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Abstract

This paper proposes a neural network-based method for
generating compact answers to open-domain why-questions
(e.g., “Why was Mr. Trump elected as the president of the
US?”). Unlike factoid question answering methods that pro-
vide short text spans as answers, existing work for why-
question answering have aimed at answering questions by
retrieving relatively long text passages, each of which of-
ten consists of several sentences, from a text archive. While
the actual answer to a why-question may be expressed over
several consecutive sentences, these often contain redundant
and/or unrelated parts. Such answers would not be suitable
for spoken dialog systems and smart speakers such as Ama-
zon Echo, which receive much attention in these days. In this
work, we aim at generating non-redundant compact answers
to why-questions from answer passages retrieved from a very
large web data corpora (4 billion web pages) by an already
existing open-domain why-question answering system, using
a novel neural network obtained by extending existing sum-
marization methods. We also automatically generate training
data using a large number of causal relations automatically
extracted from 4 billion web pages by an existing supervised
causality recognizer. The data is used to train our neural net-
work, together with manually created training data. Through
a series of experiments, we show that both our novel neural
network and auto-generated training data improve the qual-
ity of the generated answers both in ROUGE score and in a
subjective evaluation.

1 Introduction

Answering non-factoid questions, to which sentences and
other long expressions are expected as answers, is a diffi-
cult task. Why-questions (e.g., “Why was Mr. Trump elected
as the president of the US?”) form a relatively well-studied
class of non-factoid questions but the existing methods for
why-question answering (why-QA) simply retrieve from a
text archive relatively long text passages, each of which typ-
ically consists of several sentences as exemplified in the an-
swer passages in Table 1, as the answer. The retrieved an-
swers usually contain redundant parts, which make them un-
suitable as answers to be read aloud by spoken dialog sys-
tems and smart speakers such as Amazon Echo. The aim of
this work is to develop a method to generate non-redundant
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Question: Why did Yubari City in Hokkaido prefecture go
bankrupt?
Answer Passage: The central government and the company
should have paid the costs of closing coal mines to save the
remaining inhabitants’ lives. But the central government and
Hokkaido’s inadequate financial support caused an excessive
expense for Yubari’s city government, and the large remain-
der of municipal bonds due to this expense became the largest
cause of Yubari’s bankruptcy
Compact Answer: Because the costs of closing coal mines
caused an excessive expense of Yubari’s city government.
Question: Why does a non-rotating shot (in football) move un-
predictably?
Answer Passage: A non-rotating shot is a shot that is kicked
without rotating the ball as much as possible, while keeping
the ball in a state where it is likely to receive strong air re-
sistance. Since the trajectory of a non-rotating shot appears to
sway irregularly, it is called a swaying ball, and, because it is
unpredictable, it is the type of shots that goal keepers most hate
to encounter.
Compact Answer: Because the ball is likely to receive strong
air resistance.

Table 1: Examples of why-questions, answer passages and
compact answers

compact answers to Japanese open-domain why-questions
from given answer passages that are retrieved by an existing
web-based open-domain why-question answering system.
The answers should be short and comprehensible so that
they can be understood by users when read aloud as a ques-
tion’s responses by spoken dialog systems and smart speak-
ers. We limit our compact answers to single sentences that
end with the Japanese word “tame (because)”, which corre-
spond to sentences that starts with “because” in English, like
the answer “Because the ocean’s water mass is displaced by
an earthquake” to the why-question “Why does a tsunami
occur?” To the best of our knowledge, this is the first at-
tempt to generate such compact answers to why-questions.
We developed a novel neural network based method and ex-
ploit automatically generated training data, which is gen-
erated with the help of a supervised causality recognizer,
in addition to manually created training data, to train the
network. Accordingly, our method can be characterized as
semi-distantly supervised neural network model. We created
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Figure 1: Proposed method

our own dataset for this task and the experimental results
using the dataset revealed that both the novel network and
auto-generated training data contributed to improving the
quality of the generated answers.

Table 1 shows examples of why-questions, their correct
answer passages that are provided by a publicly available
open-domain why-QA system, WISDOM X (Mizuno et
al. 2016; Oh et al. 2016), and gold-standard compact an-
swers created by human annotators. (Our target language
is Japanese but we use English translations of Japanese ex-
amples for ease of explanation throughout this paper.) The
words in boldface in the passages are those appearing in the
compact answers. As can be seen clearly, most parts of the
answer passages are actually peripheral to the why-question
and the compact answers are much shorter than the answer
passages. Another important point is that the words in the
compact answers may be scattered over several sentences in
the passages. Consequently, finding the words that should
appear in a compact answer and generating the answers are
not trivial tasks. Also note that the underlined words are
those appearing in the questions or their synonyms and that
many of these underlined words do not appear in the com-
pact answers. Although the underlined words are redundant,
existing why-QA systems must search for them through a
text archive to find the correct answer passages, and the pas-
sages must contain the words. Furthermore, those words,
as well as those in the compact answer, may be scattered
over several sentences. This is a reason why conventional
why-QA systems must provide relatively long passages in-
evitably.

Figure 1 gives an overview of our method to generate
a non-redundant compact answer from such redundant an-
swer passages. We use an extension of a neural-network-
based method for automatic summarization called a pointer-
generator network (See, Liu, and Manning 2017). The net-
work consists of two recurrent neural networks, which are
called an encoder and a decoder, respectively. In our set-
tings, the encoder reads an answer passage and the decoder
generates a compact answer. We extend the network so that
the words in the passage are marked if they also appear in
the question and the resulting marks are given to the en-
coder. We call this technique question word marking. Our

expectation is that by using such marks the encoder can more
effectively focus on the part of the passage in which a com-
pact answer is written and thus can propagate the informa-
tion of this part to the decoder. This framework may appear
similar to the query-focused neural summarizer (Nema et al.
2017). However, our method uses the information concern-
ing a query (why-question) in the answer-passage encoder,
while the query-focused neural summarizer does not use
the information in the passage encoder. Actually, we show
that the query-focused summarizer does not work well for
our task in our empirical evaluation. In conventional query-
focused summarization data (Nema et al. 2017), the words
in queries are likely to appear in the gold-standard summary,
but, in our data set, the question words are less likely to ap-
pear in the compact answer because they are often redun-
dant. This difference may have contributed to the methods’
difference in effectiveness.

Also, we use automatically generated data for training.
For this purpose, we exploit an automatic causality recog-
nizer (Oh et al. 2013), which can identify text expressing
causal relations (e.g., “Mr. Trump was elected as the pres-
ident because many people had ill feelings against the po-
litical elites.”) and recognize their effect parts (“Mr. Trump
was elected as the president”) and cause parts (“many people
had ill feelings against the political elites”). Then, we com-
bine several causal relations identified by the recognizer to
form a virtual passage, assuming that the cause part of one
of the combined causal relations is a compact answer to be
generated and the effect part of the same causal relation is
a why-question. Through an empirical evaluation, we show
that the quality of the answers generated by our method im-
proves significantly by adding a large number of such virtual
passages as training data to a small amount of manually cre-
ated training data.

Our task is similar to the SQuAD machine comprehen-
sion task (Rajpurkar et al. 2016) in the sense that an an-
swer is generated from a passage. In our experiments, we
modified the neural QA system DrQA (Chen et al. 2017),
which works well on the SQuAD, so that it can deal with
Japanese and our task, and compare it with our proposed
method, but it achieved significantly worse results than those
of our methods. This suggests that our task is not a trivial
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variant of the SQuAD task at least. In the SQuAD, answers
must be short consecutive word sequences in passages, while
our answers do not have to be consecutive words. Actually,
around 40% of the gold-standard answers in our test set did
not match any consecutive sequence in the passage. Addi-
tionally, the language difference may be another cause of
the low performance of DrQA.

This paper is organized as follows. Section 2 gives an
overview of related works. Section 3 presents our proposed
methods. The dataset we created and the experimental re-
sults are described in Section 4.

2 Related Work

Several neural methods have been proposed for why-
question answering (Oh et al. 2017; Sharp et al. 2016; Tan
et al. 2016; dos Santos et al. 2016) and showed significant
performance improvement over the methods using conven-
tional machine learning methods such as SVMs (Girju 2003;
Higashinaka and Isozaki 2008; Oh et al. 2012; 2013; 2016;
Verberne et al. 2011). However, as mentioned in the intro-
duction, their answers are passages consisting of several sen-
tences and they cannot provide compact answers like ours.

Another task related to ours is automatic text summariza-
tion. Again, several neural methods for this task have been
proposed (Rush, Chopra, and Weston 2015; See, Liu, and
Manning 2017; Nema et al. 2017; Zhou et al. 2017) after
the success of neural machine translation based on encoder-
decoder models (Bahdanau, Cho, and Bengio 2014) since a
similar methodology can be applied to summarization. As
mentioned in the Introduction, we use pointer-generator net-
work (See, Liu, and Manning 2017), which is one of the
state-of-the-art method for the summarization task, as the
starting point for developing our method. One of the most
serious problems in neural summarization is rare words that
do not appear in training data: a naive neural summarizer
often generates irrelevant words in a summary at the posi-
tion where such rare words in the original texts should be.
The pointer-generator network can copy rare words from an
original text to a summary, regardless whether they appear
in training data or not, and can reduce the risk of generating
irrelevant words.

3 Proposed Method

We extend the pointer-generator network (See, Liu, and
Manning 2017), which is one of the state of the art automatic
summarizer, to generate compact answers to why-questions.
In the following, we explain the pointer-generator network
and then describe the extension added to the network and
our automatic training data generation method.

3.1 Pointer-generator Network

A pointer-generator network generates a summary using
two LSTMs (Hochreiter and Schmidhuber 1997). The first
LSTM, which is called encoder, reads an input passage,
which is denoted by p = 〈w1, w2, ..., w|p|〉 where wi (1 ≤
i ≤ |p|) is a word, and generates vector representations of
the passage. The other LSTM, which is called decoder, gen-
erates a summary y = 〈y1, y2, ..., yT 〉 where yt (1 ≤ t ≤ T )

is a word, from the vector representations. More specifically,
we use as the encoder a bidirectional LSTM, which actually
consists of two LSTMs, LSTM l and LSTMr. LSTM l

reads the passage from left to right and computes the hid-
den state hl

i corresponding to i-th word wi, while LSTMr

reads the passage in the opposite direction and computes a
hidden state hr

i .

hl
i = LSTMl(hl

i−1, emb(wi))

hr
i = LSTMr(hr

i+1, emb(wi))

Here, emb(wi) denotes the embedding vector for wi, which
is learned during training. Note that, for computing hl

i,
LSTM l looks at hl

i−1, which is a hidden state for the left
neighbor word wi−1 of wi. This means that LSTM l reads
the passage from left to right. In the same way, LSTMr

looks at the hidden sate hr
i+1 for the right neighbor for com-

puting hr
i and LSTMr reads the passage from right to left.

The initial hidden states for this recursive computation are
set as hl

0 = 0 and hr
|p|+1 = 0. The hidden state hi of the

whole bidirectional LSTM for wi is defined as the concate-
nation of two states, hl

i and hr
i , i.e., hi =

[
hl
i, h

r
i

]
.

The decoder computes the probability distribution
Pvocab(yt) of the t-th word yt in the summary from the hid-
den state of the decoder st, the context vector h∗t and the de-
coder input xt, as shown below. The decoder input xt is cal-
culated from the previous context vector h∗t−1 and the pre-
vious output word yt−1. At the test time, the previous word
yt−1 is a generated word for the summary, while t − 1-th
word in the gold standard summary is given as yt−1 during
training. In both of summarization and training, a special
symbol, which indicates the beginning of the text, is used as
the initial input word y0.

Pvocab = softmax (V ′ (V [st, h
∗
t ] + b) + b′)

Here, Pvocab is a vector whose dimension is the vocabu-
lary size. (We denote the probability of w in the vector by
Pvocab(w).) Each element in it is a probability of a corre-
sponding word. V and V ′ are trainable matrices and b and
b′ are trainable vectors. The context vector h∗t is computed
using attention distribution ati (Bahdanau, Cho, and Bengio
2014) and a hidden state hi of the encoder, given trainable
matrices Wh, Ws and vector battn.

h∗t =
∑
i

atihi

at = softmax(et)

eti = v� tanh(Whhi +Wsst + battn)

st is computed by a decoder LSTM LSTMd.

st = LSTMd(st−1, xt)

The initial state s0 of LSTMd can be the concatenated vec-
tor

[
hl
|p|, h

r
1

]
, where hl

|p| and hr
1 are the final hidden states

of the encoder LSTMs LSTM l and LSTMr. However, the
original implementation of the pointer-generator network1

1https://github.com/abisee/pointer-generator
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used the following initial state, which has half the dimen-
sion of the above concatenated vector, where Wr is a train-
able matrix, br is a trainable vector, and ReLU is a Rectified
Linear Unit (Nair and Hinton 2010).

s0 = ReLU
(
Wr

[
hl
|p|, h

r
1

]
+ br

)

We also use this initial state for our networks.
Actually, if we generate a summary according to the

distribution Pvocab, this is a basic sequence-to-sequence
model with attention mechanism (Bahdanau, Cho, and Ben-
gio 2014). A problem of this model is that it can only gen-
erate words in its pre-defined lexicon, which are covered by
training data and for which the vector Pvocab contains proba-
bilities. Our task, like the general summarization task, needs
to generate rare words including technical terms, but it is
difficult to cover such words in training data. The pointer-
generator network was developed to avoid this problem by
copying such rare words in the original passage to a sum-
mary. More precisely, the probability distribution P (yt) of
the word to be generated is defined as following,

P (yt) = PgenPvocab(yt) + (1− Pgen)
∑

i:wi=yt

ati

Pgen = σ
(
W�

h∗h∗t +W�
s st +W�

x xt + bptr
)

where W�
h , W�

s , W�
x are trainable matrices and bptr is a

trainable vector and σ is the sigmoid function. When Pgen

is small, yt, a word to be generated is likely to be a copy of
wi in the passage. Otherwise, yt is chosen just like a normal
sequence-to-sequence model with attention mechanism.

3.2 Proposed Model and Alternative Model

The idea of our extension to the pointer-generator network,
which we call question word marking, is simple. To give
information about question to the network, we mark each
word in the passage p according to whether it appears in the
question q = 〈q1, q2, ..., qm〉. More precisely, we modify the
input to the encoder LSTMs as,

hl
i = LSTMl(hl

i−1, tanh(W
�
q [emb(wi), f(wi, q)])

hr
i = LSTMr(hr

i+1, tanh(W
�
q [emb(wi), f(wi, q)])

Wq is a trainable matrix, and f(w, q) is defined as follows,
where vqw and vnqw are d-dimensional learnable vectors and
they represent the marks for the words in question q and the
other words. Note that d = 32 in our experiments.

f(w, q) =

{
vqw if w is a content word in q
vnqw otherwise

Question word marking is similar to the use of answer po-
sition features (Zhou et al. 2017), which were introduced to
generate factoid questions given passages and answers in the
passages. The authors of the paper (Zhou et al. 2017) pro-
posed to mark an answer in a passage using the BIO scheme,
i.e., label B marks the beginning of an answer, label I con-
tinues the answer and label O is given to the words that are
not part of the answer. Then the labels are converted to real
value vectors and given to the encoder. This approach differs

however from question word marking in the type of words
marked: answers to factoid questions in (Zhou et al. 2017),
and words in a question in our work. Also, as noted in the
Introduction, the words in a why-question may be scattered
over an answer passage even if it is correct answers. Hence,
whether the answer position features works well for why-
QA is not a trivial question.

An alternative way to give an information from a question
to the model is to use a query attention model proposed by
(Nema et al. 2017), which was designed for the task of gen-
erating summaries relevant to given queries. They modified
the probability distribution Pvocab

Pvocab = softmax(V ′(V st + Vdecdt))

and dt is computed using the hidden states in another LSTM,
which is added to the network to read a given query, as well
as the hidden states for the passage like the previous models.

By regarding our why-question as its query, this model
can be used for our task. The difference from our method is
that the information of the question is not given to the pas-
sage encoder like ours. Actually, our experiments revealed
that this query attention does not give performance improve-
ment. Our compact answers include the words in a ques-
tion rarely, while in the original query-base summarization
the words in queries seems to appear in gold-standard sum-
maries frequently. This difference may have lead to the inef-
fectiveness of the query attention model in our task.

3.3 Automatic Training Data Generation

Another idea for improving answer generation is to use auto-
matically generated training data in addition to the manually
created training data. Since our answer passages are rela-
tively long, they can contain several causal relations in vari-
ous forms. In preliminary experiments, the model trained us-
ing only manually created data was often confused by those
multiple causal relations: it tended to copy to the output an-
swer a word sequence around clue terms that marks causal
relations such as “because,” regardless of its relation or rel-
ative position to the topic of a given question. As a result,
the resulting answer was a cause of some topic, but the topic
was often different from that of the question.

To avoid this problem, as shown in Figure 2, we auto-
matically generate training data by artificially creating pas-
sages as combinations of several causal relations. We first
automatically extract expressions representing causal rela-
tions out of a large-scale web archive, and create pairs
of a why-question (e.g., “Why does a tsunami occur?”)
and an answer (e.g., “Because the ocean’s water mass
is displaced by an earthquake.”) out of the cause part
and the effect part from the causality expressions (e.g.
“[Tsunami occurs]effect because [the ocean’s water mass
is displaced by an earthquake]cause”). We then create pas-
sages by merging three causality expressions that are ran-
domly chosen from the set of the causality expressions ex-
tracted from the web archive (see Figure 2) and combine
the auto-generated passage with each pair of the question
and answer generated from one of the causality expression.
Since each passage contains three causality expressions, we
can create three passage-question-answer triples from it.
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Effect1 since Cause1.
Effect2. The reason is Cause2.
Cause3. As a result,  Effect3.

Three randomly chosen causal relations

merge

Auto-generated passage

Effect1 since Cause1. Effect2. 
The reason is Cause2. Cause3. 
As a result,  Effect3.

Three auto-generated training instances
(Three passage-question-answer triples)

Q: “Why Effect1?”
A: Because Cause1.

Passage:

Q: “Why Effect2?”
A: Because Cause2.

Passage:

Q: “Why Effect3?”
A: Because Cause3.

Passage:
Effect1 since Cause1. Effect2. 
The reason is Cause2. Cause3. 
As a result,  Effect3.

Effect1 since Cause1. Effect2. 
The reason is Cause2. Cause3. 
As a result,  Effect3.

Effect1 since Cause1. Effect2. 
The reason is Cause2. Cause3. 
As a result,  Effect3.

Figure 2: Automatic generation of training data

We applied our implementation of an automatic causality
recognizer proposed in (Oh et al. 2013) to 4 billion Japanese
web pages to extract 101 million causality expressions. The
recognizer is a sequential tagger using CRF (Lafferty, Mc-
Callum, and Pereira 2001) that assigns BIO labels for each
instance of cause and effect in the sentences. It can recognize
inter-sentential causal relations, such as “A huge tsunami oc-
curred. This is because the ocean’s water mass was displaced
by the Great East Japan Earthquake.” On the other hand,
the input is limited to the sentences that match the prede-
fined regular expressions including the clue keywords, such
as “because” and “reason,” that are related to causality. The
cause and effect parts recognizable by our recognizer are
also limited to the consecutive word sequences. Although
such limitations could be harmful, our empirical evaluation
revealed that the training data generated using those causal
relations is actually useful.

The causality recognizer achieved a precision of 83.8%,
a recall of 71.1%, and an F-measure of 77.0% in a 10-
fold cross-validation using a gold-standard dataset of 16,051
entries in which the cause parts and the effect parts were
marked by a human annotator. In the evaluation, we regarded
a causal relation as correctly recognized if and only if the
automatically recognized cause and effect parts had overlap
with the gold-standard cause and effect parts, respectively.
In this paper’s experiments, we used all the gold-standard
data as training data.

4 Experiments

This section describes our datasets, the parameters of our
neural model, and reports the experimental results.

4.1 Data

Our dataset is a set of triples of a why-question, an answer
passage and a compact answer. First, we created our train-
ing, development and validation sets. Our human annota-
tors manually created open-domain why-questions. We gave
them to a publicly available Web-based QA system, WIS-
DOM X (Mizuno et al. 2016), which has an open-domain
why-QA module (Oh et al. 2016). The system retrieves an-
swer passages from a 4 billion page-scale Web archive and
provides a ranked list of answer passages for each question.

• A compact answer must not be longer than 25
Japanese characters.

• The content words in a compact answer must be in-
cluded in the passage, but the conjugated forms of
verbs can be changed so that the resulting compact
answer appears natural, and functional words that
do not appear in the passage can be used freely.

• The end of the compact answer must be the
Japanese word “tame(because).”

• Pronouns must not appear in a compact answer. If
the part of the passage that corresponds to a com-
pact answer includes pronouns, they must be re-
placed with their referents in the passage.

Table 2: Rules for creating compact answers

Each answer passage consists of five or seven consecutive
sentences. Note that those passages are limited to the ones
that have one of several pre-defined clue terms that indicate
the existence of causal relations, such as “because.” Also
note that there is no guarantee that a given question has
something to do with the causal relations linked to those clue
terms. There are cases where the question should be matched
to another causal relation that is implicitly expressed in the
passage without such clue terms, like “The large earthquake
occurred and a tsunami attacked the coast.” where the large
earthquake should be regarded as the cause of the tsunami’s
attack.

We chose the top 20 answer passages in the ranked list
for each question. Then, we asked human annotators to cre-
ate a compact and non-redundant answer from each pas-
sage that provides a correct answer to the question accord-
ing to the rules given in Table 2. Though each passage was
given to three annotators, since they might not agree on
whether compact answers could be written based on the
passages, there were passages for which three compact an-
swers were not obtained. After removing passages for which
no annotators could write a compact answer, we obtained
19,639 question-passage-answer triples for 2,915 questions.
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We randomly split the triples into a training set (15,310
triples for 2,060 questions), a validation set (2,271 triples
for 426 questions), and a development set (2,238 triples for
429 questions) in such a way that no pair among the sets had
common questions.

As for the test set, our annotators created 426 open-
domain why-questions, and these were given to the same
why-QA system. We selected the top three passages from
all of the passages retrieved by the system and asked six
annotators to create a compact answer for each passage ac-
cording to the rules in Table 2. Then, the three best compact
answers for each passage were selected by a vote of the same
six annotators. This time, we did not remove passages with-
out any compact answer, in order to assess the behavior of
the methods when given noisy passages. In all, we obtained
2,339 passage-question-answer triples. The average length
of all passages, questions, and compact answers in all the
datasets were 188.0 words, 10.8 words, and 9.2 words, re-
spectively. Note that the compact answers were much shorter
than the answer passages. This also suggests the difficulty of
our task.

4.2 Evaluation using the ROUGE scores

We tested the following variants of the proposed methods.

Proposed The proposed method (i.e., a pointer-generator
network (hereafter, PG) with the question word marking)
that was trained only with the manually created training
data (MCD).

Proposed+N Proposed method trained using N automati-
cally generated training instances on top of the MCD.

Proposed+N -MCD Proposed method trained using N au-
tomatically generated training instances only, without us-
ing the MCD.

Since the performance of Proposed+N and Proposed+N -
MCD depends on the size of the auto-generated training
data, we tried 250K, 500K, 750K, and 1M as values for N .
As baselines to be compared with the proposed methods, we
tested the following methods.

Passage A baseline method that provides a whole passage
as a compact answer.

CRF This method provides, as a compact answer to a ques-
tion, among the causal relations obtained by applying the
causality recognizer to a passage (See Section 3), the
cause part of the causal relation whose effect part has the
largest word overlap with the question.

PG Original pointer-generator network. This does not use
any information concerning the question.

PG+QAtt Pointer-generator network with the query atten-
tion model. The information concerning a given question
is used only through the query attention mechanism de-
scribed in Section 3.2, and the question word marking in
our proposed method is not used.

DrQA An open-domain neural question answering sys-
tem (Chen et al. 2017), which achieved a high perfor-
mance against the SQuAD dataset (Rajpurkar et al. 2016).
We trained this method only with the MCD.

Note that Passage and CRF are non-neural baselines but
all the other methods utilize neural networks. Among many
methods applicable to the SQuAD, we chose DrQA because
the source code written by the authors of the paper was pub-
licly available2 and it works without a parser, which may
cause problems in applying the methods to Japanese. We
modified the system so that it can deal with Japanese and
our task (details given later). All the methods were given
the text inputs tokenized by the Japanese morphological an-
alyzer MeCab3. The neural methods except for DrQA were
implemented in PyTorch4 on the top of OpenNMT-py5 and
we ran the experiments on Tesla M40 GPGPUs.

The results in terms of ROUGE scores are presented in
Table 3. We showed the results of Proposed+N -MCD only
for the best performing setting, with N = 250K. The pa-
rameters for each neural methods were tuned according to
the ROUGE-1 score on the development set, as described
later. The table presents results on the test set obtained with
the tuned parameters, along with those on the development
set (inside parentheses). Proposed+250K achieved the best
performance on the test set among those of all the meth-
ods. All the methods using the auto-generated training data
consistently showed more than 5% improvement over their
versions that do not use the auto-generated data in all types
of ROUGE scores. However, in the case where we trained
the model with only the auto-generated data, Proposed+N -
MCD, the performance drops considerably. These observa-
tions suggest that the auto-generated training data is effec-
tive, but manually created data is also indispensable.

Another important point is that Proposed gave a better
result than PG although both methods were trained using the
same manually created data. Since Proposed can be seen as
PG with the question word marking, this suggests that the
marking is effective. On the other hand, PG+QAtt gave a
worse result than that of PG, which suggests that the query
attention is not effective for this task.

For all the neural methods except for Proposed+N ,
Proposed+N -MCD and DrQA, we tuned the vocabulary
set for LSTMs and the dimensions of the word embedding
and LSTM hidden states according to the ROUGE-1 score
on the development set. We tried three combinations of di-
mensions for the word embedding and the hidden states,
namely (128, 128), (128, 256) and (256, 256). We tried two
settings for the vocabulary size. In one setting, we set the vo-
cabulary set of both the encoder and decoder to the 50,000
words that appeared most frequently in all the passages of
the training set. In the other setting, we used the same set
for the encoder but for the decoder, we used the 50,000
words that appeared most frequently in the answers within
the training data. We also tested the pointer-generator net-
works with the coverage method (See, Liu, and Manning
2017) and those without it. Table 3 shows the performance
of the networks that achieved the best performance against
the development set during these trials. For Proposed+N

2https://github.com/facebookresearch/DrQA
3http://taku910.github.io/mecab/
4http://pytorch.org
5https://github.com/OpenNMT/OpenNMT-py
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Method QWM Training data Query-Att. ROUGE-1 ROUGE-2 ROUGE-L Avg.Length (words)
Non-neural Baseline Methods
Passage - - - 9.25(10.1) 7.34(7.94) 9.02(9.87) 180
CRF - - - 32.7(34.3) 25.5(26.6) 32.0(33.6) 17.6
Neural Baseline Methods
PG no MCD no 36.5(40.7) 19.0(21.9) 36.0(40.1) 7.6
PG+QAtt no MCD yes 36.1(40.4) 18.4(21.5) 35.4(39.8) 8.1
DrQA - - - 24.7(28.6) 15.4(18.6) 23.4(27.6) 12.2
Proposed Methods
Proposed yes MCD no 38.2(43.5) 21.6(25.1) 37.8(43.0) 7.5
Proposed+250K yes MCD+AGTD(250K) no 44.9(48.8) 31.0(33.6) 44.4(48.2) 9.5
Proposed+500K yes MCD+AGTD(500K) no 44.1(48.6) 30.1(33.4) 43.5(48.0) 9.6
Proposed+750K yes MCD+AGTD(750K) no 43.7(49.4) 29.9(34.2) 43.2(48.7) 9.5
Proposed+1M yes MCD+AGTD(1M) no 44.4(48.7) 30.8(33.7) 43.9(48.1) 9.7
Proposed+250K-MCD yes AGTD(250K) no 28.6(32.5) 20.7(23.9) 27.8(31.5) 26.4

QWM stands for the Question Word Marking. MCD and AGTD stand for Manually Created training Data and Auto-Generated Training Data.
The figures inside the parentheses are the scores on the development set.

Table 3: ROUGE scores

and Proposed+N -MCD, we used the same parameters and
choice as those for Proposed.

As for the other parameters, we used the following values
in all of the neural methods, except for DrQA. The opti-
mizer is adagrad (Duchi, Hazan, and Singer 2011). We ap-
plied early stopping using the validation data and the max-
imum number of epochs is 10. The batch size, maximum
gradient norm, learning rate and beam size for beam search
of the decoded results are 16, 2.0, 0.01 and 4, respectively.
The coverage loss weight is 1.0 if applicable. Also note that,
unlike See, Liu, and Manning, we did not impose any re-
striction on the length of the input passage.

Though DrQA works quite well for the SQuAD dataset,
it achieved significantly worse performance than those of
our proposed methods. We tried to modify the method6,
change the parameter values in the default setting10 and even
weaken the format/definition of the correct compact answers
so that it could deal with Japanese and execute our task. The

6We stopped to use a syntactic parser in DrQA because the
performance achieved without parsers on the SQuAD dataset is ac-
tualy comparable to the best performance achieved with a parser
in our environment when the default setting and word embed-
dings distributed from Stanford University 7are used (EM = 69.4,
F1 = 78.9 vs. EM = 69.4, F1 = 78.7). We also modified the
setting of DrQA so that it uses MeCab 8, which is a morphological
analyzer for Japanse, as a tokenizer and the pre-trained Japanese
word embedding that are distributed from Facebook Research. 9We
also disabled pos, named entity recognition and lemma features.
Note that our proposed methods used none of them.

7https://nlp.stanford.edu/projects/glove/
8http://taku910.github.io/mecab/
9https://github.com/facebookresearch/fastText/blob/master/

pretrained-vectors.md
10We tried changing some parameters in the default settings of

DrQA. We changed the dimension of hidden states from 256 to
128, the maximum number of words to be genered by an ecoder
from 15 to 30, the learning rate from 0.1 to 0.01 (the same value
for the proposed methods) and the number of LSTM’s layers from
3 to 1. We also tried the version that does not use the pre-trained
word embeddings.

peformance figure in Table 3 is the best one obtained during
the trials. The biggest problem surely was the difference of
the format of answers. While, in the SQuAD dataset, an an-
swer is a consecutive text span in a passage, in our dataset
an answer may not match any text span in the passage be-
cause the annotators created the answers rather freely. For
training, we extracted all the content words in answers in
our data and computed the shortest span in a passage that
cover all the content words. The obtained text span was used
as gold standard for training, although it can be reudndant as
a compact answer and may not be natural Japanese text. For
testing, we tried two methods for creating the gold standard:
(i) the same method as that for the training, and (ii) keeping
the original answer except for the Japanese word ”tame (be-
cause)”, which the annotators must add regardless whether
it appears in a passage or not. Also, we ignored mismatch of
conjugated forms when calculating the ROUGE scores for
DrQA. In spite of such efforts, we could not achieve perfor-
mance comparable to those of our proposed methods. This
suggests that our task is not a trivial variant of the SQuAD
task, although we have to admit that there is also a chance
that the worse performance is due to the language difference.

4.3 Subjective Evaluation

We also had human annotators evaluate the quality of the
output answers. We gave 300 questions manually created by
annotators to the why-QA system used for the ROUGE score
evaluation and applied Proposed, Proposed+750K and PG
to the top-ranked output passage of each question. We chose
Proposed+750K because it gave the best ROUGE score on
the development set. First, we asked three human annotators
to assess the fluency of the answers by labelling each of them
according to the following: Good if the answer is natural for
Japanese; Acceptable if the answer is not natural but the se-
mantic content is understandable; and Unacceptable in all
other cases. Table 4 presents the total number of each type
of label given by the annotators to the answers provided by
each method, along with its ratio for each method. (Since we
asked three annotators to assess each answer, each method
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has 900 labels for 300 answers.) Fleiss’ Kappa (Fleiss 1971)
among the three annotators was 0.64, which shows moderate
agreement. Note that Proposed+750K achieved better re-
sults than those of the other methods, and Proposed worked
better than PG. This suggests that our methodologies are ef-
fective for improving the fluency.

As a second subjective evauation, we then asked three
human annotators to assess the informativeness of the an-
swers, given only the questions and the compact answers
and not the passages. This means that this evaluation is about
whether the answers are convincing enough without the help
of external contexts, i.e., the passages. This evaluation was
designed for assessing whether the answers were sufficiently
understandable in situations such as the use of a spoken dia-
log systems, where the users cannot access external contexts.

The results of informativeness are presented in Table 5.
Each annotator gave to each instance one of three labels:
Good if and only if a given compact answer contains enough
elements that should appear in a correct answer to the ques-
tion, and is recognizable and comprehensible as a correct
answer; Acceptable when the answer does not contain some
elements required in a correct answer but those elements can
be inferred according to commonsense knowledge, and the
correct answer can be guessed based on the given answer
and the inference; and Unacceptable otherwise. Table 5 pro-
vide the total number of each label and its ratio. Fleiss’s
Kappa for assessing the inter-annotator agreement was 0.45,
which indicates moderate agreement.

As can be seen from Table 5, Proposed+750K outper-
formed the other methods significantly. This is consistent
with the evaluation using the ROUGE scores. On the other
hand, the ratio of the Good labels is just 24%. To check

Models Good Accept Unaccept
PG 474(52.7%) 325(36.1%) 101(11.2%)
Proposed 551(61.2%) 242(26.9%) 107(11.9%)
Proposed+750K 591(65.7%) 266(29.6%) 43(4.8%)

Table 4: Subjective evaluation results of fluency

Models Good Accept Unaccept
PG 132(14.7%) 154(17.1%) 614(68.2%)
Proposed 154(17.1%) 141(15.7%) 605(67.2%)
Proposed+750K 217(24.1%) 148(16.4%) 535(59.4%)

Table 5: Subjective evaluation results of informativeness

whether this low ratio is due to the low quality of the pas-
sages retrieved by the why-QA system, we conducted a third
subjective evaluation, in which all the answers given Unac-
ceptable labels by all three annotators in the previous evalu-
ation were removed from the dataset, based on the assump-
tion that many of such unacceptable answers were generated
from noisy passages. Also, to reduce the deviation of the la-
belling due to a lack of knowledge of the annotators, at this
time, we gave the answer passages alongside the compact
answers and why-questions. Here, Good and Acceptable can
be given only when the passage supports the validity of the

answers. In a sense, this evaluation gives an assessment of
the informativeness where external contexts, i.e., the previ-
ous evaluation and passages, are given.

The results of this additional evaluation of informative-
ness are presented in Table 6. Fleiss’s Kappa was 0.60,
which indicates moderate agreement. The ratio of Good
labels increased for all the methods and that of Pro-
posed+750K reached 44%. Although this is still not a sat-
isfactory figure, we believe that it is reasonably high as a
result of the first attempt for this task. Also, this suggests
the possibility that the quality of the compact answers can
be enhanced by improving the why-QA systems used for re-
trieving passages. Another important point is that the num-
ber of Good labels increased: this suggests that some an-
swers were not interpreted as good answers in the previous
evaluation due to a lack of context or knowledge, but were
understood as correct ones with the help of the passages.
This suggests the need for another method which gives con-
cise supplementary information when the user of a spoken
dialog system cannot understand compact answers due to
a lack of knowledge. Such highly intelligent functionality
should be indispensable in future dialog systems and may
be an interesting future work.

Models Good Accept Unaccept
PG 148(29.4%) 49(9.7%) 307(60.9%)
Proposed 177(35.1%) 39(7.7%) 288(57.1%)
Proposed+750K 262(44.1%) 39(6.6%) 293(49.3%)

Table 6: Subjective evaluation results of informativeness
with external contexts

5 Conclusion

This paper described a method for generating compact
and non-redundant answers to a given why-questions. Our
method applies a novel neural text summarizer to the long
answer passages retrieved from 4 billion Web pages by an
existing why-QA system, WISDOM X (Mizuno et al. 2016;
Oh et al. 2016), and can generate compact answers with a
length of around 10 words in average. To improve the quality
of the compact answers, we attempted semi-distant supervi-
sion. We exploited a large amount of automatically gener-
ated training data as well as a relatively small amount of
manually created training data.

As a future work, we are considering to use a wider range
of auto-generated training data. We expect that various au-
tomatic causality recognizers (Hashimoto et al. 2012; 2014;
Kruengkrai et al. 2017) would be useful for this purpose.
Another direction is to use the attention mechanisms that
can pay attention to causally associated word pairs such as
“cigarettes” and “cancer” (Oh et al. 2017), although our at-
tempts in this direction have not lead to better results so far.
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