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Abstract

Typically, neural conversation systems generate replies based
on the sequence-to-sequence (seq2seq) model. seq2seq
tends to produce safe and universal replies, which suffers
from the lack of diversity and information. Determinantal
Point Processes (DPPs) is a probabilistic model defined on
item sets, which can select the items with good diversity and
quality. In this paper, we investigate the diversity issue in two
different aspects, namely query-level and system-level diver-
sity. We propose a novel framework which organically com-
bines seq2seq model with Determinantal Point Processes
(DPPs). The new framework achieves high quality in gen-
erated reply and significantly improves the diversity among
them. Experiments show that our model achieves the best per-
formance among various baselines in terms of both quality
and diversity.

Introduction

Automatic conversation systems, facilitating a smooth inter-
action in natural languages between humans and computers,
are of growing importance in both academia and industry.
Recently, with massive publicly accessible free-chatting re-
sources on the Web and the fast development of data-driven
deep learning techniques, it becomes more and more promis-
ing for us to build a non-task-oriented conversation system.

Deep learning has greatly advanced neural conversation
systems. Given a human utterance, called a query, a neu-
ral conversation system generates a reply tailored for the
query. Most neural conversation systems are based on the
sequence-to-sequence (seq2seq) model (Sordoni et al.
2015; Shang, Lu, and Li 2015; Serban et al. 2016b), which is
derived from neural machine translation. seq2seq model
encodes a query into a vector (also known as encoder), and
decodes the vector into a reply to the query (also known as
decoder). This framework has been widely used in neural
conversation systems due to its strong capability of captur-
ing the semantic relevance between queries and replies.

However, seq2seq model aims at finding the most rel-
evant “translation” sentence during the decoding process,
which is not applicable to the conversation scenario. Given
a query, there are multiple choices to respond it: replies can

∗Corresponding authors
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Query Human Reply System Reply

Nice weather
today, isn’t it?

Yeah, can’t be better! The weather is good!
Great weather for outdoor activities! The weather is great!

But it is going to rain tomorrow. Good weather!
I know the new movie I heard it would be next month. I don’t know.
will be showed soon.

You know what, Let’s get together for a little party? I don’t know.
Bob is coming!
How to get to Sorry, this is my first time here. Sorry, I don’t know.

the Great Wall?

Table 1: An example of how humans respond versus how
traditional generative systems respond. A human can offer
different proper replies to the same query. On the contrary,
the traditional systems could only generate similar replies,
and they prefer to use universal replies for different queries.

be completely different but all appropriate. Although a tra-
ditional seq2seq model can produce multiple reply candi-
dates during beam search, the most top-ranked replies from
the beam search have minor differences with each other (Li
et al. 2016a). As showed in Table 1, compared with the
replies in various expressions from human-beings, providing
multiple similar replies to a given query all the time would
make users feel boring.

Moreover, due to the origin of the seq2seq model, the
model “translates” the inputs with the maximum likelihood
as the outputs. Universal replies, such as “I don’t know,”
“I’m OK”, seem to be plausible for most queries and have
a dominant coverage in natural conversation datasets.1 For
a traditional seq2seq model, it is safe to “translate” most
queries into such universal replies with the maximum likeli-
hood. Some cases are in Table 1, providing a universal reply
(which is actually meaningless) to many queries, the conver-
sation system becomes boring.

As discussed, we point out two aspects of diversity in neu-
ral conversation systems: (1) query-level diversity and (2)
system-level diversity. The former means the inner-query di-
versity. For a particular query, we aim to generate differ-
ent replies with different semantics to respond the query ap-
propriately. The latter means the outer-query diversity. For
a conversation system, we manage to solve the problem to
generate universal replies for various user queries.

Different from some previous works, which incorporate

1According to Li et al. (2016a), 0.45% sentences contain the
sequence “I don’t know.”
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the context (Serban et al. 2016b; Tian et al. 2017; Yan, Song,
and Wu. 2016; Yan et al. 2016), keyword (Mou et al. 2016;
Yao et al. 2017) or knowledge-base (Yin et al. 2016) into
the reply generation process, we do not use additional in-
formation but foster diversity by making full potential of
seq2seq model.

In this paper, we propose to connect the single-turn neural
conversation system using the seq2seq model to determi-
nantal point processes (DPPs) (Kulesza, Taskar, and others
2012) as a joint generation framework. DPPs define proba-
bility measures on sets and the maximum a posteriori (MAP)
decoding algorithms (Yao et al. 2016) could make use of that
measures for selecting the items with both good quality and
diversity. This property fits the demands of generative con-
versation systems as it is effective to produce both meaning-
ful and diverse words and replies. In our master model. we
first formulate diversity in every word choosing during the
beam search via a diversity net, then employ a DPP decod-
ing strategy to reorder the subsequences for the next gen-
eration state. Besides the master model, we also propose a
simplified but still effective re-ranking model for easier im-
plementation. In the experiments, we examine the perfor-
mance of both model variants against several baselines, and
experimental results indicate the effectiveness of our pro-
posed models.

To sum up, our contributions are as follows:
• We systematically investigate two different aspects

of diversity, i.e., query-level diversity and system-level di-
versity, and tackle them simultaneously through a unified
framework.

• We connect the seq2seq model to Determinantal
Point Processes (DPPs) in a neural conversation system to
achieve both quality and diversity in the generated replies,
which is a new insight. We propose two model variants to
incorporate diversity in and after beam search.

Preliminaries
We introduce the traditional seq2seq model and Determi-
nantal Point Processes (DPPs) as preliminaries.

seq2seq Model

seq2seq is a prevailing model, which is first introduced
in statistical machine translation to transform one language
into another. Now, the conversational generation is treated
as a monolingual translation task (Ritter, Cherry, and Dolan
2011; Shang, Lu, and Li 2015), which translates the user-
issued query to an appropriate reply.

The seq2seq model consists of two parts, namely the
encoder and the decoder. The encoder maps the user-issued
query Q into a distributed vector and the decoder uses this
vector to generate the corresponding reply R. Both the en-
coder and decoder apply recurrent neural networks (RNNs)
to model sentences. To further improve the ability of RNNs,
gating mechanism such as gated recurrent unit (GRU) (Cho
et al. 2014) and long short-term memory (LSTM) (Hochre-
iter and Schmidhuber 1997) are used to improve the quality
of longer sentences. Attention mechanisms (Bahdanau, Cho,
and Bengio 2014) are used to strengthen the connection be-
tween the encoder and the decoder.

(a)

(b) (c)

Figure 1: The geometric interpretation of DPPs. (a) The
probability of a subset Y is the square of the volume spanned
by its corresponding item’s feature vectors, where each fea-
ture vector describes the property an item. (b) The probabil-
ity of a subset Y increases when the magnitude of the item’s
feature increases. (c) The probability of a subset decreases
when the similarity between two corresponding items in-
creases.

The standard objective function for the seq2seq model
is the log-likelihood of reply R given the query Q (Shang,
Lu, and Li 2015). Thus the replies with high probabilities are
more likely to be generated, which explains why seq2seq
tends to generate universal replies.

DPPs

The determinant point process is a probabilistic model de-
fined on item sets. Based on this probabilistic model, many
efficient ms could be performed to solve the problems such
as sampling, marginalization, conditioning and other infer-
ence tasks (Kulesza and Taskar 2010). The main application
of DPPs is to select items as diverse as possible and guaran-
tee the quality of selected ones at the same time. It has been
applied to document summarization (Gillenwater, Kulesza,
and Taskar 2012), image search (Kulesza and Taskar 2010)
and clustering (Kang 2013).

Given a candidate set Y = {c1, c2, · · · , cn}, a positive
semidefinite L called L-ensemble depicts the probability of
each subset Y ⊆ Y:

p(Y ) =
det(LY )

det(L+ I)
(1)

where I is the identity matrix of the corresponding dimen-
sion and Y is a random subset of Y . LY ≡ [Li,j ]i,j∈Y de-
notes the restriction of L to the entries indexed by elements
of Y , and det (L∅) = 1.

There is an intuitive geometric interpretation of DPPs. If
L is written as a Gram matrix, such that L = B�B (B can
always be found since L is positive semidefinite). Denoting
the columns of B by Bi for i = 1, 2, . . . , n, where:

p(Y ) ∝ det(LY ) = Vol2 ({Bi}i∈Y ) (2)

where Vol refers to the |Y |-dimensional volume of the par-
allelepiped spanned by the columns of B corresponding to
elements in Y (Figure 1). Details could be seen in (Kulesza,
Taskar, and others 2012), which is beyond the scope of this
paper.
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Methodology

We propose two model variants adopting DPP to incorporate
diversity in and after generation and give the explicit mea-
surement of quality and diversity, which is essential for DPP
modeling.

Model 1: DPP Decoder (DPP-D)

Under the framework of seq2seq, beam search is a preva-
lent method for approximate decoding (Li et al. 2016a;
Li and Jurafsky 2016; Vijayakumar et al. 2016). How-
ever, these replies obtained from beam search are only a
poor surrogate for the entire search base (Huang 2008;
Finkel, Manning, and Ng 2006), which causes some replies
overlap with each other closely; the minor differences usu-
ally lie in punctuations and different tenses. In the standard
beam search, there remains a set of top-k (known as the
width in beam search) subsequences. using the scoring func-
tion given by

score(y1, . . . , yt) = log p(yt|Q, y1, . . . , yt−1)

+ score(y1, . . . , yt−1)
(3)

where t is the index of iteration. In the right side of the
equal sign, the first part is the probability of each word in
the entire vocabulary, and the second part is the score of
the subsequence passed from the last iteration. Since the
value of second part is accumulated as the length of sub-
sequences grows, it could easily exceed the value of the first
part and dominate the score, which causes the problem the
high scored subsequences are mostly from the same or sim-
ilar ancestors.

To boost the diversity of generated results, we pro-
pose DPP-D model, which undertakes the encoder part of
seq2seq model for query representation and promotes the
vanilla decoder in two ways. One is to use diversity net for
word choosing at each time step, and another is to adapt
DPPs to re-rank the corresponding subsequences of choose
words from diversity net. Specifically, in each time step, the
model keeps k candidate subsequences for further genera-
tion, as same as the standard beam search. The pipeline of
decoding is comprised of three components, namely GRU
cell, Diversity net and DPP selecting.

GRU cell. GRU cell takes the word from the last time
step as input, and uses standard GRU equations to update
the hidden state, then outputs a vector representing the prob-
ability distribution over the entire vocabulary. In the tradi-
tional seq2seq model, the probability is utilized to choose
the top-k ranked ones for the next time step. As discussed
before, this distribution assigns similar words with simi-
lar probabilities, which impairs the diversity among chosen
words. In stead of traditional beam search, we keep 3k top-
ranked words and give the further ranking task to the diver-
sity net, where it could extract words with good diversity.

Diversity Net. Diversity net takeovers the hidden state
from GRU cell and outputs 2k proper words. Diversity
net employs DPP to locate the more important and diverse
neural nodes in networks. Let {vl1, · · · , vlt, · · · , vlm} and
{vl−1

1 , · · · , vl−1
p , · · · , vl−1

q , · · · , vl−1
n } be the neural nodes

in layer l and l − 1 respectively, where vli donates the i-
th node in layer l. vl

i is the representing vector of vli, and
it summarizes the activation from last layer l − 1: vl

i =

(ali,1v
l−1
1 , ali,2v

l−1
2 , · · · , ali,nvl−1

n ), where ali,j is the param-
eters between layer l and l−1 (Mariet and Sra 2016). In this
way, each node in layer l has a vector to describe its property.
Based on these vectors, we perform DPP to find the impor-
tant and diverse nodes in layer l . Only the selected nodes
would be sent to the next layer and perform further nodes
selection. At each layer l, we first create an m×m matrix L
by setting Li,j as:

Li,j = Lj,i = ‖vl
i − vl

j‖
2 (4)

Then, the selecting process finds the best subset of good
quality and diversity from the whole node set. This is equiv-
alent to finding the set Y ⊆ Y that maximizes det(LY ),
which has been proved to be an NP-hard problem (Gillen-
water et al. 2014). Here, Y is the whole node set in layer l,
Y is a subset of Y . In this paper, we select the highest prob-
ability node set via an approximate greedy approach named
MAP decoding (Yao et al. 2016). In this algorithm, the score
for a subset SY is defined as the unnormalized log probabil-
ity given L : scoreL(Y ) = log det(LY ). This algorithm
(showed in Algorithm 2) has formal approximation guaran-
tee for the worst cases and runs very fast in practice (Yao et
al. 2016). After this, the nodes in the chosen subset Y are
regarded as the activated nodes in the current layer, and only
the activated nodes would be passed to the next layer for
further calculation.

We use diversity net to find 2k diverse neural nodes in the
top layer of GRU, which calculates a probability distribu-
tion over entire vocabulary. Due to the merit of DPP, nodes
in the chosen subset are the ones with good quality and di-
versity. Since each chosen nodes corresponds to a word and
a subsequence stored during the generation process, these
subsequences would be passed to the next selecting step.

DPP Selecting. Since we obtain 2k candidate words from
diversity net, resulting in 2k subsequence. DPP selecting re-
orders the 2k candidates and pass the top-k for further gen-
eration.

We first evaluate the subsequences as the preparation for
further selection. We establish the probabilistic matrix L on
the subsequence set where L could be written as L = BTB.
We regard the columns of B as feature vectors describing
each subsequence. Thus L can be defined as:

Li,j = qiφ
T
i φjqj (5)

where qi is the quality of the subsequence i, and φi is the
feature vector of subsequence i, so the φT

i φj measures the
similarity between subsequence i and subsequence j. We
propose the quality measurement Qua(·) to calculate the
quality score qi. φT

i φj refers to the similarity between two
subsequences, which is used to measure the diversity among
the whole set. We define the diversity measurement Div(·)
to calculate φT

i φj . These two measurements would be ex-
plained in Section . Then, we perform the same DPP selec-
tion algorithm described above.

The procedure of DPP-D is showed in Algorithm 1. Fig-
ure 2 presents the main idea of DPP-D.
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Figure 2: The decoder part of DPP-D model.

Model 2: DPP Re-ranker (DPP-R)

As the DPP-D model requires continuous iterations of de-
coding, we design a simplified model DPP-R by taking the
decoding and DPP selection as separate components.

Concretely, DPP-R first performs standard beam search
to obtain a list of reply candidate set containing k ∗ k-best
replies, known as the beam search process. Then DPPs are
used to upturn the potential of the k-best replies which is the
DPP re-ranking process. Each candidate reply is measured
by both quality and diversity to build the L matrix. After all
those preparation, we perform the greedy DPP MAP infer-
ence (Yao et al. 2016) (showed in Algorithm 2) to obtain the
re-ranked reply set. At each time step, the algorithm greed-
ily chooses the current best reply, and it terminates when we
obtain enough chosen replies.

Thus DPP-R reranks all the candidate replies obtained
from beam search after generation, and the newly ranked
candidate set upturns these replies that are of good quality
and diversity.

Quality and Diversity Measurement

To perform DPPs involved selections, an explicit definition
of both the quality and diversity is needed. In this section,
we introduce the quality and diversity measurements.

Quality Measurement. For single-turn conversation sys-
tems, the coherence between the user-issued query and each
candidate reply is used to evaluate the goodness of candi-
date replies. In this paper, we define the quality of each can-
didate c (reply or subsequence) by semantic coherence be-
tween Q and c, which is based on word-level similarity. For
each word in the query, we find the best matching word in
the candidates using the cosine similarity of word embed-
dings, then average all the cosine similarity scores as the

final quality measurement, given by

Qua(c,Q) =
1

|Q|
∑

wj∈Q

argmax
wi∈c

cos(ewi
, ewj

)

where Q is the query, c is the candidate, |Q| is the number
of the words in Q, and ewi

is the embedding of the word wi.
Diversity Measurement. As described in the previous

section, diversity of a set is indirectly characterized with
a similarity in a DPP model. Hence, the diversity mea-
surement composes of two similarity scores: 1) term over-
lap score, 2) embedding matching score. The term overlap-
ping score represents each candidate ci and cj as one-hot
word vector, and measures the similarity by the cosine func-
tion; it explicitly reveals the word overlap between candi-
dates. The embedding matching score uses the cosine sim-
ilarity of word embeddings; it captures the underlying se-
mantic matching between two candidates. We linearly com-
bine these two features as the final diversity score, that is,

Div(ci, cj) = λ
1

|cj |
∑

wjl∈cj

argmax
wik∈ci

cos(ewjl
, ewik)

+ (1− λ) cos(hi,hj)

where hi is the one-hot word vector of the ci, each element
indicating if a word appears in ci, |ci| is the number of word
in ci, λ is the hyperparameter balancing the two similarities.

Experiments

Experimental Setups

We evaluated our approach on a massive Chinese con-
versation dataset crawled from Baidu Tieba.2 There were

2http://tieba.baidu.com
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Algorithm 1: The DPP-D algorithm
Input: User-issued query Q

Maximum length of each reply l
Beam search width k

Output: Generated reply set R
//Repeat alternatively to compete the generation
process
S0 = ∅ // St is the subsequence set at time t
for t = 1; t ≤ l; do

V
′
t = GRU Cell(St−1, Q)

// V
′
t contains 3k words

S
′
t = Diversity Net(Vt

′)
// S

′
t contains 2k subsequences

// DPP Selection
L|S′

t |×|S′
t | = {0} // L is the L-ensemnble

for si ∈ S
′
t do

qi = Qua(si, Q)

for sj ∈ S
′
t & j ≤ i do

φT
i φj = Div(si, sj)

Li,j = qiφ
T
i φjqj

Li,j = Lj,i

St = DPP selection(L, k)
// St contains k subsequences

R = Sl

return R

1,600,000 query-reply pairs for training, 2000 pairs for val-
idation, and another unseen 2000 pairs for testing. We also
performed standard Chinese word segmentation.

All the models are under the architecture of traditional
seq2seq model3. All the proposed models were imple-
mented during the testing, following Li and Jurafsky (2016).
We used the bi-directional recurrent neural network with
gated recurrent units (Bi-GRU RNN) (Serban et al. 2016a)
to capture the information along the word sequences. To
train the neural conversation models, we followed the hyper-
parameter settings in (Shang, Lu, and Li 2015; Song et al.
2016). The word embeddings were 610d and hidden layers
were 1000d. We applied AdaDelta with default hyperparam-
eters, where batch size is 80. We kept 100K words (Chi-
nese terms) for queries, and 30K for replies due to efficiency
concerns. The beam size k was 20, so the proposed meth-
ods would not suffer from the efficiency problem as only
60 (3k) nodes would be sent to diversity net. We kept the
top-10 generated replies for each query in the diversity eval-
uation. Notice that the validation set was used for an early
stop based on the perplexity measurement. The word em-
beddings used in the quality measurement was pre-trained
on 3 million utterances with 150k unique words. The hyper-
parameter λ used in diversity measurement was empirically

3Codes and sample data will be soon available at:
https://github.com/stellasyp/DPP-Conversational-System

Algorithm 2: DPP selection
Input: L, number of items to be chose k
Output: Selected set
S = ∅

repeat

s = argmaxs∈S
′
t
log detL(S ∪ {s′})

S = S ∪ s
until |S| = k;
return S

set to 0.8.

Competing Methods

We compared our models with the vanilla beam search and
other various diversity enhanced models. All the methods
are trained in the same way to guarantee a fair comparison.

• Standard Beam Search (SBS). It is the standard de-
coding method used in seq2seq model.
• Diverse Decoding (DD). DD improves the standard

beam search by punishing the bottom ranked subsequences
among siblings (Li and Jurafsky 2016) 4.
• Diverse Beam Search (DBS). DBS divides the sub-

sequences into several groups during decoding and assigns
lower scores to the groups which are similar to the prior
groups (Vijayakumar et al. 2016).

• DPP-R. Our DPP-R re-ranks the k-best replies via
DPPs selection, which incorporates diversity after decoding.
• DPP-D. Our DPP-D applies DPPs at every step of the

decoding process, which incorporates diversity in decoding.
This one does not include the diversity net strategy.

• DPP-D-DivNet. Our DPP-D-DivNet applies DPPs at
every step of the decoding process with diversity net, which
incorporates diversity in decoding. This one is the master
model of this paper.

Evaluation Metrics

We evaluated the quality and the diversity of the generated
replies obtained from each method in both subjective and
objective manners. We implemented the objective evalua-
tion on the whole testing set, and randomly sampled 100
cases for the subjective evaluation which is time- and labor-
consuming.

Quality Evaluation

• BLEU Score. BLEU-1 and BLEU-2 are used as the
automatic evaluation (Papineni et al. 2002), which are
correlation-related metrics used in conversation systems (Li
et al. 2016b; Mou et al. 2016). We calculated the BLEU
scores of top-1 reply to assess the performance of each
method and display the average BLEU scores of top-10
replies.
• Human Annotation. We asked 3 annotators to label the
quality of the top-1 replies (Mou et al. 2016). Each reply
would be labeled as “0” for bad, “1” for borderline and “2”

4A similar work by Li et al. (2016a) has been demonstrated to
be less effective than DD, so we did not include it.
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for good. This evaluation was conducted in a strictly random
and blind fashion to rule out human bias.

Diversity Evaluation

• Distinct Score and Diversity Score. For each competing
method, we calculated the system-level diversity and query-
level diversity. The system-level diversity measures the dif-
ferent expressions among the whole set of queries. We cal-
culated the number of distinct 1-, 2-, 3- and 4-grams in
all the generated replies, which are known as the distinct
scores for diversity measurement (Li and Jurafsky 2016;
Vijayakumar et al. 2016).

The query-level diversity measures the diversity of the dif-
ferent expressions within one particular query. Since we kept
top-10 candidate replies for each query, the inner-query di-
versity scores were calculated by the accumulated similari-
ties between these 10 sentences. The diversity score function
is computed as:

2

|C|(|C| − 1)

∑

ci∈C

∑

cj∈C\{ci}
(1− cos(hi,hj)) (6)

C is the candidate set, cos(·) is the cosine measure and
hi is a one-hot vector (each element indicating if a word
appears in ci). This function is used in Zhang and Hur-
ley (2008) to evaluate the diversity of a set.
• Human Annotation. We invited 3 educated annotators
to rate the query-level diversity and systems-level diver-
sity. The query-level diversity indicates the percentage of
generated sentences which have a different meaning from
any other candidates among all top-10 generated sentences
(noted as Clustering).

To evaluate the systems-level diversity, we asked volun-
teers to label the universal replies, such as I dont know, Im
OK, in all top-1 replies to calculate the percentage of uni-
versal replies (noted as Percentage). We did not define the
standards of the different and univerisal expressions but let
the annotators to use their own understanding.

Performance and Analysis

We present the quality performance in Table 2 and diversity
performance in Table 3. Figure 3 presents a sample of anno-
tated cases (3 annotators are agreed on this sample).

In Table 2, SBS shows a relatively poor performance. DD
is slightly better than SBS in terms of BLEU scores and
human evaluation. DBS achieves the worst performance in
terms of BLEU scores and even not as good as the SBS, in-
dicating this method may pay too much attention to improve
the diversity but ignore the quality of generated replies.
DPP-R is better than all the methods above, which means
it is simple and effective. DPP-D does not use diversity net
but applies DPP selecting strategy, and it still achieves a sig-
nificant improvement of all metrics. Comparing with DPP-
R, we conduct the conclusion that integrating diversity “in”
each step of decoding is a better choice than “after” it. Our
master model DPP-D-DivNet achieves the best performance
among all the competing methods and outperforms the oth-
ers by a large margin. The fact that DPP-D-DivNet is prior
to DPP-D demonstrates that diversity net indeed benefits our

Figure 3: Examples of the top 5 replies. Numbers in gray in-
dicate different meanings. QQ and WeChat are two popular
chatting tools. “xxxxxx” is the numbers omitted for privacy.
“UNK” is the out-of-vocabulary word.

model. The BLEU scores of the top-10 replies and human
score have a similar result. It is natural that the top-10 replies
which cover a larger set of candidates may be a better way to
measure the replies’ quality. Various expressions of replies
could be suitable to respond the particular query in conver-
sation systems, but there is only one reference for the calcu-
lation of BLEU scores. Hence, it makes more sense to have
better BLEU scores for top-10 results than top-1 results.

In Table 3, it can be seen that SBS is the worst method
since it does not consider the diversity. DBS is better than
the DD and DPP-R in most cases but is slightly worse than
DPP-D. DPP-R performs well in diversity and even beats
DPP-D in terms of distinct-1 metric, which indicates that
the use of DPP to rerank the k-best replies sometimes is also
a good strategy (although not always). DPP-D almost excels
all the methods above, that means the dpp selection is an
effective strategy. DPP-D-DivNet has the best performance
both in system-level and query-level diversity, either in sub-
jective or in objective evaluations. In the human annotation
experiments, 8.7 out of 10 replies have distinct meanings
and only 5.333% generated replies are universal replies.

By jointly analysing the experimental results in two ta-
bles, we could see that DD is not as good as DBS, which
is also showed in Vijayakumar et al. (2016). DBS, which
shows a relatively good performance in diversity, does not
have a satisfactory performance in quality. So we may as-
sume that DBS sacrifices the quality of replies to increase
the diversity. DPP-R makes good use of the original beam
search and greatly improves the diversity. DPP-D model
achieves the best performance both in quality and diversity.
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Method
Top-1 Reply Top-10 Replies

Human Score
BLEU-1 BLEU-2 BLEU-1 BLEU-2

SBS 1.053 0.420 3.711 1.520 0.590
DD 1.160 0.380 4.108 1.484 0.737
DBS 0.363 0.078 3.144 0.790 0.747
DPP-R 2.698 1.399 4.897 1.926 0.613
DPP-D 3.157 0.897 7.827 2.278 0.927
DPP-D-DivNet 8.568 3.740 9.914 16.56 1.440

Table 2: Quality measurement in terms of BLEUs and average human scores. Inter-annotator agreement for human annotation:
Fleiss’ κ = 0.5077 (Fleiss 1971), std = 0.3791, indicating moderate agreement (within a proper range in (Mou et al. 2016)).

Method
system-level Diversity query-level Diversity

distinct-1 distinct-2 distinct-3 distinct-4 Percentage Diversity Clustering

SBS 0.004 0.023 0.049 0.076 55.33% 0.867 2.877
DD 0.005 0.029 0.061 0.092 40.67% 0.907 3.851
DBS 0.020 0.167 0.384 0.547 15.67% 0.938 6.748
DPP-R 0.026 0.128 0.249 0.358 30.67% 0.920 6.392
DPP-D 0.023 0.171 0.387 0.572 7.333% 0.952 8.317
DPP-D-DivNet 0.058 0.327 0.619 0.809 5.333% 0.956 8.727

Table 3: Diversity measurement in terms of system-level diversity and query-level diversity. Inter-annotator agreement for
human annotation: for Percentage , Fleiss’ κ = 0.9138, std = 0.0603; for Clustering Fleiss’ κ = 0.4993, std = 0.5325.

Related Work

Conversational Systems. Automatic conversation system
is a prolonged research topic in natural language process-
ing (NLP). In early days, most of conversation systems
served for vertical domains. Now, conversation systems in
the open domain have become the center of attention. Re-
trieval paradigm and Generation paradigm are two main ap-
proaches in the open domain (Song et al. 2016). With the
increasing development of neural networks, generative con-
versation systems demonstrate powerful capabilities to learn
from human dialogue patterns.
Diversity in Conversation Systems. A hot research topic
in generative conversation systems is the generated replies
are lack of diversity. Several works are focusing on the im-
provement of diversity. Li et al. (2016a) abandon the stan-
dard objective function in seq2seq model, and replace it
with maximum mutual information as the training criterion.
Li and Jurafsky (2016) propose a diverse decoding method
based on the traditional seq2seq, which avoids the sib-
ling sequences deriving from the same ancestral sequences
during the decoding process.5 Another alternative idea is to
divide the candidate sequences into several groups, and as-
sign lower scores for the groups that are much similar to
other groups (Vijayakumar et al. 2016). Shao et al. (2017)
propose a target-glimpse model with a fixed-length decoder
with self attention. These methods improve the diversity of
replies, but may ignore the coherence between queries and
replies. Besides, Zhao et al boost diversity via conditional
variation autoencoder (Zhao, Zhao, and Eskenazi 2017), but
this work regards chatting history as the condition, which
does not fit for single-turn conversation scenario.
Determinantal Point Processes. Determinantal point pro-
cese is applicable in selection problems such as image

5This work is addressed in the scenarios of the machine trans-
lation, which could be naturally adapted to conversation systems.

search (Kulesza and Taskar 2010) and recommender sys-
tems (Gillenwater et al. 2014) where a small number of
items with good quality and diversity are chosen from a
much larger set. Various probabilistic inference approaches
can be performed efficiently, including sampling, marginal-
ization and conditioning (Gillenwater, Kulesza, and Taskar
2012; Kulesza, Taskar, and others 2012). Vondrák, Chekuri,
and Zenklusen (2011) depicts a greedy algorithm which
could choose the best item in every selection process.
Kulesza and Taskar (2011) propose to sample a certain num-
ber of items with the highest probability from the whole
candidate set. The most relevant approach is a diversity net
(Mariet and Sra 2016) for model compression but this one is
trainable.

Conclusion

In this work, we investigate the diversity issue in neural con-
versation systems from two aspects: query-level and system-
level diversity. To tackle this problem, we propose to connect
seq2seq model with the determinantal point processes for
jointly modeling the quality and diversity of the generated
replies. We come up with two various DPP-based generative
models namely DPP-D and DPP-R. The experiment results
show that our proposed methods could achieve the best per-
formance against the existing state-of-the-art models.
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