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Abstract

Dialog response selection is an important step towards nat-
ural response generation in conversational agents. Existing
work on neural conversational models mainly focuses on of-
fline supervised learning using a large set of context-response
pairs. In this paper, we focus on online learning of response
selection in retrieval-based dialog systems. We propose a con-
textual multi-armed bandit model with a nonlinear reward
function that uses distributed representation of text for on-
line response selection. A bidirectional LSTM is used to pro-
duce the distributed representations of dialog context and
responses, which serve as the input to a contextual bandit.
In learning the bandit, we propose a customized Thomp-
son sampling method that is applied to a polynomial feature
space in approximating the reward. Experimental results on
the Ubuntu Dialogue Corpus demonstrate significant perfor-
mance gains of the proposed method over conventional lin-
ear contextual bandits. Moreover, we report encouraging re-
sponse selection performance of the proposed neural bandit
model using the Recall@k metric for a small set of online
training samples.

Introduction

Conversational agents, or chatbots, have a wide range of
applications such as in technical support, personalized ser-
vice, and entertainment (Young et al. 2013; Serban et al.
2016). Conventional approaches in conversational modeling
include using rule-based and learning-based methods (Oh
and Rudnicky 2000; Schatzmann et al. 2006) that typically
require expert knowledge in designing rules and features.
Such systems are usually designed to model dialogs in a spe-
cific domain. Transferring such models from one domain to
another is often difficult.

With the explosive growth of conversational data in so-
cial media, neural network based data-driven approaches
(Shang, Lu, and Li 2015; Vinyals and Le 2015) to conver-
sational modeling have been explored. These models are
trained based on large dialog corpora, making few assump-
tions about dialog domain or structures. They are suitable in
modeling non-task-oriented conversations, and have shown
promising performance in modeling social media chats (Rit-
ter, Cherry, and Dolan 2011; Shang, Lu, and Li 2015; Li et
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al. 2016b) and movie conversations (Vinyals and Le 2015;
Li et al. 2016c¢). Most of the existing work focuses on the of-
fline supervised dialog model training setting, in which the
models are trained with a large number of context-response
pairs. Online learning methods for neural conversational
models, which are useful in building personalized dialog
systems and transfering systems to new dialog domains, is
not widely studied in literature.

In neural conversational models, response to a dialog
context can either be generated directly by the model or
can be selected from a repository of predefined responses.
Generation-based models have advantages in producing re-
sponses that are more diverse. However, they often require
a large number of training samples. Evaluating generation-
based systems is also challenging, with recent studies (Liu
et al. 2016) showing that many of the automatic evaluation
methods for response generation are poorly correlated with
human judgement. Retrieval-based models that select a di-
alog response from a candidate set based on a dialog con-
text can be seen as an intermediate step towards generation-
based systems. Response selection is similar to response
generation when the set of candidate responses is very large
(Lowe et al. 2015; 2016). There are well defined automatic
evaluation metrics for response selection models.

In this work, we focus on online learning for retrieval-
based conversational models. We propose a neural nonlinear
bandit model (NNBM) that can be trained online for dialog
response selection. Given a dialog context, the model selects
a most likely response from a list of response candidates.
Binary feedback is collected from users indicating whether
or not the selected responses are appropriate. This binary
feedback serves as the reward to the contextual bandits.

Our main contributions in this work are:

e We design a contextual bandit model, NNBM, that has a
nonlinear reward function applied on selected dimensions
of a polynomial feature space. The proposed method sig-
nificantly outperforms contextual bandits with linear re-
wards that are widely used in online recommendations.

e We apply neural contextual multi-armed bandits to online
learning of response selection in retrieval-based dialog
models. To our best knowledge, this is the first attempt at
combining neural network methods and contextual multi-
armed bandits in this setting.



Reward: 1 (Indicating
ood response)

Figure 1: Illustration of the online model for response se-
lection in dialog systems. Dialog history with a few number
of turns is provided to the agent as the dialog context. The
agent computes the most likely true response from a list of
candidate responses and returns it to user. The user then pro-
vides binary feedback, positive (left) or negative (right), to
the agent indicating the quality of the returned response.

Related Work
Conversation Modeling

Traditional approaches to conversation modeling typically
involve template and rule based methods with statistical
learning components (Levin and Pieraccini 1997; Oh and
Rudnicky 2000). With the growth of conversational data in
social media, data-driven approaches to conversation mod-
eling have been widely studied. Ritter et al. (2011) framed
conversation response generation as a statistical machine
translation problem. Vinyals et al. (2015) designed a neural
conversation model that can generate simple conversations
and extract knowledge from an open-domain dataset. Shang
et al. (2015) showed that the encoder-decoder-based neural
network model could generate varied multiple responses to
a given post on social networks. Serban et al. (2016) pro-
posed a hierarchical recurrent neural model that utilizes con-
text over an extended dialog history. Li et al. (2016a) pro-
posed using maximum mutual information as the objective
function to produce more diverse and interesting responses.
These end-to-end neural conversation models are trained of-
fline with supervised learning using large parallel corpora of
utterance-response pairs. In this work, we focus on online
learning of neural conversational models.

Reinforcement learning (RL) has also been applied in
dialog modeling. In task-oriented dialog systems, RL can
be applied to optimize dialog policy online with the feed-
back collected via interacting with users (Singh et al. 2000;
Gasi¢ et al. 2013). Zhao and Eskenazi (Zhao and Eske-
nazi 2016) introduced joint learning of dialog state track-
ing and dialog policy learning using deep RL. Li et al. (Li
et al. 2017) proposed end-to-end trainable task-oriented di-
alog model with deep RL. Lipton et al. (2016) proposed
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a Bayes-by-Backprop Q-network that effectively improves
the efficiency of exploration with Thompson sampling. He
et al. (2016) proposed a deep reinforcement relevance net-
work (DRRN) that applies to text-based games in which ac-
tion and state spaces are represented with separate embed-
ding vectors and used to approximate the Q-function. These
models are applied in a sequential decision problem setting
for task-oriented dialogs. Our model, on the other hand, fo-
cuses on online learning in a setting where the context is
provided and is not dependent on previous state and actions.
The problem setting is closer to a non-task-oriented chit-
chat dialog setting. In non-task-oriented dialog learning, Li
et al. (2016c¢) introduced the use of RL for response gen-
eration by simulating dialogs between two agents that opti-
mizes future reward. Serban et al. (2017) proposed an hybrid
generation and retrieval based dialog model that applies RL
in response selection. In these models, a simple reward func-
tion with linear approximation is applied in learning dialog
policy. In this work, we investigate online learning efficiency
using a more general nonlinear reward function approxima-
tion with Thompson sampling.

Evaluation of dialog system is difficult (Liu et al. 2016)
as there is not yet a suitable metric for response gener-
ation evaluation. Many recent studies (Lowe et al. 2015;
Kadlec, Schmid, and Kleindienst 2015) using the Ubuntu
Dialogue Corpus instead proceed towards best response se-
lection, which can be seen as an intermediate step towards
response generation (Lowe et al. 2015) and has well ac-
cepted evaluation metrics. We use the same response selec-
tion methods and metrics in our study.

Bandits and Online Learning

Multi-armed bandit model is a popular online learning
method with great success in many fields, such as online
advertisement (Chapelle and Li 2011), recommender sys-
tems (Li et al. 2010), and stochastic combinatorial opti-
mization (Gai, Krishnamachari, and Jain 2012; Kveton et
al. 2014). The bandit enables online model update online
based on the feedback from the environment, which has sev-
eral nice properties in terms of finite-time regret bounds
with a clear dependence on the parameters of interest. To
model more complicated problems, a number of non-linear
bandit models (Filippi et al. 2010; Gopalan, Mannor, and
Mansour 2014; Kawale et al. 2015; Katariya et al. 2017b;
2017a; Yu, Kveton, and Mengshoel 2017) are proposed, in
which the rewards are approximated by different non-linear
functions. Bandits have also been applied in some dialog
systems. Genevay et al. (2016) applied bandits in source
user selection for user adaptation in spoken dialog systems.
Bouneffouf et al. (2014) proposed active Thompson sam-
pling method with bandits to select the most useful unla-
belled examples to train a predictive model. They used a
linear regression model to approximate the reward in each
round of interaction. In our problem setting, the reward is a
Bernoulli variable, where a logistic regression model is more
suitable for binary reward approximation. Moreover, we ap-
ply bandits on distributed representation of the dialog con-
text that are generated from neural network models, which
is different from Bouneffouf et al. (2014).



Hello. Hello, how can | help you? [ lost my password.

Context

Reward

Reward a = 1
Reward b =0

Response a: Did you set any security question?
Response b: The printer is out of paper.

Response

Figure 2: Architecture of the proposed Neural Nonlinear Bandit Model (NNBM). A bidirectional LSTM is used to encode
dialog context and response to continuous representations. The context and response representations ¢; and u; are produced by
taking the average of the LSTM state output sequence. ¢; and u; are then mapped to a second order polynomial feature space
and serve as the input to the contextual bandits. A binary reward is finally collected from user indicating the quality of the
selected response to the dialog context, which is used to update the NNBM parameters.

Neural Nonlinear Bandit Model

Figure 2 shows the architecture of the our proposed neu-
ral nonlinear bandit model for online response selection
in retrieval-base dialog systems. Let C' = {c1,¢2,¢5...}
represent a set of dialog context samples and let U
{u1,us,us ...} represent a set of response samples in the
dialog corpus.' A dialog context consists of a sequence of
utterances by one or more users, and potentially by the
NNBM. Given a dialog context ¢;, the NNBM attempts to
select a most likely response u; from a pool of candidate
responses. We ask the user to provide a binary feedback in-
dicating whether or not the selected response is an appro-
priate one. This binary value r;; serves as the reward to the
contextual bandits during online learning.

We use a bidirectional LSTM to produce distributed
representations of the dialog context and response. The
context and response representations ¢; and u; are pro-
duced by taking the average of the LSTM sequence outputs

Te, T .
(h}:i, ey het) and (h}”, <y hu;”). ¢; and u; serve as input
features to the contextual bandit. In learning the bandit, we
propose a Thompson sampling method that is applied to a
second order polynomial feature space of the context and
response in approximating the reward. We describe the pro-
posed model details in the sections below.

Utterance Encoding with LSTM

We use a bidirectional LSTM to generate distributed feature
representations for both the context and the response. For

'In this paper, we use ¢; to refer to the ith context sample and
c; to denote the feature representation of the ith context sample.
The same also applies to dialog responses.
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the context reader, input to the network at each time step
t is the embedding of the word ¢! in context c;. The cor-
responding output hfl is the concatenation of the forward

— —
LSTM output A% and backward LSTM output A’ , ie.

ht. [ﬁﬁq , %27 ]. The final context representation ¢; is pro-
duced by averaging over the sequence of LSTM state out-
puts. For the response reader, the same LSTM that shares
the parameters with the context reader is used. The final re-
sponse representation u; for response u; is generated in the
same manner as in the context representation generation.

The generated feature vectors ¢; and u; encode the mean-
ing of the context and the response. During LSTM offline
supervised pre-training, a score is generated for the context-
response pair representing the probability of the match. The
score of the context-response pair is calculated by applying
the sigmoid function on the transformed inner product of ¢;
and u; as:

p(label; ; = 1le;, u;) = o(c;Mu?) M

where M is a transformation matrix. In equation (1), the
matrix M is randomly initialized and updated during model
training together with other neural network parameters. The
neural network model is optimized by minimizing the cross
entropy of all labeled context-response pairs in the training
set:

L=— Zlogp(labeliyj = 1|c;,u;)

,J

2

Linear Logistic Regression Thompson Sampling

Atround ¢ of interaction in online model learning, a random
context ¢; is picked. Our agent chooses a user response u;



and receives a binary reward (1 for like, and O for dislike).
With context ¢; and response u;, our algorithm applies a
parametric approximation of the reward r;; by the represen-
tations ¢;, u; and unknown model parameters w. As the re-
ward in our problem setting is a Bernoulli variable, logistic
regression is a suitable choice to model the reward.

In online advertising or recommendations with contextual
bandits (Li et al. 2010; Chapelle and Li 2011), the reward r;;
is usually linear in feature representations of users, articles,
or advertisements. In our case, we can also model r;; by a
linear logistic function with parameters w, such that r;; =
o(x;w), where x; = [c;,u;] € RY2 ¢; € R u; €
R~ and o(.) is the sigmoid function.

Many algorithms have been studied in literature for bal-
ancing exploration and exploitation during policy learn-
ing, such as exploit-only, random, Thompson sampling
(Chapelle and Li 2011), and upper confidence bound (UCB)
(Auer, Cesa-Bianchi, and Fischer 2002). We apply Thomp-
son sampling as it outperforms UCB, exploit-only, and ran-
dom methods (Chapelle and Li 2011).

We first sample the parametrization of reward from its
posterior. There is no closed-form solution for sampling
from the posterior of logistic regression. Based on the
Laplace’s method, the posterior at time ¢ can be approx-
imated (Spiegelhalter and Lauritzen 1990; MacKay 1992)
by Wt ~ N(Wy_q, St—l) .The covariance matrix is Sy =
(XICy Xy + M)~ 1, where Ct is a t x t diagonal matrix
with d1agonal elements &Ct =0 Xth)<1 — o(x;Wy)).
Here X, = (x{,.. LX) € Rt“ is the matrix of all
context and response pair x; up time ¢, where 1 <1 < ¢.

To obtain a Gaussian approximation of the posterior dis-
tribution, we maximize the logistic regression log-likelihood
Li(w) from the first ¢ observations to get w;, which is the
mean of the Gaussian. We update ¢(w) incrementally ac-
cording to Newton’s method:

Wi = W1 — Hy (Wio1)V(Li1(Wi1)),

where w;_1 is the solution at time ¢ — 1, Hy(w) is the
Hessian of the logistic regression log-likelihood L;(w) from
the first ¢ observations, and V(L;(w)) is the corresponding
gradient. The log-likelihood is defined as:

Ly(w) = wlw+ Z fi(xi)log(o(x;w)) +
> (1= fi(x:))log(1 — o(x;w)))

i=1

where f;(x;) is the observed reward at time 7 and X is the
weight of the regularization term. After we sample wy, we
choose the response with the highest expected reward with
respect to wy:

g (tht) s

u, = argmax

uy € all responses at ¢

where x; = [c¢, uy] and c; is the context at ¢. Finally, we
observe f;(x;) and receive it as a reward.
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Logistic Regression Thompson Sampling on
Polynomial Feature Space

We further propose a contextual bandit model with a nonlin-
ear reward function applied on selected dimensions of a sec-
ond order polynomial feature space. In approximating the
reward, we apply the sigmoid function on the transformed
inner product of ¢ and u, cMu”:

My My, M, u®

M M M (2)
ACINCISTS ‘21 .22 ‘2L u

My, Mgy ... Mprl [u®

3)
where ¢() and u®?) are the ith and jth dimension of ¢ and u.
M,;; indicates the element in the 7th row and the jth column
of M, which is also the weight coefficient of term c(Du(?).
This parametric approximation is similar to a degree-2
polynomial kernel function in the space of x, where x =
[c,u] € R1*2L, The only difference is that the weight coef-
ficients of some terms are zeros. Let x(*) be the ith dimen-
sion of x. The coefficients of (x(?))? and x(*) are zero where
1 < 4 < 2L. Besides, the coefficients of x)x*) are zero
where 1 < j < k< L,orL+1<j <k < 2L. The bias
term’s coefficient is zero as well. As a result, we approx-
imate the reward by o(¢(x)w), where ¢(x) maps x into
a higher-dimensional space. In addition, those zero coeffi-
cients guide us to remove some useless terms but select the
important ones in the explicitly mapped degree-2 polyno-
mial space. Therefore, this method can provide more power-
ful approximation compared to linear approximation studied
previously (Li et al. 2010; Chapelle and Li 2011).

Experiments

We evaluate the efficiency of the proposed online dialog
learning method on the average cumulative regret and re-
sponse selection Recall@k metrics. We describe the experi-
ment settings and evaluation metrics, and discuss the exper-
imental results.

Data Set

We use the Ubuntu Dialogue Corpus (UDC) (Lowe et al.
2015) in our evaluation. UDC is a multi-turn based dialog
corpus that is constructed from Ubuntu chat logs, used to
receive technical support for Ubuntu-related problems. All
named entities in the data set are replaced with correspond-
ing tags (names, locations, organizations, URLs, and paths)
in the data pre-processing stage. The data set contains dialog
context-response pairs that are extracted and sampled from
real chat logs. Each example contains three fields: the dia-
log context, the candidate response, and a label (match or
non-match).

Evaluation Metrics

We evaluate our model and proposed learning methods on
two different metrics, average cumulative regret and Re-
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Figure 3: The average cumulative regret along the growing round of interactions in bandits for k (k=1, 2, 5) responses returned
per interaction. k indicates the number of responses returned by the agent in each interactions. Corresponding rewards for the
k responses are provided by the user. Total sample size for online learning is 1000.

TF-IDF-Linear-TS | RNN-Linear-TS | RNN-NonLinear-TS
1in 10R@1 10.0 % 10.5 % 24.5 %
1in 10 R@2 19.5 % 21.0 % 38.0 %
1in 10 R@5 60.5 % 67.5 % 75.0 %

Table 1: Recall@k evaluation
RNN-NonLinear-TS are evaluated when k =1, 2 and 5.

call@k. The average cumulative regret is defined as:

. ZtT:1 Tty — Z;[:l Tt ug
= 7 ,
where 74 is the optimal reward could be achieved at round
t, and 7, is the reward achieved by bandits at round ¢.
For the evaluation using Recall @k, the agent is provided
with 10 candidate responses. The goal of the agent is to
rank the responses by assigning a high score to the true re-
sponse, and assigning lower scores to the false or distracting
responses. Recall@k means that the ranking is considered
correct if the true response if among the top k selections

make by the agent out of the 10 candidate responses. We
report Recall@k with (n, k) € {(10,1), (10,2), (10,5)}.

R(T)

“

Experiment Settings

We use a bidirectional LSTM to encode dialog context and
response as it has stronger capability in capturing longer
term temporal dependencies (Hochreiter and Schmidhuber
1997) comparing to vanilla RNN. LSTM state size and out-
put size are both set as 128. Word embeddings of size 150
are randomly initialized and fine-tuned during mini-batch
(size 128) training. We use Adam optimizer (Kingma and
Ba 2014) in the neural network offline model training with
initial learning rate of le-3. Dropout (Srivastava et al. 2014)
with keep probability of 0.5 is applied during offline super-
vised pre-training.

We compare three different bandit models in the main ex-
perimental results:

e TF-IDF-Linear—TS: The context and response fea-
tures are generated by TF-IDF followed by a dimension
reduction operation with PCA. A linear logistic func-
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results for the proposed bandit models. TF—IDF-Linear-TS, RNN-Linear-TS and

tion o(xw) is used to approximate the reward, where
x = [c,u].

e RNN-Linear-TS: The dialog context and response
are encoded with a bidirectional LSTM. As in
TF-IDF-Linear-TS, a linear logistic function o (xw)
is used to approximate the reward.

e RNN-NonLinear-TS: This is our proposed NNBM.
The dialog context and response are encoded with a bidi-
rectional LSTM. A nonlinear logistic function o(cMu?'),
which is also o(¢(x)w), is used to approximate the re-
ward.

We further compare our method to Thompson sampling
with linear regression proposed in (Bouneffouf et al. 2014),
as it is the most closely related recent work using bandits
with Thompson sampling for dialog learning. Bouneffoutf
et al. use a linear bandit with Thompson sampling to handle
continuous reward. Our method uses non-linear bandit with
Thompson sampling to handle Bernoulli reward. In compar-
ing these two bandit methods, we apply the same text encod-
ing using a bidirectional LSTM.

In model training, the bidirectional LSTM encoder is
trained using data from the original UDC training set. On-
line bandit learning and evaluation is performed using data
sampled from the UDC test set.

Online Learning Evaluations

We evaluate the performance of different bandit models in
the online setting. We select 1000 samples from the UDC
test set for the online model evaluation. In each round of
interaction, a context is randomly selected from the 1000
samples and provided to the agent. Given the context, the
agent returns k responses to the user. The user then provides



Dialog Context:

User A:

User B:
1 wanna learn how to read code

what you looking for linuxuz3r? no i mean are you looking for a spefic program?
im not sure if there is anything better then sourceforge
no particular program, anything that interest me then contribute to the source.

Interaction 1:

Rank | Confidence | Response
1 0.58374 other then checking the addational-drivers tool (jockey-gtk) and see if you
got the drivers installed.. thats all i know about ati cards.
2 0.46708 we needed some custom features not all the features of ffmpeg so i needed
those features only.
3 0.37162 good lad
Interaction 4:
Rank | Confidence | Response
1 0.62103 there is one that escapes me at the moment. most people use sourceforge
2 0.46708 possible
3 0.46526 we needed some custom features not all the features of ffmpeg so i needed

those features only.

Interaction 7:

Rank | Confidence | Response
1 0.87181 there is one that escapes me at the moment. most people use sourceforge
2 0.17525 giles that is the exact command, replace username with the actual name of the
account you are trying to change. ex. ’sudo passwd kriskropd’
3 0.10332 we needed some custom features not all the features of ffmpeg so i needed

those features only.

Table 2: An example showing how bandit model learns with increasing number of interactions. In each round of interactive
learning, a context is randomly selected as input. Here we show the response ranking to one particular context sample. Interac-
tion 1, 4, 7 indicates the round of interactions when this particular context appears for the 1st, 4th and 7th time respectively. For
each response, logistic regression model in bandits provides a confidence score, based on which we sort all the response and
show the top three. The response in bold represents the true response.

a binary (1 or 0) feedback on each of the returned response,
where 1 indicates a good response, and 0 indicates a bad re-
sponse. If a bad response is selected, the regret value, which
is initialized to 0, increments by 1. We report the average
cumulative regret in Equation 4 over 50000 rounds of inter-
actions.

RNN-Linear-TS versus TF-IDF-Linear-TS. The results
are reported in Figure 3. As can be observed from these
figures, with increasing number of rounds of interactions
in bandit model learning, the average cumulative regret
gradually decreases and finally converges. Comparing to
RNN based text encoding method, TF-IDF as a count-
based method that runs faster and requires much less com-
putation. However, it ignores the word ordering and does
not learn word relations in the sentence. For bandits us-
ing linear logistic function, RNN-Linear—-TS outperforms
TF-IDF-Linear-TS in all experiments. This shows the
advantages of using RNN methods for test feature represen-
tation that captures long term temporal dependencies in text
comparing to conventional methods using TF-IDF.

RNN-NonLinear-TS versus RNN-Linear-TS. As
illustrated in Figure 3, RNN-NonLinear-TS beats
RNN-Linear-TS by large margin at convergence in
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all experiment settings, at a cost of higher computational
complexity. The proposed nonlinear logistic regression
Thompson sampling method produces much better results
in this online dialog response selection task, compared
to the linear models that are widely applied in online
advertisements. With total sample size of 1000 (Figure 3)
and a single returned response (i.e. k = 1), the average cu-
mulative regret converges at 0.61, indicating the probability
of bandits selecting correct response is 0.39(= 1 — 0.61) in
each round.

We further compare our RNN-NonLinear-TS meth-
ods to previous work on using linear regression (Bounef-
fouf et al. 2014) for reward approximation in dialog sys-
tems. In comparing these two bandit methods, we used the
same text encoding by LSTM. As illustrated in Figure 4, our
proposed NNBM method demonstrates strong advantage in
online learning efficiency comparing to previously proposed
method.

Table 2 shows an example showing how bandit model
learns with increasing number of online learning interac-
tions. It can be seen that with more rounds of interactions,
the model confidence on the true response increases and the
gap between the top two confidence scores expands.
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Figure 4: Comparison between RNN-NonLinear-TS and
Thompson sampling with linear regression (Bouneffouf et
al. 2014) in approximating the reward.

On number of responses. We experiment with letting the
agent to select different number of responses for each given
dialog context, with k value being 1, 2 and 5. The results
are shown in Figure 3. As expected, the true response is
more likely to appear in the returned responses when the
number of candidate responses k increases, and thus re-
sulting in a lower average cumulative regret. The gap be-
tween RNN-NonLinear—-TS and RNN-Linear-TS ex-
pands when k£ grows from 1 to 2, and shrinks when &
grows further to 5. This might be explained by the power of
RNN-NonLinear-TS model in ranking the true response
higher among the candidate responses.

Recall @k Results

We further evaluate the performance of our dialog response
selection model using Recall @k. We split our 1000 learning
samples into two parts: 800 samples are used in the online
learning by bandits, and the rest 200 samples are set aside
for evaluation. The results are shown in Table 1. Note that
these numbers should not be directly compared to the ones
in (Lowe et al. 2015) and (Kadlec, Schmid, and Kleindienst
2015), which are reported under offline model training set-
tings using the entire training set. These Recall@k evalu-
ation results are promising given the very small size (800)
of samples involved in the online model learning. As in the
above online evaluation results, RNN-Linear—TS outper-
forms TF-IDF-Linear—TS for all £ values under the Re-
call@k metric. RNN-NonLinear-TS consistently outper-
forms RNN-Linear—TS by a large margin.

Conclusions

In this paper, we proposed a neural nonlinear bandit model
(NNBM) using distributed representations of text in contex-
tual multi-armed bandits for online response selection in di-
alog modeling. We designed a customized Thompson sam-
pling method that is applied to a polynomial feature space
in approximating the reward for bandits. Our experiments
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results on Ubuntu Dialogue Corpus showed clear advan-
tages of using distributed representation of text produced
by neural network methods in learning text representations
comparing to using TF-IDF method for online dialog model
learning. The experimental results demonstrated significant
performance gain of the proposed methods over conven-
tional linear contextual bandits, which are widely used in on-
line advertisement and recommendations. We also reported
encouraging Recall@k evaluation results of NNBM in best
response selection.

To our best knowledge, this is the first attempt at com-
bining neural network methods and contextual multi-armed
bandits in the dialog response selection online learning set-
ting. We believe the proposed online learning method can be
very useful in situations where the size of labeled data set is
limited.
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