

The main drawback of the method described in the previ-
ous section is that the representation function hu is a data-
oblivious random function, and hence cannot be tuned to
the dataset at hand. This problem is handled by represen-
tation learning in general (Bengio, Courville, and Vincent
2013) and multitask representation learning (MTRL) (Mau-
rer, Pontil, and Romera-Paredes 2016), for the multitask
learning setting, in particular. The predictor in (Maurer, Pon-
til, and Romera-Paredes 2016) outputs a single real number
gu(x). Here we describe the multiclass generalization of the
same.

Given a feature vector corresponding to a mention in-
stance x ∈ R

D for a given task u, the scoring function
gu : RD → R

|Yu|, is defined as a composition of the repre-
sentation function h : RD → R

R and task specific scoring
function fu : RR → R

|Yu|: gu = fu ◦ h. In our case, the
functions h and fu are implemented using layers of neural
networks with ReLU activation functions and L2-norm reg-
ularization. Hence, h ∈ H and fu ∈ F where:

H = {h : h(x) = [Whx]+, Wh ∈ R
D×R, |Wh|F ≤ γ1}

F = {f : f(x) = [Wfx]+, Wf ∈ R
R×|Y|, |Wf |F ≤ γ2}

(2)

Here [.]+ is the component-wise maximum of the vector
with 0. Note that, for uniformity, F produces a vector in
R

|Y|, although only |Yu| components are important for the
uth task. γ1 and γ2 are user defined parameters. The final
label is predicted as y∗ = argmaxy∈Yu(gu(x))y . Here, we
are using the label y to index the corresponding element of
vector gu(x). Hence, given the training dataset Z̄ (described
in the previous section), the optimal parameters are obtained
by minimizing the overall loss function: (h∗, f∗

1 , . . . , f
∗
U) =

argmin
h∈H,(f1,...,fU)∈FU

1

U

U∑
u=1

1

nu

nu∑
i=1

l(fu(h(Xui)), Yui) (3)

Note that for this model the number of parameters is DR +

R
∑U

u=1 |Yu| = (DR+RUĒ).

Task-specific Representation Learning (TSRL)

The main problem with the method described in the previ-
ous section is that the representation function h does not
depend on task at hand. This has advantages such as in-
variance, coherence, sparsity, unsupervised learning, etc.
(Bengio, Courville, and Vincent 2013). However, it lacks
parsimony in terms of representation dimensions needed
for classifying all tasks. For example, in order to classify
the mention phrase bank as either river bank or finan-
cial bank, features such as breeze, view, bridge,
loan, account, transaction etc might be im-
portant, whereas to differentiate apple (company) from
apple (fruit), features like seed, sweet, sour,

5814

mac, aesthetic, stock price, etc might be use-
ful. A single representation function capturing all such as-
pects for all mentions is likely to be high-dimensional,
which will result in huge parameter space, leading to ef-
ficiency and optimization issues. Moreover, intuition from
recent work (Ganea and Hofmann 2017; Lazic et al. 2015;
Globerson et al. 2016) suggests that not only efficiency, but
generalization performance of classifiers benefit from small
number of task specific features. Hence we propose to make
the representation function hu depend on the task u.

However, in the MTRL setting described above, the in-
formation sharing across tasks happens using the shared
representation function, since the scoring functions fu are
task-dependent. In our setting, using a task-dependent scor-
ing function will result in the optimization problem decom-
posing over the tasks, hence forbidding information shar-
ing across tasks. Therefore, we use a common classifica-
tion function f across all tasks (or clusters of related tasks).
Thus, our scoring function for task u, gu = f ◦ hu :
R

D → R
E , and the entity label is calculated as: y∗ =

argmaxy∈Yu
(gu(x))y . Given a training dataset Z̄, the op-

timal parameters can be learnt by solving:

(h∗
1, . . . , h

∗
U , f

∗) =

argmin
(h1,...,hU)∈HU ,f∈F

1

U

U∑
u=1

1

nu

nu∑
i=1

lu(f(hu(Xui)), Yui) (4)

Contrast the above form and model space against (3). We
call this formulation the task-specific representation learn-
ing (TSRL) formulation.

We use a standard multiclass hinge loss lu(gu(x), y) =
max(0, 1 + maxy′∈Yu((gu(x))y′ − (gu(x))y)), with the
set of labels restricted according to task u. This requires
O(DUR + RE) parameters. Writing (4) in terms of model
weights and adding regularization terms, we get:

(W ∗
h1, . . . ,W

∗
hU ,W

∗
f) =

argmin
Wh1,...,WhU ,Wf

[
1

U

U∑
u=1

1

nu

nu∑
i=1

lu([Wf [WhuXui]+]+, Yui)

+λf‖Wf‖2F + λh

U∑
u=1

‖Whu‖2F .
]

(5)

λh and λf are related to γ1 and γ2 (eqn. 2) via dual-
ity. This problem can solved using standard optimization
techniques, though the number of parameters can be pro-
hibitively high for standard NED tasks. In the next section,
we suggest a technique for dealing with this problem.

Task Grouping

Formulation (5) is stated in general terms, summing the
loss over all u. Practical considerations limit what u’s we
may allow to influence each other. Even the modest-sized
AIDA-CoNLL dataset (Hoffart and others 2011) has over
6000 mentions. Collecting all relevant training data from
Wikipedia results in over a million instances across ∼25000
entity labels. The total number of parameters we can update

Figure 1: Difference between MTRL and TSRL. Mappings
f, fu, h, hu are implemented by trained weights W• as in the
text. Task u = 3 is primary for group b1 but not for b2.

in RAM at a time may limit us to smaller task groups. We
may not even anticipate any accuracy benefit by bringing
together tasks that do not interact with each other through
overlapping entities, mentions, or context features.

A common characteristic in NED data is that a task u
shares an entity with a relatively small number of tasks u′.
This suggests the following technique for training (5):

1. Choose a primary task, say u.
2. Collect a group of related tasks Cu which have overlap of

admissible entities with u.
3. Optimize (5) for only the subset of tasks Cu, and use the

resulting model for task u.
Two TSRL task groups b1, b2 are shown in Figure 1,

which also contrasts the structures of MTRL and TSRL.
u = 3 is primary for group b1 but not b2, although instances
{(X3i, y3i} can transfer information to u = 4. I.e., the dot-
ted h3 is not used for test instances of task 3. Within each
group, the f -layer is capable of choosing, via softmax, any
entity label in the union of all tasks in the group, but we limit
prediction and loss computation to only the entities admissi-
ble to each task.

In view of the above mentioned task-grouping strategy,
Equation (5) can be decomposed into groups as follows:

(Wh1(b)
∗, . . . ,WhU (b)

∗,Wf (b)
∗) =

argmin
Wh1,...,WhU ,Wf

[
1

|Ub|
∑
u∈Ub

1

nu

nu∑
i=1

lu([Wf [WhuXui]+]+, Yui)

+λf‖Wf‖2F + λh

U∑
u=1

‖Whu‖2F .
]

(6)

where Ub is the set of tasks in group b. Note that every group
b may not have useful parameters Whu(b)

∗ for every task u,

5815

since the task may not be part of the group. The claim below
formally states the claim for correctness of the task grouping
strategy.

Claim 1. For any task-group b with primary task u ∈ Ub

and any entity y which is a candidate entity for u, the pa-
rameters Whu(b)

∗ and [Wf (b)
∗]y (obtained using (6)), are

respectively equal to W ∗
hu and [W ∗

f]y , obtained using (5);
notwithstanding the non-uniqueness of solutions due to dif-
ferences in starting points and example order.

Proof. Our argument depends on the stochastic gradient de-
scent algorithm, using per-example update scheme. Training
instances that can affect Whu (during an update), given the
same [Wf]y for all candidate entities of task u, are present in
all task groups which have task u. Also, examples which can
affect [Wf]y for all candidate entities y of the primary task
u, are present in the task-group by construction (since all
tasks having candidate entities common to the primary task
are added to the task group). Hence, for a given task-group
b with primary task u and a candidate entity y of u, all ex-
amples which can affect Whu(b)

∗ and [Wf (b)
∗]y are within

the group b, thus showing their equivalence with global pa-
rameters.

We have explored only one practical grouping scheme.
Accuracy may be further enhanced by finding task groups
using entities connected through types or relations in the
knowledge graph, or exploiting corpus statistics. Such en-
hanced clustering is left for future work.

Analysis

In this section, we give a bound on the excess risk for our
learning algorithm. The analysis is oblivious to the man-
ner in which task grouping is done. The proof mostly fol-
lows the recent framework of establishing bounds on the
multitask representation learning by (Maurer, Pontil, and
Romera-Paredes 2016). Here, we focus on the changes that
arise due to our modified architecture, as well as the multi-
class setting. For simplicity, we assume that all tasks have
the same number of target entities, as well as the same num-
ber of training examples, i.e. Yu = E and nu = n for all u.
Recall that the scoring function for task u is gu : RD → R

E .
The last stage of the architecture consists of the function
class F = WE where each W ∈ R

R → R. We denote
by f ∈ F a general function belonging to this class, and by
f(·)e ∈ W the eth component of f , for e ∈ E. Let L be
the upper bound on the Lipschitz coefficient of f(·)e for all
e i.e.

L = supe∈Esupy �=y′∈RR

f(y)e − f(y′)e
‖y − y′‖

The following easy claim bounds the Lipschitz coefficient of
f(·) in terms of L.

Lemma 2. The Lipschitz coefficient of f(·) : RR → R
E is

bounded by L
√
E.

(Proof is described in appendix due to space constraint.)
Given a set Y ⊂ R

D, the Gaussian average of Y is defined
as G(Y) = Eγ∈RD [supy∈Y 〈γ, y〉] where each γ ∼ N(0, 1)

independently. Following the notation by (Maurer, Pontil,
and Romera-Paredes 2016) we will often write R

m×n as
R

mn for ease of notation. We will use the following result
by (Ando and Zhang 2005) that shows that the task averaged
estimation error is not much smaller than its expectation.

Theorem 3. Let Γ be a class of functions X → [0, 1]U with
γu(·) denoting the uth component. Let {μu, 1 ≤ u ≤ U} be
probability distributions on X . Let Xu ∼ μn

u be the dataset
chosen for the uth task, for all u ∈ [1, U], where each Xu =
{Xui} is a set of n examples. Let δ ∈ (0, 1). Then, with
probability 1− δ over the choice of ∪uXu,

1

U

∑
u

EX∼μu
γu(X)− 1

Un

∑
u,i

γu(Xui)

≤
√
2πG(S)

nU
+

√
9 ln(2/δ)

nU
(7)

where S ⊂ R
nU is the set {γu(Xui), γ ∈ Γ}.

Our theoretical measure of performance is the task aver-
aged risk Eavg(f, h1, h2, . . . , hU) =

1

U

U∑
u=1

E(X,Y)∼μu
�(f ◦ hu(X), Y)

The minimal expected risk E∗
avg is thus the minimum

over (f, h1, . . . , hU) of the above expression: E∗
avg =

minf,h1,...,hU
Eavg(f, h1, h2, . . . , hU). Define Q(W) to be

an upper bound on the Gaussian average of the Lipschitz co-
efficients of any of the components of w(·) ∈ W , i.e., Q ≡
Q(W) = sup

y �=y′,y,y′∈RRn

Eγ

[
sup
w∈W

∑n
i=1 γi(w(yi)−w(y′

i))

‖y−y′‖

]
.

The following theorem will serve as the main step in our
claim. The proof is in the appendix due to space constraints.

Theorem 4. Assume 0 ∈ H and f(0) = 0 for all f ∈ F . Let
Zu = {Zui = (Xui, Yui)} denote the examples drawn from
{μu} for each u ∈ [1, U]. Let Z̄ = {Zui} and X̄ = {Xui}.
Let δ ∈ (0, 1). Then, with probability 1− δ over the draw of
the samples ∪uZu, there exist universal constants c1 and c2,
such that that for every f ∈ F and every (h1, . . . hU) ∈ HU ,
it holds that

Eavg(f, h1, h2, . . . , hU)− 1

Un

∑
u,i

�(f ◦ hu(Xui), Yui) ≤

c1L
√
EG(H(X̄))

nU
+

c2EQ suph∈H‖h(X̄)‖
n
√
U

+

√
9 ln(2/δ)

nU

Our final bound on the excess risk is given by the fol-
lowing theorem. The proof of this follows directly from the
proof of the corresponding theorem in (Maurer, Pontil, and
Romera-Paredes 2016) and hence is omitted.

Theorem 5. Let Zu, Z̄, X̄ be defined as in Theorem 4 Let
f∗, {h∗

u, u ∈ [1, U]} denote the optimal solutions found by
solving the optimization problem (4) over the training exam-
ples Z̄. Let H,F be defined as above. Then, for δ > 0, with
probability 1− δ over the draw of the training examples Z̄,

5816

we have that

Eavg(f̂ , ĥ1, . . . , ĥU)− E∗
avg ≤ c1

L
√
EG(H(X̄))

nU

+ c2
QEsuph∈H‖h(X̄)‖

n
√
U

+

√
9 ln(4/δ)

nU

The above result is analogous to that of (Maurer, Pon-
til, and Romera-Paredes 2016). In the specific case when
the functions hu(·) are of the form used in this work, it is
possible to show that our upper bound is of the same or-
der as (Maurer, Pontil, and Romera-Paredes 2016). There the
first term on the RHS was interpreted as the “cost of learning
the representation” whereas the second term was the “cost
of learning the classifier”. For our setting, the dependence of
both terms on the number of tasks U is the same as the bound
for original MTRL; it does not depend on which layer is task
dependent. Our bounds also depend on E, the number of la-
bels per task, and, as expected, grows with it. Notably, the
increase in the cost of learning the representation is slower
(
√
E) compared to the increase in the cost of learning the

classifier (E).

Experiments and Results

Dataset preparation

We broadly followed the protocols of (Guo and Barbosa
2016)2 (ACE, AQUAINT, MSNBC data) and (Hoffart and
others 2011) (CoNLL 2003 data, testb test fold). We used
the alias-entity mapping indexes created by (Ganea and Hof-
mann 2017)3. The training corpus was collected from the
November 2016 Wikipedia dump4. Similar to (Lazic et al.
2015), we extracted all noun phrases in Wikipedia pages as
mention context features.

Table 1: AIDA-CoNLL testb characteristics.
Method Micro-avg Macro-avg

Accuracy Accuracy
(Hoffart and others 2011) 82.29 82.02

(He et al. 2013) 84.82 83.37
(Lazic et al. 2015) 86.4 -

(Globerson et al. 2016) 87.9 -
(Ganea and Hofmann 2017) 88.8 -

PAC, gold mentions 85.9 89.1
MTL-SH, gold mentions 86.9 90.0
MTRL, gold mentions 82.0 86.7
TSRL, gold mentions 88.0 90.2

TSRL, gold+definitions 89.4 91.9

Implementation details

All experiments were implemented in Theano 0.8.2 and run
on a few Xeon servers with 32 cores and 96 GB RAM each.
For optimization, we used SGD with minibatches of 1000

2https://bit.ly/2gnSBLg
3https://github.com/dalab/deep-ed
4https://dumps.wikimedia.org/enwiki/

Methods MSNBC AQUAINT ACE
(Fang et al. 2016) 81.2 88.8 85.3

(Ganea et al. 2016) 91 89.2 88.7
(Milne and Witten 2008) 78 85 81
(Hoffart and others 2011) 79 56 80

(Ratinov et al. 2011) 75 83 82
(Cheng and Roth 2013) 90 90 86
(Guo and Barbosa 2016) 92 87 88

(Ganea and Hofmann 2017) 93.7 88.5 88.5
TSRL 94.2 88.95 89.06

Table 2: Micro F1 score on AQUAINT, ACE, MSNBC.

mention instances and learning rate 1/
√
k where k is the

epoch number. Label predictions were made after averag-
ing the model weights over the last 30 iterations, to remove
noise. L2 regularizers were logarithmically grid-searched
between 10−6 and 106, and reporting best accuracy achieved
in the test dataset. Accuracy, micro and macro-averaged F1
are as defined in (Ganea and Hofmann 2017).

Using our task grouping technique described earlier, we
got 314, 94, 279, 255 overlapping task groups in case of
CoNLL, ACE, AQUAINT, MSNBC datasets. Each group of
related mentions is trained separately from other groups, not
only for TSRL, but also for MTRL and MTL-SH, since the
parameters for all the mentions in all groups taken togather
would not fit in RAM. In our implementations of MTL-SH,
MTRL, TSRL, we used top 30 prior-sorted candidate enti-
ties as in (He et al. 2013; Ganea and Hofmann 2017) for each
mention within a group. We did not use any candidate selec-
tion criteria for the per-alias classifier (PAC). While train-
ing one group we train only one mention per minibatch with
only considering top 30 candidate entities.

Comparison with existing NED systems

We compare TSRL with some recent competitive NED base-
lines, as well as per-alias classifier (PAC), multitask learn-
ing using signhash (MTL-SH) (Weinberger et al. 2009) and
multitask representation learning (MTRL) (Maurer, Pontil,
and Romera-Paredes 2016). To avoid confounding inter-
task signals with collective inference across a document
or discourse (Ratinov et al. 2011; Durrett and Klein 2014;
Globerson et al. 2016; Ganea and Hofmann 2017), we com-
pare only local per-mention models. While collective NED
generally yields better accuracies, our study clearly identi-
fies the benefits of task sharing. TSRL can be readily embed-
ded in collective models. Another detail is that local mod-
els can use gold mention contexts of entities, their defini-
tion page text from Wikipedia, or both. We have separated
TSRL into gold-mention-only and gold-mention plus defini-
tion page text.

In Table 1, we report the accuracy by taking represen-
tation dimension (R) for MTL-SH as 1M and for MTRL
and TSRL D and R is 1M and 100 respectively. MTL-SH
wins over per-alias classifier (PAC), showing that there is
inter-task information that can be exploited. The apparent
anomaly of MTRL’s poor performance is explained by the
need to group tasks before training it, because of MTRL’s
extreme RAM requirements if all tasks are to be trained

5817

Table 3: CoNLL Accuracy with respect to prior wise sorted entity ranking.
Model Acc in Bin-1 Acc in Bin-2 Acc in Bin-3 Acc in Bin-4 Acc in Bin-5

PAC, gold mentions 93.9 % 62.4 % 63.4% 64 % 35 %
MTL-SH, gold mentions 94.5 % 67.3% 69.2% 64% –

TSRL, gold mentions 95.5% 68.53% 73% 64% –

Table 4: Training performance comparison.
MTL-SH MTRL TSRL

Cl No.
Training size E Time(s) NPU(M) R UĒ Time(s) NPU(M)

Wh

NPU(K)
Wf

R E Time(s) NPU(M)
Wh

NPU(K)
Wf

C1
47317

53 27 85 50 60 31 141.3 72 50 53 25 141.1 67
53 27 85 100 60 37 282.7 144 100 53 29 282.2 134
53 27 85 500 60 69 1413 720 500 53 61 1411 672

C2
162117

103 136 362 50 130 139 445.8 245 50 136 101 445.7 228
103 136 362 100 130 155 891.6 490 100 136 120 891.4 457
103 136 362 500 130 263 4458 2450 500 136 236 4457 2288

C3
252510

80 166 267 50 92 178 603.9 378 50 80 139 603.5 352
80 166 267 100 92 196 1207 756 100 80 154 1207 705
80 166 267 500 92 326 6039 3781 500 80 274 6035 3529

together, which is not possible at our scale. TSRL with
only gold mention context features beats all baselines ex-
cept (Ganea and Hofmann 2017). Adding entity definition
page text features (as all other systems already do) makes
TSRL the best local algorithm.

Table 2 compares TSRL against several recent strong
baseline for the other three data sets, with similar trends:
TSRL is the best for two and third best for the third data set.

Accuracy against number of model parameters

For the rest of the section we focus on the CoNLL data set.
While end-to-end comparisons of TSRL against published
prior art stand as-is, we need more care comparing TSRL
against PAC, MTL-SH and MTRL, to make sure the amount
of RAM occupied by various models are comparable. Let
the input dimension of xui be D, representation dimension
be R, and number of entities of the task-group be E and the
total number of mention-entities is UĒ. The the number of
parameters to be learned by MTL is RE, MTRL is DR +
RUĒ and TSRL is DUR+RE. It is obvious that UĒ > E.
(Here we assume parameter vectors are dense.) We chose
three representative task-groups C1, C2, and C3. For each,
we set R of TSRL to 50 and 100. Then we chose R for MTL-
SH and MTRL so that the RAM requirements of the three
methods are (almost) equal. D for MTRL and TSRL is 1
million for these task-groups.

Table ?? shows the results. Task-group C3 has rela-
tively few candidates. This helps MTL-SH allocate rela-
tively larger R and attain competitive accuracy (when R
for TSRL is very small). However, on task-groups C1 and
C2 with more candidates, TSRL wins over other multi-task
techniques. TSRL always wins for R = 100.

Accuracy for entities binned by prior probability

Accuracy for an entity e is the percentage of mention-
instances, for which the true entity label is e, labeled cor-
rectly. A potential benefit of TSRL is that rare entities can
gain accuracy due to borrowing of instances from related
mentions. To test this, we divided entities into five bins ac-
cording to their mention priors. Bin-1 contains the 1st

ranked entity (by mention prior). Similarly, Bin-2, Bin-3,

Bin-4, and Bin-5 contain entities ranked 2 – 10, 11 – 20,
21 – 30, and > 31 respectively. Also, the bins contain 3306,
1068, 52, 28, and 31 instances respectively. As described
above, no entities were in Bin-5 while training of MTL-SH
and TSRL. Table 3 compares accuracy of per-alias classifi-
cation (PAC) against MTL-SH and TSRL disaggregated into
bins. Apart from retaining accuracy at large priors, we see
clear benefits for entities with lower priors.

Comparison of training speed

Training performance of different models are given by time
(in secs) and number of parameter updates (NPUs). Time
taken for training a task-group depends on the number of
training instances in the group, and the number of hidden
units in the model. On the other hand, NPUs depends on the
sparsity of training instances in a task-group, the number of
hidden units and the number of classes. Three representa-
tive task-groups are shown in Table 4. The dimension D is
1M for all. We fix the hidden units (R) of our model and
MTRL and compare time and NPU against baselines, tak-
ing the average of the first 30 epochs. As MTL-SH does not
learn any intermediate representation, the time and space re-
quirements remains same for any hidden units of MTRL and
TSRL. From the scalability point of view when the num-
ber of representation dimension(R) to be learned is less than
number of classes, TSRL outperforms the baselines, given
input dimension of all the baselines are the same.

Anecdotal evidence of inter-task transfer

Different runs for PAC, MTL, MTRL and TSRL produce
network weights Wh,Wf that are incomparable to each
other, leaving us with only end-to-end accuracy to com-
pare. To collect strong circumstantial evidence of inter-task
transfer, we identified mentions whose accuracy improved
substantially from PAC to TSRL. For these, we checked if
they had only a few training instances, but another mention
placed in their group had many more. This is often true; sam-
ples are shown in Table 5.

5818

Table 5: Circumstantial evidence of instance-poor tasks
gaining accuracy by sharing Wf slices with instance-rich
tasks.

Instance-rich Mention Instance-poor Mention

Mention Training
Instances

PAC
Acc

TSRL
Acc Mention Training

Instances
PAC
Acc

TSRL
Acc

Brazil 95186 100 100 Brazilian 1180 0 100
Italy 105951 92 100 Italians 158 60 100
John Gorst 29 100 100 Gorst 22 0 100
Germany 165558 93.8 100 German 62670 53 93
Australia 137487 46 73.4 Australian 1438 69.2 100

Conclusion

We investigated MTL and MTRL for NED. Conventional
MTRL first obtains a task-independent instance representa-
tion h(x), then applies a task-specific predictor fu(h(x)). In
contrast, we propose, justify, analyze, and evaluate a task-
sensitive representation hu(x) followed by a global predic-
tor f(hu(x)). Our framework allows a flexible grouping of
tasks to fit in RAM. We show the superiority of TSRL to
recent competitive baselines as well as direct application of
standard MTL and MTRL. Our system boosts accuracy of
rarer entities and mentions via inter-task sharing, resulting
in larger gains for macroaveraged accuracy.

Acknowledgements

RK and SB acknowledge support of Govt. of India, DST,
SERB grant number SB/S3/EECE/0249/2014. SC acknowl-
edges an nVidia grant. AD acknowledges a Google faculty
grant and a Cisco research grant.

References

Ando, R. K., and Zhang, T. 2005. A framework for learning
predictive structures from multiple tasks and unlabeled data.
JMLR 6(Nov):1817–1853.
Bengio, Y.; Courville, A.; and Vincent, P. 2013. Represen-
tation learning: A review and new perspectives. IEEE PAMI
35(8):1798–1828.
Bunescu, R., and Pasca, M. 2006. Using encyclopedic
knowledge for named entity disambiguation. In EACL, 9–
16.
Cheng, X., and Roth, D. 2013. Relational inference for
wikification. In EMNLP Conference, 1787–1796.
Cucerzan, S. 2007. Large-scale named entity disambigua-
tion based on Wikipedia data. In EMNLP Conference, 708–
716.
Durrett, G., and Klein, D. 2014. A joint model for entity
analysis: Coreference, typing, and linking. TACL 2:477–
490.
Fang, W.; Zhang, J.; Wang, D.; Chen, Z.; and Li, M. 2016.
Entity disambiguation by knowledge and text jointly embed-
ding. In CoNLL, 260–269.
Ganea, O.-E., and Hofmann, T. 2017. Deep joint entity
disambiguation with local neural attention. arXiv preprint
arXiv:1704.04920.

Ganea, O.-E.; Ganea, M.; Lucchi, A.; Eickhoff, C.; and Hof-
mann, T. 2016. Probabilistic bag-of-hyperlinks model for
entity linking. In WWW Conference, 927–938.
Globerson, A.; Lazic, N.; Chakrabarti, S.; Subramanya, A.;
Ringgaard, M.; and Pereira, F. 2016. Collective entity reso-
lution with multi-focal attention. In ACL Conference, 621–
631.
Google. 2017. Cloud natural language api, google cloud
platform. https://cloud.google.com/natural-language/.
Guo, Z., and Barbosa, D. 2016. Robust named entity disambigua-
tion with random walks. Semantic Web 1–21.
He, Z.; Liu, S.; Li, M.; Zhou, M.; Zhang, L.; and Wang, H. 2013.
Learning entity representation for entity disambiguation. In ACL
Conference, 30–34.
Hoffart, J.; Altun, Y.; and Weikum, G. 2014. Discovering emerging
entities with ambiguous names. In WWW Conference, 385–396.
ACM.
Hoffart, J., et al. 2011. Robust disambiguation of named entities in
text. In EMNLP Conference, 782–792. Edinburgh, Scotland, UK:
SIGDAT.
IBM. 2017. Natural language understanding overview
(IBM Watson developer cloud). https://www.ibm.com/watson/
developercloud/doc/natural-language-understanding/.
Ji, H. 2014. Kbp 2016 entity discovery and linking. http://nlp.cs.
rpi.edu/kbp/2014/elreading.html.
Jin, Y.; Kiciman, E.; Wang, K.; and Loynd, R. 2014. Entity linking
at the tail: Sparse signals, unknown entities and phrase models. In
WSDM Conference, 453–462.
Krammer, K., and Singer, Y. 2001. On the algorithmic implemen-
tation of multi-class SVMs. Proc. of JMLR 265–292.
Kulkarni, S.; Singh, A.; Ramakrishnan, G.; and Chakrabarti, S.
2009. Collective annotation of Wikipedia entities in Web text. In
SIGKDD Conference, 457–466.
Lazic, N.; Subramanya, A.; Ringgaard, M.; and Pereira, F. 2015.
Plato: A selective context model for entity resolution. TACL 3:503–
515.
Li, Y.; Tan, S.; Sun, H.; Han, J.; Roth, D.; and Yan, X. 2016. Entity
disambiguation with linkless knowledge bases. In WWW Confer-
ence, 1261–1270.
Maurer, A.; Pontil, M.; and Romera-Paredes, B. 2016. The benefit
of multitask representation learning. JMLR 17(81):1–32.
Microsoft. 2017. Microsoft cognitive services: Entity linking
intelligence service. https://azure.microsoft.com/en-us/services/
cognitive-services/entity-linking-intelligence-service/.
Mihalcea, R., and Csomai, A. 2007. Wikify!: linking documents to
encyclopedic knowledge. In CIKM Conference, 233–242. ACM.
Milne, D., and Witten, I. H. 2008. Learning to link with wikipedia.
In CIKM Conference, 509–518. ACM.
Ratinov, L.; Roth, D.; Downey, D.; and Anderson, M. 2011. Local
and global algorithms for disambiguation to Wikipedia. In ACL
Conference, ACL/HLT, 1375–1384.
Weinberger, K.; Dasgupta, A.; Langford, J.; Smola, A.; and Atten-
berg, J. 2009. Feature hashing for large scale multitask learning.
In ICML, 1113–1120.

5819

