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Abstract

Recurrent neural networks (RNN) combined with attention
mechanism has proved to be useful for various NLP tasks in-
cluding machine translation, sequence labeling and syntac-
tic parsing. The attention mechanism is usually applied by
estimating the weights (or importance) of inputs and taking
the weighted sum of inputs as derived features. Although
such features have demonstrated their effectiveness, they may
fail to capture the sequence information due to the simple
weighted sum being used to produce them. The order of the
words does matter to the meaning or the structure of the sen-
tences, especially for syntactic parsing, which aims to recover
the structure from a sequence of words. In this study, we
propose an RNN-based attention to capture the relevant and
sequence-preserved features from a sentence, and use the de-
rived features to perform the dependency parsing. We evalu-
ated the graph-based and transition-based parsing models en-
hanced with the RNN-based sequence-preserved attention on
the both English PTB and Chinese CTB datasets. The experi-
mental results show that the enhanced systems were improved
with significant increase in parsing accuracy.

Introduction

Typical approaches to dependency parsing can be divided
into graph-based and transition-based parsers. Graph-based
parsers (McDonald 2006; Zheng 2017) utilize a certain algo-
rithm to find the best tree based on a scoring function over
candidate dependency trees, which is usually formulated as
the sum of arc scores. Transition-based parsers (Nivre 2004;
2008) view parsing as a sequence of transitions to incre-
mentally build a dependency tree, with each transition se-
lected by a classifier at each step during the parsing process.
Specifically, graph-based parsers are globally trained, taking
into account the first-order or high-order features, which are
defined on the graph or subgraph for later decoding (Mc-
donald, Crammer, and Pereira 2005). But those features are
defined over a limited history of parsing decisions. On the
contrary, transition-based ones are trained locally and make
use of greedy inference algorithms, while it can define fea-
tures over a rich history of parsing decisions. In a word, the
features used in two paradigms are quite different from each
other.
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Deep neural networks are widely used in feature gener-
ation and selection in these years to produce relevant rep-
resentations for tasks of interest automatically (Chen and
Manning 2014). Dyer et al (2015) firstly employed Recur-
rent Neural Networks for dependency parsing, since the re-
current structure is good at bridging long time lags between
relative inputs, which will be of great advantage at detecting
and representing the long-distance dependencies (Dyer et al.
2015; Kiperwasser and Goldberg 2016b; Cheng et al. 2016;
Dozat and Manning 2016; Zhang, Cheng, and Lapata 2017).
However, Recurrent Neural Networks may suffer from the
phenomenon that inputs in early time steps tend to have less
influence on the final outputs. To overcome such shortcom-
ing, the attention mechanism has been proposed to empha-
size the relevant features.

The attention mechanism has gained popularity for its
ability to learn alignments between two different modu-
larities (Luong, Pham, and Manning 2015). It was firstly
introduced in the area of machine translation (Bahdanau,
Cho, and Bengio 2014), learning to align words between the
source language and the target one. It has later been applied
in dialog generation (Shang, Lu, and Li 2015) by automati-
cally align information in the response with those in the post,
and applied in reading comprehension (Seo et al. 2016) by
aligning keywords in the query with those in the context to
find the answer.

However, unlike encoder-decoder models such as ma-
chine translation and dialog generation, dependency parsing
is quite another task. A key difference is that in encoder-
decoder tasks, there exists a strong one-to-one relationship
between the source modularity and the target one, mea-
sured by semantic relatedness (often similarity) between two
words. However, during the search for the head of a word
in dependency parsing, many different parts of the sentence
should be taken into consideration. Sequential order among
these parts is one of most important factors.

In this work, we propose a novel approach to capture
helpful information sequentially, unlike the parallel style in
vanilla attention. During the sequence-preserved procedure,
the word of interest is first provided as initial information
to generate a prior representation; then a sequence of words
is processed in order by attention-based network. The atten-
tion score and attentional representation at each time step is
dependent on those at the previous step, thus preserving the
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sequence information.
The sequence-preserved attention mechanism can im-

prove the performance of both graph-based and transition-
based parsers. Generally speaking, features for graph-based
parsers are not sufficient enough, and features for transition-
based parsers tend to suffer from the lack of global infor-
mation. Word representations with rich non-local features
(Zhang and Nivre 2011) may help gain an increase in ac-
curacy for both of them, which is where the sequence-
preserved attention can contribute.

Specifically, this mechanism was designed to encode
each word in a sentence with recurrent neural networks
and sequence-preserved attention. The parser firstly encodes
each word into an context-specific representation with bi-
directional recurrent neural networks; then it captures infor-
mation closely related to a certain word from the context
with another bi-directional recurrent neural network. This
approach is inspired by the procedure that someone first
scans a sequence to grasp the overall meaning, and then in
order to pick the head of a word, he will scan the sequence
forth and back around it again to collect context information.
We use these generated features to train a graph-based parser
and a transition-based parser respectively. Experiments re-
sults showed that those feature do help the transition-based
parser achieve state-of-the-art performance, while the graph-
based parser can also benefit from them and achieve close to
state-of-the-art results in graph-based approaches. We call
this model using such mechanism Sequence-Preserved At-
tention Dependency Parser, which we will refer to as SPA-
DP later1.

Related Work

Dependency Parsing

The model is closely related to (Kiperwasser and Goldberg
2016b), proposing a general mechanism to learn represen-
tations for dependency parsing in two paradigms: graph-
based and transition-based parsing. One significant differ-
ence is that we treat graph-based parsing as a procedure
of greedy head selection, like (Zhang, Cheng, and Lapata
2017) and (Dozat and Manning 2016), rather than max-
spanning-tree generation from a score matrix (McDonald
2006; Zheng 2017), because our experiments indicate that
the former method can outperform the latter.

For transition-based dependency parsing, this work dif-
fers a lot from recent work in that our work learns how
to integrate rich global features into local word represen-
tations (Zhang and Nivre 2011), still leaving transition de-
cisions in a greedy way. This method keeps simplicity and
efficiency at the same time, while most recent work fo-
cuses more on how to correct the error made by locally-
optimal decisions. For example, recent researchers have
taken great efforts to overcome the shortcomings of greedy
search by employing global learning mechanism, such as de-
signing dynamic oracles or more robust transition systems
(Goldberg and Nivre 2012; Qi and Manning 2017), inte-
grating with beam search (Zhang and Nivre 2012; Zhou et

1The source code is available at https://github.com/dugu9sword
/spa-dp

al. 2015), utilizing structured learning (Weiss et al. 2015;
Vaswani and Sagae 2016), augmenting data (Alberti, Weiss,
and Petrov 2015), keeping deeper parsing history (Dyer et al.
2015), minimizing conditional-random-field objective (An-
dor et al. 2016), etc. Experiments manifest that our model
can surpass all above models by learning global representa-
tions for each word in a sentence, which can still be com-
bined with globally optimized decision learning methods.

Apart from above two mainstream parsing methodolo-
gies, some other variants have been introduced. An easy-
first approach tries to build the parse tree in a bottom-
to-up way (Goldberg and Elhadad 2010; Kiperwasser and
Goldberg 2016a). Several ensemble methods are proposed
to overcome the shortcomings of both graph and transition
based approaches, say adding parsing results of a parser as
guide information to another (Nivre and McDonald 2008;
Zhang and Clark 2008; Bohnet and Kuhn 2012), selecting
the best parsing tree by re-ranking mechanism (Zhu et al.
2015), etc.

Attention Mechanism

The attention mechanism was firstly introduced in the area
of machine translation (Bahdanau, Cho, and Bengio 2014)
and has been successfully applied in dialog generation
(Shang, Lu, and Li 2015), reading comprehension (Seo et
al. 2016), etc.

Our model is mostly close to the work of (Cheng et al.
2016), which first applied the attention mechanism to depen-
dency parsing. However, our approach can be distinguished
from it in three aspects: firstly, our work focuses on learning
global representation of words, while theirs employs atten-
tion to model parsing history; secondly, their work forces
word representations to select the candidate heads from
two directions and then vote the best (they call this "bi-
directional agreement"), while our work selects the head co-
herently by the bi-directional word representation, more fast
and accurate accordingly; last but not least, our work can
be applied to transition based parsing as well, while theirs
cannot.

Bi-RNN Based Dependency Parsing

In dependency parsing, recurrent neural networks have been
proven useful to bridge long time lags between relative in-
puts, which will be of great superiority in finding out long-
distance dependencies. The feature of each word is modeled
by bi-directional recurrent neural networks in this section.
The feature representations are then applied to a transition-
based parser and a graph-based parser respectively.

Word Feature Representations

Considering a fixed-sized word dictionary D, the vector rep-
resentations are stored in a word embedding matrix Eword ∈
R

dword×|D|, where dword is the dimensionality of the vector
space and |D| is the size of the dictionary. Analogously, the
part-of-speech(POS) tags are also mapped to a dpos dimen-
sional vector space represented by Epos ∈ R

dpos×|P|, where
dpos is the dimensionality of the vector space and |P| is the
size of the dictionary.
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Table 1: Special Configurations of An Arc-Standard System
Components Initial State Terminal State

σ [ω0] [ω0]
β [ω1, ω2, ..., ωN ] ∅
A ∅ Ac

Let S = ω0:N denote a sentence of length N , with ω0 de-
noting the artificial ROOT node. We use T = t0:N as the
token embedding, with ti represents ωi. The token embed-
ding is computed as:

ti = Ewordeword
i ⊕ Eposeposi (1)

where eword
i and eposi are the one-hot representation for the

i-th word and its part-of-speech tag, Eword and Epos are
both parameters to be learned which store the contiguous
embedding for corresponding feature, ⊕ is the concatenation
operation.

In our case, the recurrent neural networks (RNN) is
abstracted as a parameterized function RNNθ(x1:n) or
RNNθ(x1, x2, ...xn) mapping a sequence of n input vectors
x1:n to a sequence of n output vectors o1:n. Each output
vector oi can be thought of as a summary of x1:i since it is
conditioned on them.

We first use a forward RNN (RNNF ) to process the sen-
tence from left to right and then use a backward RNN
(RNNB) to process from right to left:

hF
i = RNNF (

−→
t0:i)

hB
i = RNNB(

←−−
ti:N )

(2)

Then each word ωi in the sentence can be represented
by concatenating the representation from the bi-directional
RNNs:

hi = hF
i ⊕ hB

i (3)

Training Objective

Transition-Based Dependency Parsing In a transition-
based parser, the framework assumes a transition system
which processes sentences and produces parse trees(Nivre
2008). Two components are defined in a transition system:
a set of configurations and a set of actions which are ap-
plied to the configurations. When a sentence is being parsed,
the system is initialized to a initial configuration and then a
sequence of actions are taken to change the configurations
repeatedly. The transition system will achieve a final config-
uration after a finite number of steps, and the parse tree is
generated. In this paper, we examine only greedy parsing,
which uses a classifier to predict the correct transition based
on features extracted from the configuration.

We employ the arc-standard system (Nivre 2004) which
is composed of a configuration c = (σ, β,A) consisting of
a stack σ, a buffer β and a set of dependency arcs T . For
the sequence S = ω0:N , the initial and final configuration is
defined in table 1, and Ac is returned as the parse tree.

Besides, three types of transitions are defined:

SHIFT[(σ, b1|β,A)] = (σ|b1, β, A)

ARCL[(σ|s2|s1, β, A)] = (σ|s2, β, A ∪ {(s2 → s1)})
ARCR[(σ|s2|s1, β, A)] = (σ|s1, β, A ∪ {(s1 → s2)})

where s1 and s2 denote the first and second words on the
stack respectively and b1 denotes the first word on the buffer.

Given a sentence S = ω0:N , the vector representations
are R = r0:N . Given a configuration c = (σ, β,A), we con-
catenate the representation of first three words on the stack
and first one word on the buffer as a representation of the
configuration:

φ(c) = rs3 ⊕ rs2 ⊕ rs1 ⊕ rb1 (4)

We build a standard neural network with one hidden layer
as the classifier to choose the proper action for the configu-
ration c.

y = Wt2 ·max(0,Wt1 · φ(c) + bt1) + bt2 (5)

P = softmax(y) (6)
where Wt1 ∈ R

dh×4·dr , bt1 ∈ R
dh , Wt2 ∈ R

3×dh and bt2 ∈
R

3. The final output P is the probability of three different
actions to choose in the current configuration.

The training objective is to minimize the cross-entropy
loss as:

L(θ) = − 1

|Q|ΣS∈QΣ
|CS |
i=1 lnPai

(7)

where Q is the dataset and CS is the configuration of the
transition system generated from the sentence S, ai is the
gold action for a specific configuration CS

i in the sentence.

Graph Based Dependency Parsing We formulate our de-
pendency parser as head selection as (Zhang, Cheng, and
Lapata 2017; Dozat and Manning 2016; Hashimoto et al.
2016).

Given a sentence S = ω0:N , the vector representations
are R = r0:N . We define a function s(·, ·) to map a can-
didate word pair to a score which measures the possibility
that ωj is the head of ωi. Similar to the attention mechanism
defined in (Luong, Pham, and Manning 2015), we consider
two different alternatives:

s(rj , ri) =

{
r�j Wri bi-linear
v�max(0,W (rj ⊕ ri) + b) concat

(8)
where v, W , b are parameters to be learned.
The probability that a word wj is the head of another word

wi can be computed by normalizing the score function with
respect to all possible heads:

P (wj |wi) =
es(rj ,ri)∑N
k=0 e

s(rk,ri)
(9)

The model is trained by minimizing the cross entropy of the
gold head-modifier pairs in the training set:

L(θ) = − 1

|Q|
∑
S∈Q

|S|∑
i=1

lnP (rH(S,i), ri) (10)
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where Q is the dataset and H(S, i) is the index of the gold
head of ith word in the sentence S. Afterwards, we use the
Chu-Liu-Edmonds algorithm to make sure that the generated
graph is a tree (Chu 1965).

Sequence-Preserved Attention

We propose a sequence-preserved attention mechanism in-
spired by the procedure of understanding a word in a sen-
tence composed of two steps: SCAN and RESCAN. In the
SCAN step, a sentence is scanned to grasp the overall mean-
ing, while in the RESCAN step, the sentence is rescanned
from the word to its boundary, or reversely. In this sec-
tion, we first give a brief introduction to vanilla attention
(Bahdanau, Cho, and Bengio 2014; Luong, Pham, and Man-
ning 2015). Then we propose sequence-preserved attention
mechanism to compute feature representations of words in a
sequence, where the attentional representation of each word
is computed sequentially.

The Scan Step As in section Bi-RNN Based Dependency
Parsing, given a sentence S = ω0:N , ωi is firstly trans-
formed to a vector representation ti . The SCAN step can
be modeled by a bi-directional RNN to get the feature rep-
resentations of a word:

SCAN(t[0:N ])i = RNNF (
−→
t0:i)⊕ RNNB(

←−−
ti:N ) (11)

We denote the results of the SCAN step as h0:N where hi =
SCAN(t[0:N ])i.

Vanilla Attention Given a sentence ω0:N and a word ωi,
the attention mechanism is usually employed to select ωj ,
j ∈ {0, ..., N} relevant to ωi. ωi is transformed to a vector
representation hi during the SCAN step. The relevance be-
tween any word ωj and ωi is measured by a relevance score
sij , which is normalized to derive a probability distribution,
namely attention aij , over the sentence, the procedure is il-
lustrated in Figure 1.

sij = MLP(hi ⊕ hj) (12)

aij =
esij∑N
k=0 e

sik
(13)

where MLP is a multi-layer perceptron. Then the derived at-
tention can be used to compute a summary of the words in
the sentence relevant to the given word ωi by weighted av-
erage, namely attentional representation mi.

mi =
N∑
j=0

aij · hj (14)

The attentional representation mi is able to extract features
from the memory units relevant to the query which can be
applied to downstream tasks. In dependency parsing, the at-
tentional representation can be used as the feature of a word
when selecting its head.

Sequence-Preserved Attention Given a sequence b1:N
and a word k, the sequence-preserved attention mechanism
is usually employed to select bi, i ∈ {1, ..., N} relevant
to k. bi is transformed to a vector representation vi during

the SCAN step, and k is transformed to a vector represen-
tation u. The sequence-preserved attention mechanism first
processes the word k to attain the initial attentional repre-
sentation m0, based on which the v[1:N ] are processed se-
quentially to gain corresponding attentional representations.
For the ith word in the sequence, a local attentional repre-
sentation m̃i is computed as a summary of both the current
input vi and the previous attentional representation mi−1 ,
the relevance score si is computed to measure the relevance
between vi and mi−1. The relevance score si is then nor-
malized as the attention ai, controlling the weight of m̃i and
vi to be averaged. The procedure is illustrated in Figure 2.

si =

{ Gλ(mi−1, vi) i > 0
Gλ(0, u) i = 0

(15)

ai = sigmoid(si) (16)

mi =

{
(1− ai)⊗mi−1 + ai ⊗ m̃i i > 0
a0 ⊗ m̃0 i = 0

(17)

m̃i =

{ Gμ(mi−1, vi) i > 0
Gμ(0, u) i = 0

(18)

where Gλ is a function to decide how much relevance
score should be allocated to the specific word bi, taking the
last attentional representation mi−1 into consideration; Gμ

(i.e. m̃i) has the functionality of generating a local atten-
tional representation at current time step, combining the cur-
rent input vi with last attentional representation mi−1. The
sequence-preserved attentional representation mi is calcu-
lated as a weighted average of the last attentional representa-
tion mi−1 and the local attentional representation m̃i, where
Gλ serves as the weight.

Since the attention scores and attentional representations
are defined recursively, the final attentional representation of
b with respect to ω[0:N ] is mN :

SPA(u, v1, v2, ..., vN ) = mN (19)

The sequence-preserved attention tries to locate the rel-
evant words in a sentence sequentially. Coincidentally, this
design fits the gated recurrent unit well(Bahdanau, Cho, and
Bengio 2014). To make the definition of GRU and sequence-
preserved attention match with each other explicitly, we can
define Gλ, Gμ as follows:

Gτ (vi−1,mi) = sigmoid(MLPτ (mi ⊕ vi−1)) (20)

Gλ(vi−1,mi) = sigmoid(MLPλ(mi ⊕ vi−1)) (21)
Gμ(vi−1,mi) = MLPμ(mi⊕ (Gτ (vi−1,mi)⊗vi−1)) (22)

where the attentional representation ai serves as the hidden
state, the Gτ serves as a reset gate which controls how much
information should be reset, and the attention score si serves
as a update gate which controls how much information from
the last state shall flow into current state.

Since the GRU is similar with the sequence-preserved at-
tention to some extent, we would like to employ GRU as
an implementation of sequence-preserved attention, the at-
tentional representation of b with respect to ω[0:N ] can be
computed by

mb = SPA(u, v1, v2, ..., vN )

= GRU(u, v1, v2, ..., vN )
(23)
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vanAtt ToB-SPA

Happy birthday to you !

BiRNN(to)Attention(to) Attention(to)

Happy birthday to you !

Attention(to)

Happy birthday to you !

BoT-SPA

BiRNN(to) BiRNN(to)

Bi
RN
N

Bi
RN
N

Bi
RN
N

rto rto rto

Figure 1: Architecture of three models: vanilla attention model (vanAtt), SPA model from target to boundary(ToB-SPA), and
SPA model from boundary to target (BoT-SPA). In the figure, the ⊕ symbol denotes an element-wise plus operation, the ⊗
symbol denotes an element-wise multiplication operation, the ⊕⊗ symbol denotes a concatenation operation. Each rectangle
denotes an LSTM cell, each circle denotes a vector.

vi

mi-1

misimi
~

... ...

Sequence-preserved

Figure 2: The procedure of calculation of sequence-
preserved attention.

The Rescan Step With Sequence-Preserved Attention
In the RESCAN step, the sentence is rescanned from the
word ω to its boundary, or reversely. ωi is transformed to
a vector representation hi as in the former section Bi-RNN
Based Dependency Parsing.
RESCAN(h[0:N ])i = RESCANL(hi, h≤i)⊕ RESCANR(hi, h≥i)

(24)
where RESCANL denotes the procedure of scanning the left
part of the word in the sentence and RESCANR denotes the
procedure of scanning the right part of the word in the sen-
tence.

Imitating the two different behaviors of rescanning mode,
we can derive two variants of the sequence-preserved atten-
tion, as in Figure 1:
• Target to Boundary (ToB) To gather valuable infor-

mation around some word, scan from the word to the
boundary of the sentence, drop useless information and
fetch usable information incrementally. We will refer to
this as ToB-SPA later. This procedure can be formulated
as:

RESCANL(hi, h≤i) = GRU(hi, hi−1, ..., h0)

RESCANR(hi, h≥i) = GRU(hi, hi+1, ..., hN )
(25)

• Boundary to Target (BoT) RNN has the feature that it
tends to put more weight on input closer to the current
time step. In dependency parsing, words closer to a certain
word have more effect on head selection. So we reverse
the procedure in ToB, scan the sentence bi-directionally
with the word as the first input. We will refer to this
procedure as BoT-SPA later. It can be formulated as:

RESCANL(hi, h≤i) = GRU(hi, h0, h1, ..., hi−1)

RESCANR(hi, h≥i) = GRU(hi, hN , hN−1..., hi+1)
(26)

By concatenating the scanning results SCAN(t[0:N ])i (the
word feature representation) and the rescanning results
RESCAN(h[0:N ])i (the attentional representation), we can
derive the final representation of a word:

ri = SCAN(t[0:N ])i ⊕ RESCAN(h[0:N ])i (27)

which can be used as word representations in the depen-
dency parsing as in section Bi-RNN Based Dependency
Parsing.

Experiments

We show the results of the models on the English Penn Tree
Bank (PTB) and the Chinese Penn Tree Bank (CTB). We
follow the standard split of PTB, with the section 2-21 for
training, section 22 for development and section 23 for test-
ing. For English PTB, the POS tags are generated from the
Stanford POS tagger (Toutanova et al. 2003) while for CTB,
gold word segmentation and POS tags are used.

Implementations And Hyper-Parameters Choice

The model is implemented with the PyTorch2 deep learn-
ing framework. All experiments were run on a computer
equipped with an Intel Core i7 processor, an 8GB RAM and
a NVIDIA GTX-1070 GPU.

2https://pytorch.org
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Table 2: Parsing With Different Attention Mechanism
Model UAS

T
ra

n
si

ti
o
n BiRNN 94.02

BiRNN + vanilla attention 94.33(+0.31)
BiRNN + ToB-SPA 94.25(+0.23)
BiRNN + BoT-SPA 94.72 (+0.70)

G
ra

p
h BiRNN 94.10

BiRNN + vanilla attention 94.30(+0.20)
BiRNN + ToB-SPA 94.50(+0.40)
BiRNN + BoT-SPA 94.79(+0.69)

Hyper parameters are fine tuned on the PTB 3.3.0 devel-
opment set. In terms of the RNN unit for word feature rep-
resentation, we find that the LSTM cell can outperform the
GRU cell in its stronger modeling ability. For graph-based
parser, the hidden size of the bi-RNN is set to 400, and the
hidden size of RNN for sequence-preserved attention is set
to 100; for transition-based parser, the hidden size of both
the bi-RNN and the RNN for sequence-preserved attention
is set to 700.

Considering different kinds of pre-trained word embed-
dings, with the Glove (Pennington, Socher, and Manning
2014) word-embedding the neural networks can converge
better than CBoW and Skip-gram (Mikolov et al. 2013). The
dimension of word vectors is 300 and the dimension of tag
vectors is 50. We train the model with word embedding and
tag embedding drop out set to 30% respectively.

In terms of the score function in graph based parser, ex-
periments show that the bi-linear mode can outperform the
concat mode.

The model is trained with a batch size of 32 by an Adam
optimizer(Kingma and Ba 2014).

Results

We report the UAS results of simple bi-RNN, vanilla atten-
tion model, ToB-SPA and BoT-SPA on English PTB in Table
2. Results show that the vanilla attention model can beat the
simple bi-RNN model, and our BoT-SPA model can outper-
form almost all other models.

We also report the results on the English PTB and Chinese
CTB in Table 3 and 4 respectively.

Our parser can reach state-of-the-art results in transition-
based parsers. It is worth noting that although the state-of-
the-art parser in English PTB (Kuncoro et al. 2016) can
reach an accuracy of neatly 95.80%, their work shall be
considered as a framework that is not equal with other
transition-based ones since it has access to original phrase
structure annotation where conjunctions can be parsed more
correctly. Thus we think their work should not be regarded
as one competitor of ours, and our work exceeds all the other
parsers in English PTB.

In graph-based dependency parsing, our work can also
beat most former work when keeping simplicity and effi-
ciency.

Table 3: Results On the English PTB Dataset
Model UAS LAS

T
ra

n
si

ti
o
n (Chen and Manning 2014) 92.00 91.80

(Zhu et al. 2015) 94.16 -
(Kiperwasser and Goldberg 2016b) 93.90 91.90
(Andor et al. 2016) 94.61 92.79
SPA-DP 94.72 92.57

G
ra

p
h

(Kiperwasser and Goldberg 2016b) 93.00 90.90
(Hashimoto et al. 2016) 94.67 92.90
(Zhang, Cheng, and Lapata 2017) 94.10 91.90
(Dozat and Manning 2016) 95.74 94.08
(Zheng 2017) 95.53 93.94
SPA-DP 94.79 92.61

Table 4: Results On the Chinese CTB Dataset
Model UAS LAS

T
ra

n
si

ti
o
n (Chen and Manning 2014) 83.90 82.40

(Andor et al. 2016) 84.72 80.85
(Ballesteros et al. 2016) 87.65 86.21
(Kiperwasser and Goldberg 2016b) 87.60 86.10
SPA-DP 88.15 85.51

G
ra

p
h

(Kiperwasser and Goldberg 2016b) 87.10 85.50
(Cheng et al. 2016) 88.10 85.70
(Dozat and Manning 2016) 89.30 88.23
(Zheng 2017) 89.42 87.94
SPA-DP 88.04 85.40

Error Analysis

To characterize the errors made by parsers and the enhance-
ment in accuracy by importing sequence-preserved atten-
tion, we present some analysis on the accuracy with respect
to the sentence length and linguistic factors such as part-
of-speech tags. All analysis are conducted on the unlabeled
attachment results from the English PTB testing set with a
graph-based parser.

0.88

0.9

0.92

0.94

0.96

0.98

1

BoT-SPA
ToB-SPA
vanAtt
BiRNN

Figure 3: Accuracy with respect to length

Length Factors It is well known that parsers tend to have
lower accuracies for long-distance dependency. Figure 3
shows the accuracies of different models with respect to sen-
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tence length. It is obvious that a dependency parser adopting
attention mechanism outperforms the baseline model for a
margin increase in accuracy.

In general, the SPA model is able to gain better results
for most sentences than those of the vanilla attention model,
while the BoT-SPA model is better than ToB-SPA, since in
a sentence, the dependency between two words is affected
more by the closest words than those far away. The ToB-
SPA model uses an RNN to "read" words into the distance,
most of which are irrelevant and may serve more as noise.

Conspicuously, the accuracy of BoT-SPA model stays
the high level and even increase a bit as the sequence ex-
tends from 25 to 50, when others’ drastically drop. This
phenomenon shows that our sequence-preserved attention
mechanism is good at grasping long-distance relationship.
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Figure 4: Accuracy with respect to POS tags

Linguistic Factors We distinguish nouns, verbs, pro-
nouns, adjectives, adverbs, conjunctions like (McDonald
and Nivre 2007). We count the accuracy with respect to dif-
ferent POS-tags on the testing set and compare that of four
parsers as in Figure 4.

It can be concluded that the BoT-SPA model can outper-
form almost all other models on most categories.

• Nouns & Pronouns Typically in a sentence, the nouns
and pronouns are attached to verbs and lower in the parse
tree, thus tend to be easy to find out the correct head.
All four parsers can perform well but the model with
vanilla attention or sequence-preserved attention can still
perform surpass the baseline model.

• Verbs In a parse tree, the verb tends to be closer to the root
thus has longer-distance dependency than nouns and pro-
nouns, which makes it a little bit more difficult to parse.

• Adjectives Adjectives are the furthest from the root node
and have few siblings, thus theoretically should be the
easiest to parse, but the results are rather opposite. One
possible explanation is that graph-based parser is gener-
ally globally normalized, and more attention is paid to
long distance dependency, causing a decrease in accuracy
for short distance dependency.

• Conjunctions & Adverbs In a sentence, adverbs and
conjunctions often have long dependency lengths, there-
fore all four parsers have rather pool performance on
them. Although the head detection is difficult, explicit in-
crease in the accuracy can be shown from the result. The
SPA model gains an improvement in accuracy than the
BiRNN baseline for about 1.37%, and exceeds the vanilla
attention for about 0.44%. This can be viewed as a strong
evidence that sequence-preserved attention has the ability
to model long distance dependency than the vanilla one.
Without extra information, the vanilla attention may be
trapped in the dilemma to choose head under the circum-
stance of the long distance.

Conclusions

We have described an RNN-based sequence-preserved at-
tention method to capture the global and relevant infor-
mation for each word of an input sentence being parsed.
The proposed method tries to overcome the shortcoming
of vanilla attention mechanism that neglects the relative or-
der in which the features occur. For each parse unit, the
sequence-preserved attention is able to capture the rich and
global features, being sensitive to the order of the words,
from an input sentence. The results of experiments show
that the features extracted by the sequence-preserved atten-
tion benefit both the graph-based and transition-based pars-
ing systems with significant improvements across two dif-
ferent languages.
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