Persuasive Influence Detection: The Role of Argument Sequencing

Authors

  • Christopher Hidey Columbia University
  • Kathleen McKeown Columbia University

Abstract

Automatic detection of persuasion in online discussion is key to understanding how social media is used. Predicting persuasiveness is difficult, however, due to the need to model world knowledge, dialogue, and sequential reasoning. We focus on modeling the sequence of arguments in social media posts using neural models with embeddings for words, discourse relations, and semantic frames. We demonstrate significant improvement over prior work in detecting successful arguments. We also present an error analysis assessing novice human performance at predicting persuasiveness.

Downloads

Published

2018-04-27

How to Cite

Hidey, C., & McKeown, K. (2018). Persuasive Influence Detection: The Role of Argument Sequencing. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1). Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/12003