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Abstract

Models that can execute natural language instructions for sit-
uated robotic tasks such as assembly and navigation have sev-
eral useful applications in homes, offices, and remote sce-
narios. We study the semantics of spatially-referred config-
uration and arrangement instructions, based on the challeng-
ing Bisk-2016 blank-labeled block dataset. This task involves
finding a source block and moving it to the target posi-
tion (mentioned via a reference block and offset), where the
blocks have no names or colors and are just referred to via
spatial location features. We present novel models for the sub-
tasks of source block classification and target position regres-
sion, based on joint-loss language and spatial-world repre-
sentation learning, as well as CNN-based and dual attention
models to compute the alignment between the world blocks
and the instruction phrases. For target position prediction, we
compare two inference approaches: annealed sampling via
policy gradient versus expectation inference via supervised
regression. Our models achieve the new state-of-the-art on
this task, with an improvement of 47% on source block accu-
racy and 22% on target position distance.

1 Introduction

The task of robotic instruction execution involves devel-
oping models that can understand the semantics of free-
form natural language instructions and execute them as a
sequence of actions. Such models have several useful appli-
cations in the domain of navigation, manipulation, and as-
sembly, and in the scenarios of homes, offices, warehouses,
esp. in remote settings. In this paper, we address the task
of executing assembly-style configuration (arrangement) in-
structions, where the goal is to predict the spatially-referred
source block and then move it to the target position, which
in turn is referred to in terms of a reference block and an
offset to it (again only using spatial features; see Fig. 1).
Our task is an idealization of the general assembly prob-
lem, while still involving similar challenges and features,
as well as requiring solutions that can be extended to other
robotic instruction problems such as those for navigation and
manipulation (e.g., instruction-world alignment with spatial
references, sampling with rewards, and joint representation
learning across subtasks).

Copyright c© 2018, Association for the Advancement of Artificial
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Figure 1: An example of the configuration instruction under-
standing task (based on blank-labeled blocks). Our model is
able to correctly predict the source block and the target po-
sition in this case.

Models that can understand the semantics of block se-
lection and moving instructions (and the involved referring
expressions) have been a topic of study since the 1970s,
e.g., the SHRDLU system (Winograd 1972). We focus on
the recent block-arrangement instructions dataset (its ‘much
more challenging’ blank-labeled version) by Bisk, Yuret,
and Marcu (2016), which is important and challenging be-
cause of several reasons. First, their instructions are free-
form and substantially diverse in language vocabulary and
structure, making it hard for a formulaic or pattern-based
grammar model to capture the correct semantics. Secondly,
the reference to the source block and the target position
is solely based on complex spatial-relative information be-
cause all the blocks are identical except for their positions
(i.e., they have no names, labels, color, etc.). Hence, they in-
volve varying hops of inference and use diverse blocks as
their reference (contextual) anchors. Third, the supervision
for the target task is only provided directly for the final tar-
get position, and not for the intermediate reference block and
offset value. Lastly, the dataset size is limited compared to
its diversity and complexity.

We propose novel models for this configuration-based in-
struction understanding dataset and task using joint-subtask-
loss representation learning, dual and CNN based attention,
and expectation and sampling based inference approaches.
First, the source, reference, and offset subtask models all
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share the same sentence and block-location representation
parameters (as well as the bilinear attention matrices) so as
to learn shared spatial-relative semantics across the subtasks
(via optimization of a joint-subtask loss function), given the
limited and diverse data. Next, we use advanced and task-
suited bilinear attention models based on dual language-to-
block relationships and CNN filters, so as to align the differ-
ent parts of the instruction with appropriate spatial-relative
features of the different blocks. Finally, we present two in-
ference and optimization methods to combine the reference
and offset values for target prediction: expectation of posi-
tions optimized via supervised regression, vs. sampling of
an interpretable, single reference block optimized via policy
gradient (with effective average-block annealing procedure).

Empirically, our models achieve substantial improve-
ments over previous work: 47% on source block selection
accuracy and 22% on target position mean distance.

2 Related Work
Starting from the SHRDLU system (Winograd 1972), sev-
eral papers (Branavan et al. 2009; Howard, Tellex, and
Roy 2014; Matuszek et al. 2014) have aimed at building
the mapping from natural language instructions to manipula-
tion and assembly style actions on objects. To overcome the
constraint of using fixed-template instructions, several pa-
pers presented mapping based on the induction of semantic
grammars (Zettlemoyer and Collins 2005; Tellex et al. 2011;
Matuszek et al. 2012; Misra et al. 2015; Paul et al. 2016)
which allows the instructions to be more complex and more
human-like, also addressing spatial concepts of cardinality
and ordinality in referring expressions. In addition to assem-
bly and manipulation style instruction understanding tasks,
a significant amount of work has focused on the navigational
instruction understanding task, i.e., mapping or translating a
sequence of instructions about navigation in a visual map to
a sequence of travel-based actions (Chen and Mooney 2011;
Artzi and Zettlemoyer 2013; Mei, Bansal, and Walter 2015;
Andreas and Klein 2015) .

We focus on end-to-end neural models that can address
the joint, multi-step task of source block prediction and
then moving it to a target position based on a reference
and offset (with supervision provided only for the final tar-
get position). To explore such connections between free-
form assembly-style configuration instructions and actions,
we use the recent useful dataset created by Bisk, Yuret, and
Marcu (2016). They created two versions of this dataset: la-
beled and unlabeled. In the labeled dataset, each block is
assigned with a unique pattern, such as a number or a logo.
In the unlabeled dataset, the blocks are blank and have no
easy names or numbers and hence have to be only referred
to by complex spatial-relative features. We focus on this lat-
ter, more challenging spatial-semantics dataset and task.

The source block selection model proposed in (Bisk,
Yuret, and Marcu 2016) is based on a softmax classifier built
on the last hidden state of the instruction LSTM-RNN. The
target position prediction is trained using supervised regres-
sion. Their final model is an RNN-based ‘end-to-end’ neu-
ral model, which works well on the pattern-labeled dataset
but not so well on the blank-labeled dataset (which requires

learning the correct position features and world-language
alignment). We propose joint-subtask, location-aware, and
alignment-learning models for this unlabeled task, and use
sampling and expectation based inference to combine the
reference and offset values (since supervision is provided
only for the final target position); we also learn shared world,
language, and attention parameters across the source, refer-
ence, and offset tasks.

Related to sampling-based loss and policy gradient opti-
mization, Branavan et al. (2009) adopt policy gradient based
reinforcement learning for executing instructions on sys-
tem troubleshooting and game tutorials. There is also re-
cent policy gradient approaches for the tasks of machine
translation and image captioning using metric-based re-
wards (Ranzato et al. 2015; Xu et al. 2015). Since the losses
of these models are non-differentiable, a policy gradient ap-
proach (introduced in Williams (1992)) is used for optimiza-
tion. Most recently, Misra, Langford, and Artzi (2017) ex-
tended the pattern-labeled version of the Bisk, Yuret, and
Marcu (2016) dataset to a new sequential motion planning
task based on raw visual simulation input (for intermediate
movement steps) fed into a reinforcement learning model.
On the other hand, we focus on a different setup, i.e., the
original Bisk, Yuret, and Marcu (2016) source+target direct-
prediction task and dataset; and we address its more chal-
lenging blank-labeled-blocks version, hence only relying on
spatial location-based semantics.

3 Models

Figure 2 illustrates our overall model. Our block-moving
task involves two subproblems: source block selection and
target position prediction, where the first is a classification
problem (among the given set of blocks) and the latter is a
regression problem (based on distance error). The source la-
bel and target position are inherently independent of each
other and we first present separate models for each. How-
ever, the instruction and world representations can benefit
from shared knowledge on common spatial terms used to
refer to the source, reference, and offset, and hence we also
propose a joint model which uses the combined loss func-
tion of the source and target tasks to compute gradients that
update the shared language LSTM-RNN and the world rep-
resentation (as well as attention) parameters.

Note that Sec. 5.1 presents all the ablation results for vari-
ous model components and choices discussed in this section.

3.1 Source Block Selection

We model the source block selection subtask as a classifi-
cation problem over the finite set of blocks in the world. If
the input is all the n block positions B = {b1, b2, . . . , bn}
and an instruction with m words I = {w1, w2, . . . , wm},
the goal is to predict which block does the source part of the
instruction refer to. The source block selection model con-
sists of two phases: encoding and alignment. For the encod-
ing phase, the instruction and the blocks are encoded into
their respective embedding representations. For the align-
ment phase, an attention module is used to measure the
matching between the instruction and each of the block em-
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Figure 2: Our overall model for the assembly instruction understanding task, showing instruction and world representation
learning, language-to-block alignment modules, and source and target (expectation vs. sampling) loss functions.

beddings. Finally, the block which best aligns with the in-
struction is chosen as the source block.

We first use a standard LSTM-RNN to encode the
instruction I into its embedding representation H =
{h1, h2, . . . , hm} by the recurrent function:

ht = r (ht−1,WWwt) (1)

where WW is the word embedding matrix layer. The blocks
are encoded into their embeddings ci via a fully-connected
layer with a sigmoid activation unit:

ci = σ(WBfbi + a) (2)

where fbi is the input feature representation of the ith block
consisting of its coordinates and its relative distance and
stack based features discussed below; WB and a are the
block weights and bias parameters.

Block Features: If the block is represented by its abso-
lute coordinate features alone, it will not be aware of its sur-
rounding blocks and relative position on the board, which
is important information for understanding spatial instruc-
tions, esp. given that the blocks are ‘blank’ (i.e, not labeled
with any names or colors), and given the limited size of the
dataset. Hence, in addition to the original 3D coordinates,
we employ two other simple kinds of relative-position fea-
tures: (1) The Euclidean distance to each corner and each
edge of the board (eight features), (2) A single binary fea-
ture indicating whether the block is part of a stack.

Given these two encoded vectors for the instruction and
each block, we next use an attention module to predict the
probability of each block being the answer source block
(where the source block is represented by the discrete
random variable S). The output of the attention module
A(ci, H) measures the alignment or matching between the
ith block’s embedding ci and the instruction’s embedding
H . Thus, the probability of a block being the source block
(given the instruction) is the softmax of the attention value
between that block and the instruction sentence. The source
loss function is then the cross-entropy between the condi-
tional distribution P (S|I) and the ground truth distribution
G(B) (which is one-hot for the single ground truth block in

this task).

P (S = bi|I) ∝ exp(A(ci, H)) (3)

LSRC = −
∑
i

G(bi) logP (S = bi|I) (4)

This loss function is then summed over for all data instances
(instructions) and the total loss is minimized to learn all the
source-related weights described above.

Next, we describe the different attention modules that we
experimented with.

Bilinear Attention Modules We use three methods to
choose what information from the instruction representa-
tion is used to compute the matching with each block rep-
resentation, each of them employing the bilinear attention
form (Luong, Pham, and Manning 2015).

(1) Last Hidden State: The first basic approach simply
uses the last hidden vector of the LSTM-RNN hm and com-
putes the alignment score (with each block vector) using the
bilinear form:

A(ci, H) = c�i WA hm (5)

where WA is the attention parameter matrix.
(2) CNN Filters: Instead of only using the last LSTM-

RNN hidden vector, we represent the instruction embed-
ding as the concatenation of CNN filters with different ker-
nel sizes, following the idea of sentiment analysis in (Kim
2014). We run these different convolutions over the hidden
vectors of the LSTM-RNN to compute the outputs of CNN.
A max pooling layer is followed to reduce the output se-
quence of vectors to a single vector hCNN, which is then used
in the bilinear attention form above. These CNN filters help
capture the key local patterns and hence allow the LSTM to
focus on the structure of the sentence.

(3) Dual Attention: In our third approach, we develop
a novel two-step attention process: word-to-block attention
and block-to-instruction attention. First, for each block bi,
the word-to-block attention part computes the alignment
score between each instruction word wt (represented by its
LSTM-RNN hidden state ht) and the block (again using the
bilinear form):

score(ci, ht) = c�i WWORDht (6)
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Then, the overall context vector zi for that block bi is com-
puted as the weighted sum of the LSTM-RNN hidden vec-
tors, with weights based on the softmax of the above word-
to-block scores.

ai,t =
exp (score(ci, ht))∑
t′ exp (score(ci, ht′))

(7)

zi =
∑
t

ai,tht (8)

Finally, the second stage block-to-instruction attention
part computes the block’s alignment score with the full in-
struction as the alignment score between this overall context
vector zi above and the block embedding (via a second bi-
linear form).

A(ci, H) = c�i WBLOCK zi (9)

This dual approach hence allows the model to learn which
part (if any) of the sentence refers to each block and get a
block-conditioned context vector of the instruction (for each
block). Then, in the second stage, each block is compared to
its own context vector instead of the global one (as done in
the other attention models).

3.2 Target Position Prediction

We divide the target position task into the task of finding the
reference block and the offset to it, e.g., “Move the bottom
block to the left of the rightmost block”. Here, “the right-
most block” is the reference block, while “to the left” is the
offset. We next describe the way we model the reference and
offset random variables R and O and their training methods,
and finally their combination to predict the target position
(since the dataset supervision only exists at the final target
position level).

Reference and Offset Distributions To model the ran-
dom variable R (where its output represents the 3D coordi-
nates of the reference block), we assign each block a proba-
bility of being the answer reference block. Similar to source
block selection, the probability of a block being the refer-
ence block (given the instruction) is the softmax of the atten-
tion value between that block and the instruction sentence,
but with a separate attention module AR with independent
context parameters but shared block-instruction bilinear ma-
trices (see Sec. 3.1):

P (R = bi|I) ∝ exp(AR(ci, H)) (10)

The random variable of the offset O obeys a 3D Gaussian
distribution with a fixed variance1 Σo:

P (O = o|I) ∝ N (μo, Σo) (11)

The embedding of the instruction (e.g., the CNN version
hCNN, described in Sec. 3.1) is followed by fully-connected
layers to generate the (x,y,z) coordinates that represent the
center μo of the Gaussian distribution:

μo = W2 σ(W1hCNN + a1) + a2 (12)
1The co-variance matrix is identity times a constant (as a tuned

hyperparameter for search space size).

Inference: Sampling vs Expectation Given the distribu-
tion of R and O above, the target position’s random variable
is T = R + O. We then try two strategies to infer the target
position t: sampling and expectation.

The inference by sampling strategy allows us to choose
a specific single block as the reference (but makes the
loss non-differentiable and hence needs policy gradient; dis-
cussed below). The reference block r and the offset o are
sampled following their distributions, and are then summed
to get the sample tS:

r ∼ P (R = r) (13)
o ∼ P (O = o) (14)
tS = r + o (15)

For the inference based on expectation, the predicted tar-
get position tE is the expectation of the random variable
T = R+O:

tE = E [R+O] (16)
= E [R] + E [O] (17)

Hence, unlike the sampling inference, this uses an expected
average value over multiple blocks as the reference.

To be compatible with the two different inference strate-
gies, we use two types of losses: the sampling loss and the
expectation loss. The sampling loss is the expectation (over
R and O) of the distance between the ground truth tGT and
target random variable T = R+O:

LSMP = E ‖tGT −R−O‖ (18)

The expectation loss is the squared distance between the
ground truth tGT and expected position:

LEXP = ‖tGT − E [R+O]‖2 (19)

= ‖tGT − tE‖2 (20)

We use policy gradient to minimize the non-differentiable
sampling loss, following previous work in reward-based re-
inforcement learning. The expectation loss is fully differen-
tiable so a supervised regression method is used. We next
describe the optimization of these two losses in detail.

Sampling Loss (Policy Gradient): Optimization of the
sampling loss needs the gradients of the loss:

∂

∂θ
LSMP =

∂

∂θ
E ‖tGT −R−O‖ (21)

A Monte Carlo method is used to approximate the above
by sampling a sequence of K reference-offset sample pairs
{(r1, o1), (r2, o2), . . . , (rK , oK)} following the distribution
of random variables R and O:

∂

∂θ
LSMP ≈ 1

K

∑
i

[(
∂ logP (R = ri)

∂θ
−

1

2

∂(oi − μO)
�Σ−1

O (oi − μO)

∂θ

)
· ‖tGT − ri − oi‖

]

(22)

The overall gradient is the sum of the above over all data
instances. This approach to calculate gradients is equivalent
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to the REINFORCE algorithm (Williams 1992) which has
also been used in previous image captioning and classifica-
tion work (Xu et al. 2015; Mnih et al. 2014). The negative of
the distance ‖tGT − ri − oi‖ between the ground truth target
tGT and the target prediction tS is viewed as the reward.2

Annealing Method: To solve the instability of the one-
block sampling method above (esp. on this challenging
small dataset), we slowly anneal the expectation loss LEXP
to the sampling loss LSMP via a sample-averaging interme-
diate loss LN (related to the annealing method of Ranzato
et al. (2015)). To build this intermediate loss LN, we sample
N (block, offset) pairs {(r1, o1), . . . , (rN , oN )} following
the distribution of the random variables R and O, and then
we use the average of these pairs as the target prediction (as
opposed to using a single reference block and offset sam-
ple). The loss LN is then the distance between the ground
truth and the prediction. The motivation is that the expecta-
tion loss LEXP (with L1 norm) and the sampling loss LSMP
are the two limits of this intermediate loss, and therefore,
starting from the expectation loss, we anneal it to the sam-
pling loss by slowly decreasing the sample size N (details
in Sec. 4.3).

Expectation Loss: The loss used here is the sum of the
expectation loss LEXP = ‖tGT − tE‖2 over the whole dataset.
This is similar to the mean squared error (MSE) commonly
used for regression. Hence, this is a supervised regression
problem which is end-to-end and fully differentiable, and
we simply optimize it with a variant of stochastic gradient
descent (Adam).

3.3 Joint Training

Although the source and target subproblems represent inde-
pendent tasks, they still share the same language in the in-
struction I and the spatial features of the world blocks {bi}.
For instance, both the source and the reference block are re-
ferred to by terms such as ‘leftmost’, ‘top’, etc. and the offset
also uses these spatial-directional terms. Hence, we also pro-
pose a joint model that learns shared embeddings (across the
source and reference tasks) for the words, the LSTM-RNN,
and the blocks. Further, the bilinear block-instruction atten-
tion matrices are also shared across the source and reference
tasks. We optimize the sum of the source loss (LSRC) and the
target loss (LTGT = LSMP orLEXP) and compute the gradient
of this joint loss to learn the shared parameters.

4 Experimental Setup

4.1 Dataset

We employ the challenging blank-labeled dataset introduced
in Bisk, Yuret, and Marcu (2016), where each datum in-
cludes the natural language instruction, the positions of all
the blocks in the world, and the answer source block in-
dex plus the coordinates of the final target position (i.e.,

2To reduce the variance of the estimator, we use the popu-
lar ‘baseline’ technique, where a scalar is subtracted from the re-
ward in the updating rule. Specifically, we use the linear-regression
baseline (Williams 1992; Ranzato et al. 2015). This was better
than the exponential-moving-average (Williams 1992) and the self-
critical (Rennie et al. 2016) baselines.

no supervision exists for the intermediate reference and off-
set values). To collect instructions, they show automatically-
rendered images with a source and target choice to MTurk-
ers, and ask them to give unconstrained, free-form instruc-
tions that describe the given movement, without being al-
lowed to refer to any name, pattern, or color of the blocks.
The dataset contains 3573 instructions for 397 image pairs
(starting and final configurations). We use the standard train-
ing/dev/test splits from Bisk, Yuret, and Marcu (2016), and
use the dev set for all hyperparameter tuning.

4.2 Metrics

Source Metrics: The primary metric for source block clas-
sification is the accuracy of correct prediction over the full
set of blocks, intuitively because selecting a nearby wrong
block causes the full configuration task to fail, no matter how
close the wrong block is to the correct source block. Follow-
ing previous work, we also report the mean and median of
the (Euclidean) distance errors between the predicted block
to the answer block coordinates across the dataset (also to be
compatible with the target position task). The distance errors
are computed in terms of block lengths.
Target Metrics: Similar to the source case above, we re-
port the mean and median of the distance errors (computed
in terms of block lengths) between the predicted and the
ground truth target position coordinates (across the dataset).

4.3 Training Details

The sentence encoder is an LSTM-RNN with 256-
dimensional hidden vectors and word embeddings. The
block embedding layer is a 64-dimensional fully-connected
layer. We use a generalized (adapted to our approach) Xavier
initialization (Glorot and Bengio 2010) to keep the vari-
ance (energy) of each feature map constant across layers,
which stabilizes the training process. The Adam optimizer
(Kingma and Ba 2014) is used to update the parameters, and
the learning rate is fixed at 0.001. Gradient clipping (Pas-
canu, Mikolov, and Bengio 2013) is applied to the LSTM pa-
rameters to avoid exploding gradients. For our annealment-
based sampling approach (Sec. 3.2), we start from the ex-
pectation loss, then sample N = 20 (which approximately
matches the expectation loss), and then anneal it down to 1
(which is same as the one-block sampling loss). To speed
up the training process, the initial annealing decay step is 5,
which is then reduced to 2, and finally to 1. The final se-
quence of block samples N is {20, 15, 10, 8, 6, 5, 4, 3, 2, 1}.

Regularization: To regularize the network, we use weight
decay for all trainable variables, and a dropout layer of 0.2
probability is added before and after the LSTM layer.

Data Noising: To stabilize (or regularize) training on this
limited-size dataset, we add two types of noise (only to the
training set, not to the validation or test sets): local noise
and global noise. The local noise is a 2D Gaussian with a
0.1 (block length) standard deviation, which is added to each
block independently. The global noise is a shift of the board,
which adds a 2D Gaussian with a 1.0 (block length) standard
deviation to the coordinate system. We only add this global
noise to the continuous target position variable. Empirically,
we found that this small amount of added Gaussian noise
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Model Ablation SOURCE TARGET
Accuracy Median Mean Median Mean

Position Features Only 50.0% 0.0 2.47 3.03 3.41
Last Hidden State Attention 47.9% 2.28 2.88 3.15 3.48
Dual Attention 51.4% 0.0 2.47 3.03 3.32
Annealed Sampling Loss 51.3% 0.0 2.56 3.29 3.46
Non-Joint Training for Source 51.3% 0.0 2.53 - -
Non-Joint Training for Target - - - 3.28 3.46
Full Model (Expectation) 52.2% 0.0 2.44 2.91 3.23
Expectation Model w/ Ensemble 54.1% 0.0 2.35 2.85 3.14
Sampling Model w/ Ensemble 52.8% 0.0 2.41 3.09 3.25

Table 1: Validation results to show ablations of our model components. Our full expectation-based model (third-last row) uses
all features (coordinates, relative, stack), CNN attention, and joint training. Each ablation row above that shows the results of
changing one component at a time from this full model. Finally, the two last rows represent the final 8-ensemble versions of the
full expectation model, as well as the sampling model. (note that lower is better for median and mean distance values)

has no significant influence on the relationship between the
blocks; but it helps stabilize (or regularize) the training.

Pretrained Language Embeddings: We also tried ini-
tializing the instruction’s LSTM-RNN with pretrained
GloVe word embeddings (Pennington, Socher, and Man-
ning 2014) but did not see significant improvements, most
likely because these embeddings, trained based on unsuper-
vised word context, will not be able to differentiate between
identical-context spatial terms like “left” and “right” in our
task. Hence, we allow our embeddings to be trained from
scratch directly on the task supervision.

5 Results and Analysis

5.1 Ablation Results

We first discuss all our ablation results, i.e., the effect of
the various model components based on the validation re-
sults (for the expectation model). Table 1 shows our four
major model component choices as discussed in Section 3:
the block-world spatial features, the three attention mod-
ules, the sampling vs expectation target loss, and the joint vs
non-joint training of the embedding representations. In Ta-
ble 1, the full expectation-based model (third-last row) rep-
resents the model which uses all features (coordinates, rela-
tive, stack), CNN attention, and joint training. Each ablation
row above this third-last row shows the results on changing
one component at a time from this full model. Finally, the
last two rows of Table 1 add an 8-sized ensemble to the full
expectation (as well as the sampling) model; and this setting
is used for the final test results in Table 2.

Feature Selection: To show the impact of different rep-
resentations of the world blocks, we compare the results of
using just the coordinate values vs our novel relative and
stack-based features (discussed in Section 3.1). As shown
in Table 1, utilizing these new features gives us some de-
cent improvements (2% in source accuracy and 0.18 in target
mean distance).

Bilinear Attention Modules: For both the source block
and reference block selection, we model the distributions by
three different bilinear attention modules (discussed in Sec-
tion 3.1): bilinear matching between the last hidden state of

the instruction and each block, CNN filters on top of the
LSTM-RNN vectors, and dual word-to-block and block-to-
instruction attention. The comparison among these three at-
tention modules is shown in Table 1. The models using CNN
filters or dual attention outperform the one with the last
hidden state, on the source and the target tasks. The CNN
filter attention model is slightly better than the dual atten-
tion model, and hence we use that in the final full model.
Note that the dual attention model is similar (within stan-
dard deviation) to the CNN attention model in performance.
In Sec. 5.2, we also discuss the complementary nature of the
CNN and dual attention models, and report their improved
combination results.

Target Training Methods: As shown in Table 1 (and
discussed in Section 3.2), the model for target prediction
is trained with two types of inference methods and opti-
mization loss functions. Using the expectation loss gives us
slightly better performance than using the sampling loss (a
0.23 decrease in the validation target mean prediction, and
a 0.11 decrease after an ensemble).3 This is likely because
the two losses use quite different inference procedures. The
sampling inference explicitly chooses (samples) one block
as the reference block while the expectation inference calcu-
lates the reference by the expected (weighted) sum of several
blocks, and both inference choices have their advantages vs.
disadvantages (e.g., the sampling method actually allows us
to output an interpretable single block as the target refer-
ence block, as opposed to the expectation approach), hence
we report results for both models.

Joint Training: The fourth part of Table 1 compares joint
training vs non-joint training of the world-block and lan-
guage representations across the source and target tasks (as
discussed in Sec. 3.3). The non-joint training results for the
source and the target tasks are worse than the joint train-
ing results, showing the advantage of learning shared spatial
world and language representations across source and target

3Note that the vanilla, standard sampling approach performed
significantly worse than our annealing-based method (described in
Sec. 3.2), achieving a target median of 3.57 and a target mean of
3.82 on the dev set.
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Model SOURCE TARGET
Accuracy Median Mean Median Mean

End-to-End FFN (Bisk, Yuret, and Marcu 2016) 9.0% 3.45 3.52 3.60 3.94
End-to-End RNN (Bisk, Yuret, and Marcu 2016) 10.0% 3.29 3.47 3.60 3.70
Our Expectation Model 56.1% 0.00 2.21 2.78 3.07
Our Sampling Model 56.3% 0.00 2.18 3.12 3.18
Our Expectation Model w/ Ensemble 56.6% 0.00 2.12 2.65 2.91
Our Sampling Model w/ Ensemble 56.8% 0.00 2.11 2.71 2.90

Table 2: Final test results of our final sampling and expectation models (w/o and w/ ensemble), compared to the previous
state-of-the-art on this dataset.

Positive Examples Negative Examples 

Figure 3: Analysis: positive and negative output examples showing interesting instruction scenarios. The first and second image
in each pair depict the ground truth movement of the source block to the target position. We report predicted source accuracy
and target distance in bottom-right of each second image. We also use a red cross to represent our predicted target position
(ground truth target position can be inferred directly from the image difference between the first and second image). Also, for
the cases where our model predicted an incorrect source, we represent that wrongly-predicted source block by a red circle.

tasks, via joint loss function optimization.
Finally, the last row of Table 1 shows the added effects of

an 8-sized standard ensemble approach.

5.2 Final Test Results

Next, in Table 2, we present the test-set results for our two
inference approaches (expectation and sampling), using the
final model choices based on the ablation studies (i.e., all
features, CNN attention, joint training), without and with
ensemble. Both inference models achieve strong improve-
ments over the previous best work on this dataset from Bisk,
Yuret, and Marcu (2016), who employ three neural models
for this task. We compare to their final best model, the RNN-
based ‘end-to-end’ neural model (as well as their second-
best feed-forward network FFN model). Our model achieves
47% improvement in source task accuracy, and 22% (0.8
block length) reduction in target distance mean. Moreover,
the results are quite stable for both inference models: the
standard deviation based on 8 runs is around 1% on source
accuracy and 0.05 block length on target mean.

Complementarity of Attention Models: We found that
our two attention models (CNN and dual) are complemen-
tary in nature, achieving a source accuracy of 57.70% when
combining the ensemble models of CNN and dual attention
(for the expectation case), i.e., an improvement of 1.1% over
the CNN model’s 56.6% in Table 2. Further experiments in

this direction (as well as the complementarity of the sam-
pling and expectation inference approaches) is future work.

5.3 Analysis

Figure 3 shows several positive and negative examples of the
output of our full model. We can correctly understand the
semantics in complex source and target descriptions such as
‘bottom right, slightly right of center’ and ‘place it on top of
the stack of two blocks furthest to the back’. In the negative
examples, we show complex cases that our model cannot
handle correctly, mostly due to special scenarios and phrases
that it hasn’t seen before in the diverse but small dataset. Ex-
amples of this include instructions mentioning shape-based
block patterns such as ‘backwards L’, ‘Tetris structure’, and
complex count-based patterns such as ‘3-piece-long line’.

6 Conclusion

We presented sampling and expectation based models for
source and target prediction in configurational robotic in-
structions (on a challenging blank-labeled blocks dataset).
Our models also use spatial-relative features, CNN and
dual attention models, and joint-subtask-loss training of
world and language representations, achieving substantial
improvements over previous work on all metrics.
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