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Abstract

Pre-trained distributed word representations have been
proven to be useful in various natural language processing
(NLP) tasks. However, the geometric basis of word repre-
sentations and their relations to the representations of word’s
contexts has not been carefully studied yet. In this study, we
first investigate such geometric relationship under a general
framework, which is abstracted from some typical word rep-
resentation learning approaches, and find out that only the
directions of word representations are well associated to their
context vector representations while the magnitudes are not.
In order to make better use of the information contained in
the magnitudes of word representations, we propose a hier-
archical Gaussian model combined with maximum a posteri-
ori estimation to learn word representations, and extend it to
represent polysemous words. Our word representations have
been evaluated on multiple NLP tasks, and the experimental
results show that the proposed model achieved promising re-
sults, comparing to several popular word representations.

Introduction

Much research has been devoted to distributed word repre-
sentation learning, such as (Bengio et al. 2003), (Mikolov
et al. 2013a), (Pennington, Socher, and Manning 2014). In
these approaches, words are mapped to dense vectors in
a low-dimensional latent embedded space, and these word
vectors keep meaningful linguistic characteristics that words
sharing similar meanings aggregate together whereas dis-
similar words repel each other. Many empirical results show
that such pre-trained word representations can enhance the
supervised models on a variety of NLP tasks (Collobert et al.
2011; Socher et al. 2011). One of the possible explanation
why such semi-supervised systems work is that pre-trained
word representations act as a regularizer by constraining
parts of the parameters in an appropriate region, which leads
to better generalization (Erhan et al. 2010).

Word representation learning algorithms often follow
Harris’s distributed hypothesis that word meanings are de-
termined by their contexts (Harris 1954). However, the re-
lationship between the learned word and context represen-
tations has not been carefully studied in mathematics or ge-
ometry yet.
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In this paper, we study the nature of word representation
learning algorithms under a general framework, and find out
that the learned representation of a target word belongs to
the conic hull formed by the representations of its contexts,
which means that the directions of word representations are
strongly correlated with context representations while their
magnitudes are relatively neglected. Such observation can
give an explanation on why word similarity measured by
cosine similarity usually achieves significantly higher cor-
relation with gold standard than that measured by Euclidean
distance-based similarity measures. Inspired by this obser-
vation, we explore the feasibility to learn the word vectors
whose directions and magnitudes are both taken into account
by combining a hierarchical Gaussian model with maxi-
mum a posteriori estimation (MAP). The proposed model
is also extended to represent a polysemous word under a
specific context approximately by moving a word represen-
tation closer to the representation of the given context. Fi-
nally, our approaches were validated on several NLP tasks,
and achieved promising results. Especially in word similar-
ity tasks, our results showed strong improvements using Eu-
clidean distance-based similarity measure.

Background & Notation

Word representation learning algorithms are usually de-
signed to predict the central word wi in a given context
c = {w0, ..., wi−1, wi+1, ..., wl}, c ∈ C, where l is the range
of a context, and C is the context vocabulary. The word vo-
cabulary V is usually associated with two different look-up
tables F ,G ∈ R

d×|V|, where d is the dimensionality of the
embedded vector space, and |V| is the vocabulary size, in
order to transform a word w to its vector representations
(uw, vw ∈ R

d) respectively. The first vector (uw = fF (w))
represents a context word, and is used to generate a dense
context representation uc ∈ R

d, i.e.,

uc = fM(c)

= fM({uw0 , ..., uwi−1 , uwi+1 , ..., uwl
}) (1)

where M denotes the parameters of the context model fM.
The second vector (vw = fG(w)) represents the target word,
and is used to compute the similarity u�c vw between a word
w and a context c, which is further used to estimate the likeli-
hood of the word w occurring in the given context c, namely
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the conditional probability P (w|c),
P (w|c) = softmax(u�c vw)

=
exp(u�c vw)∑

w′∈V exp(u�c vw′)
(2)

The loss function of each co-occurred word-context pair in
the corpus is defined as the cross-entropy between predicted
distribution and target one. By summing it up over the cor-
pus, the loss function with parameters θ = {F ,G,M} can
be derived,

L(θ) = −
∑
w∈V

∑
c∈Cw

∑
w′∈V

δww′ lnP (w′|c) (3)

δww′ =

{
1 w = w′

0 w �= w′
(4)

where Cw consists of all contexts in which the word w can
occur, and δww′ is Kronecker delta. Word representations
can be obtained by minimizing L(θ).

Several popular distributed word representation learning
models, such as NNLM (Bengio et al. 2003) and word2vec
(Mikolov et al. 2013a) including continuous bag-of-word
(CBOW) and skip-gram (SG), can be taken as special cases
of the presented prediction-based word representation learn-
ing framework. For NNLM, fM is an n-gram model, and
the context representation is generated by the weighted sum
of the preceding n − 1 word vectors. For CBOW, fM aver-
ages the embeddings of words in a window, and for SG, fM
takes only one of the surrounding word embeddings to rep-
resent the context. Thus we believe that the framework could
be taken as general one, and we will discuss the geometric
basis of learned word representations under this framework.

Another family of models learns word representations by
factorizing a word-word matrix (Pennington, Socher, and
Manning 2014; Levy and Goldberg 2014b), such as point-
wise mutual information (PMI) matrix and shifted pos-
itive pointwise mutual information (SPPMI) matrix. The
relationship between prediction-based models and matrix
factorization-based ones has been partly discussed in some
literatures, which bridges the gap between two learning
philosophies. Levy and Goldberg (2014b) showed that SG
with negative sampling (Mikolov et al. 2013b) is implicitly
factorizing a PMI matrix, and noise-contrastive estimation
(NCE) (Mnih and Kavukcuoglu 2013) is implicitly factor-
izing a shifted log conditional probability. The relationship
between SG and GloVe was also discussed by (Pennington,
Socher, and Manning 2014). In the further discussion, we
will focus on the prediction-based models under the pre-
sented framework. The geometric relationships derived from
matrix factorization-based models could be inferred from
the conclusions of (Pennington, Socher, and Manning 2014;
Levy and Goldberg 2014b) and ours, and we leave it to fu-
ture work.

Sampling-Based Estimation of Softmax

It is a time-consuming task to optimize Eq. [3] because com-
puting Eq. [2] normally involves a large vocabulary. Many
methods were proposed to accelerate training process, and

we here focus on two effective methods in practice: nega-
tive sampling (Mikolov et al. 2013b) and Blackout (Ji et al.
2015).

Negative Sampling Negative sampling provides an effi-
cient way to estimate softmax by sampling k words with
respect to their frequencies and optimizing the similarity be-
tween a given context and each candidate word indepen-
dently. The probability distribution of selecting a word w
is modeled as

Q(w) =
n(w)γ∑

w′∈V n(w′)γ
(5)

where n(w) is the frequency of the word w, and γ is a hy-
perparameter to smooth the distribution. A word with higher
frequency is more likely to be chosen than that with lower
frequency. Equipped with negative sampling, Eq. [3] is ap-
proximated with

L̃NS(θ) = −
∑
w∈V

∑
c∈Cw

[
lnσ(u�c vw)

−
∑

w′∈neg(w)

lnσ(u�c vw′)
] (6)

where neg(w) contains k negative samples. In the nega-
tive sampling, the loss function is computed from two parts,
Uw = {uc|c ∈ Cw} and Ūw = {uc|c /∈ Cw}. The first part
Uw contains the contexts co-occurred with the target word
w, whereas the second part Ūw contains the rest, which is
used to differentiate data from noise (Mikolov et al. 2013b).
However, the learning objective is quite different from that
in Eq. [3], because Eq. [6] no longer aims to predict the tar-
get word of a given context but to judge how well a word fits
that context.

Blackout Another effective method is Blackout, a variant
of negative sampling by approximating the conditional prob-
ability P (w|c) with

P̃B(w|c) = q(w)eu
�
c vw

q(w)eu
�
c vw +

∑
w′∈neg(w) q(w

′)eu�c vw′
(7)

where q(w) = Q(w)−1 is the prior probability of selecting
a word w. Negative samples are retrieved as Eq. [5], and
softmax is computed within the scores of one positive and
k negative samples, each of which is weighted by a q(·).

Geometric Relationship between Word and

Context Representations
In order to better understand the relationship between word
and context representations, we shed light on their quanti-
tative relationship when the learning algorithm converges,
or namely L(θ) reaches one of its local minima. A regular-
ization term is usually added to constrain the magnitude of
the word representations. The following loss function can be
derived with some simplifications,

L(θ) =−
∑
w∈V

∑
c∈Cw

ln
eu
�
c vw∑

w′∈V e
u�c vw′

+
β

2

∑
w∈V

v�wvw

(8)
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Then the L(θ) is differentiated with respect to vw, leading to

∂L

∂vw
=−

∑
c∈Cw

(
1− P (w|c))uc

+
∑
c/∈Cw

P (w|c)uc + βvw

(9)

which can be divided into two context terms (Uw and Ūw)
and a regularization term, where Uw and Ūw reflect the re-
lationship to the related and unrelated contexts respectively
for the word w. By comparing Eq. [6] and Eq. [9], we find
that the relationship between word and context representa-
tions can be observed in the loss function of the negative
sampling, and it can also be derived from the general loss
function Eq. [3, 8] by taking partial derivation with respect
to vw. Since Ūw is usually used to differentiate data from
noise and to obtain nontrivial solutions in negative sampling,
it could be inferred that Ūw plays a similar role in Eq. [9].
Below we show that Ūw can be eliminated in mathematics.

Assuming that the mean of context vectors equals to zero,
namely Ec∈C [uc] = 0, we can derive∣∣∣ ∑

c∈Cw

uc

∣∣∣ = ∣∣∣ ∑
c/∈Cw

uc

∣∣∣ (10)

where | · | indicates the norm of a vector. Let Ec∈Cw
[P (w|c)]

be 1 − tw, tw ∈ [0, 1], where tw is the prediction error, and
is assumed to be in the same scale for each word, and then
we can obtain

Ec/∈Cw
[P (w|c)] ≈ 1

|V| − 1
Ew∈V [tw]

� tw = Ec∈Cw [1− P (w|c)]
(11)

since the vocabulary size |V | is normally large. By combin-
ing Eq. [10] and Eq. [11], the quantitative relationships be-
tween two context terms in Eq. [9] can be finally derived,∣∣∣ ∑

c/∈Cw

P (w|c)uc

∣∣∣ � ∣∣∣ ∑
c∈Cw

(
1− P (w|c))uc

∣∣∣ (12)

Note that Eq. [12] is not a strict consequence but a reason-
able result induced from Eq. [10] and Eq. [11]. Therefore,
the second term in Eq. [9] can be neglected, and it will be
eliminated in the further discussion.

By setting ∂L
∂vw

to 0, the quantitative relationship between
word and context representations can be expressed by

vw ≈
∑
c∈Cw

1

β

(
1− P0(w|c)

)
uc (13)

where P0(w|c) is the reached local minima of P (w|c),
showing that the trained vector representation of a target
word is a linear combination of those of all its contexts with
positive weights. From geometric perspectives, vw belongs
to the conic hull of Uw, which means that the directions of
vector representations are emphasized while the magnitudes
are not constrained through the context vectors.

Since the properties on the directions of the learned word
vectors are emphasized while those on magnitudes are not,

the direction-oriented word similarity measures such as co-
sine similarity are naturally favored. It could be the reason
why word similarity score computed by cosine similarity
usually achieves higher correlation with gold standard than
that computed by Euclidean distance-based similarity which
measures both directions and magnitudes1.

To put stronger constraints on their geometric relation-
ships, an ideal representation for a word would be the central
point of the representations of its contexts,

vw =
1

|Cw|
∑
c∈Cw

uc (14)

which means that vw represents the average or general
meaning of its contexts as Harris hypothesis suggests. In the
next section, we will show that such geometric properties
can be approximately achieved by a hierarchical Gaussian
model combined with maximum a posteriori estimation.

Our Approach

As we discussed above, the magnitudes of word vectors
learned from the framework are not well constrained by con-
text vectors. Thus we describe here a new model, aiming to
learn word and context representations simultaneously and
to take both direction and magnitude information into ac-
count. The proposed model contains a context representa-
tion generator, which try to capture the compositionality of
words in a context, a posterior probability estimator based
on Bayesian approach, and a loss function defined by cross-
entropy. In the rest of this section, we first investigate and
discuss the derived geometric relationships. Next, an effi-
cient method is presented to approximate Bayesian posterior
probability, and finally our model is extended to represent
multi-sense words.

Given an unlabeled textual corpus D, the target word wi

and the context c = {wi−L, ..., wi−1, wi+1, ..., wi+L}, c ∈
Cwi is generated by an L-sized window. Each word (e.g.
wj) in the context is transformed to its vector repre-
sentation (uwj

) by the looking up table F , and then a
weighted sum function with a set of weight matrices M =
(Mi−L, ...,Mi−1,Mi+1, ...,Mi+L) ∈ R

2L×d×d and a bias
vector b ∈ R

d is used to generate the context vector uc,

uc =
i+L∑

j=i−L,j �=i

Mjuwj
+ b. (15)

Diagonal matrices are used for M to reduce the computa-
tional complexity of context generator, which also speeds
up the computation and training process.

After the context representation uc is generated, the next
question is how to build the relationship between words and
contexts. For each target word w, its representation (vw) is
fetched from another look-up table G. We model the condi-
tional probability function p(c|w) as a Gaussian distribution,

p(c|w) = 1√
2πσ

exp(− 1

2σ2
‖uc − vw‖22) (16)

1It was shown by our word similarity experiments.
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where σ2 indicates the variance and is chosen as a hyperpa-
rameter. The Eq. [16] embodies a fundamental assumption
of our model that for each word, representations of its con-
texts are drawn from a Gaussian distribution whose expec-
tation is the representation of this word, i.e., ∀c ∈ Cw, uc ∼
N (vw, σ

2I), where I ∈ R
d×d is an identity matrix. Speak-

ing geometrically, vw is the center of uc ∈ Uw as Eq. [14]
suggests.

As a prediction-based model, our model aims to predict
the target word under a given context by estimating the pos-
terior probability P (w|c) by Bayesian approach,

P (w|c) = p(c|w)P (w)∑
w′∈V p(c|w′)P (w′)

(17)

where P (w) is the prior probability, and is set to a discrete
uniform distribution2. Finally, the loss function is defined by
the cross-entropy,

L(θ) = −
∑
w∈V

∑
c∈Cw

lnP (w|c) (18)

By minimizing L(θ), word representations (F ,G) as well
as the way to generate context representations (M) can be
obtained.

Note that now the proposed model is translation-invariant
to word and context vectors, which means that the value of
the loss function will not be changed by adding a constant
bias to all representations. Thus, it is necessary to use a reg-
ularization term to constrain the magnitudes of representa-
tions, and make them zero-biased. Therefore, our model can
be described as a hierarchical Gaussian model,

∀w ∈ V,vw ∼ N (0, I)

∀c ∈ Cw,uc ∼ N (vw, σ
2I)

(19)

indicating that word vectors follow a Gaussian distribution
N (0, I) whereas the vector representations of contexts of
the word w also follow a Gaussian distribution N (vw, σ

2I).

Geometric Relationships

To investigate the geometric properties of word representa-
tions learned by our model, Eq. [18] is rewritten to follow-
ing form by replacing P (w|c) according to Eq. [16, 17] and
adding a regularization term,

L(θ) =−
∑
w∈V

∑
c∈Cw

ln
eR(w)∑

w′∈V eR(w′)

+
β

2

∑
w∈V

v�wvw

(20)

R(w) = − 1

2σ2
‖uc − vw‖22 + lnP (w) (21)

2Two different methods were tried on determining P (w). The
first method was to take P (w) as parameters learned in the train-
ing, and the second was to set P (w) to Q(w)−1 as Blackout does.
However, it was showed in our preliminary experiments that both
of the methods were not helpful empirically.

When L(θ) is differentiated with respect to vw, we obtain

∂L

∂vw
=

∑
c∈Cw

(
1− P (w|c))vw

−
∑
c∈Cw

(
1− P (w|c))uc

+
∑
c/∈Cw

P (w|c)uc +
(
β −

∑
c/∈Cw

P (w|c)
)
vw

(22)

As discussed in the previous section, the third term is used
to obtain nontrivial solutions, and is relatively small compar-
ing to the second one. The forth term can be approximated
to 0 by choosing an appropriate regularization rate β. By ne-
glecting the third and the forth terms and setting ∂L

∂vw
to 0,

the quantitative relationship between word and context rep-
resentations can be derived,

vw ≈
∑
c∈Cw

1− P0(w|c)∑
c′∈Cw

1− P0(w|c′)uc (23)

where P0(w|c) is a reached local minima. The Eq. [23]
shows that vw is a linear combination of uc ∈ Uw with pos-
itive weights whose sum equals to 1, leading to a geometric
property that vw belongs to the convex hull formed by Uw.
Assuming that every conditional probability P0(w|c), under
ideal situation, takes the same value for all c ∈ Cw, it is ob-
vious that vw is the expectation of uc, which implies that the
word representation vw is the center of the clustering formed
by representations of its contexts.

Efficient Posterior Probability Approximation

Inspired by Blackout, the Bayesian probability in Eq. [17]
can be approximated by sampling k negative samples and
normalizing within positive and negative samples,

P̃ (w|c) = p(c|w)P (w)

p(c|w)P (w) +
∑

w′∈neg(w) p(c|w′)P (w′)
(24)

because the target distribution P (w|c) is one-hot, indicat-
ing that the probability of the positive sample is signifi-
cantly larger than that of negative ones, and approximating
P (w|c) with k negative samples does not change its value
severely. The Eq. [24] provides a general method to approx-
imate Bayesian posterior probability no matter which form
p(c|w) takes. Note that Blackout is a special case of our
method by setting p(c|w) to eu

�
c vw and P (w) to Q(w)−1.

Multi-Sense Extension

We here propose a method to extend our model to represent
a word w under a specific context c with

vw|c = (1− λ)vw + λuc (25)

where λ is a hyperparameter to weight the influence of vw
and uc. The philosophy behind Equation [25] is that the
meaning of a word is influenced by its contexts as sug-
gested by Harris hypothesis. The first term contains general
information by averaging meaning of its contexts whereas
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the second term contains specific information which make it
more sensitive to the given context. From a geometrical per-
spective, the Eq. [25] can be interpreted as moving the word
vector, namely a point in the latent embedded space, closer
to the vector of the given context, reflecting both general
characteristics of the word and the specific influence of the
context. The experimental results of the nearest neighbors
in the next section demonstrated that vw|c is able to capture
the phenomena of polysemy to some extent by representing
a polysemous word approximately.

Experiments

We conducted four sets of experiments, including word sim-
ilarity, nearest neighbors, word analogy and downstream se-
quence labeling tasks, to evaluate our approach. The goal of
the first experiment was to investigate the performance of the
proposed algorithm in several word similarity datasets. The
second experiment was designed to show whether its multi-
sense extension really captures the phenomena of polysemy.
The third experiment was to explore the capability of the
learned word representations in finding analogue words. The
last experiment aimed to show how well the performance of
supervised learning model was enhanced by our word em-
beddings.

English Wikipedia documents were used to train word
representation models, and its vocabulary was reduced
to 50, 023 by replacing infrequent words with an “UN-
KNOWN” token3. The compared models were trained with
the toolkits provided by their authors. For our approach, we
use notification “Ours” for word representations (vw) and
“Ours-MS” for multi-sense extension (vw|c). In the training
process, the dimensionality of word vectors was set to 300,
the window size L to 5, the variance σ2 to 0.5, the number
of negative samples to 5, regularization rate to 10−3 and γ
in negative sampling to 0.75. Like word2vec, sub-sampling
was applied with rate 10−5. The weight coefficient λ was
set to 0.24. The stochastic gradient decent was used to min-
imize the loss function with 0.025 learning rate. All results
reported were averaged over ten runs.

Word Similarity

Word similarity tasks were experimented on WordSim353
(Finkelstein et al. 2002), SimLex-999 (Hill, Reichart, and
Korhonen 2016) and Stanford Contextual Word Similarity
(SCWS) (Huang et al. 2012). For WordSim353 and SimLex-
999, CBOW, SG and GloVe were compared; for SCWS,
(Huang et al. 2012), (Neelakantan et al. 2014), (Iacobacci,
Pilehvar, and Navigli 2015), (Mu, Bhat, and Viswanath
2016), (Zheng et al. 2017) were compared and their best
reported performances were excerpted from their papers.

3In word2vec, infrequent words, which appear less than 5 times,
are ignored. Here another strategy was used to pre-process the tex-
tual corpus by replacing infrequent words with an “UNKNOWN”
token. A higher threshold of frequency was also set to reduce the
size of word embedding lookup tables.

4The weight coefficient was determined on Stanford Contextual
Word Similarity tasks (Huang et al. 2012), and the experimental
results show that performance remained similar for λ ∈ [0.1, 0.3].

Model WordSim353 SimLex-999
Cos ED Cos ED

CBOW 0.7095 0.3787 0.4275 0.2726
SG 0.7003 0.4143 0.3712 0.2622
GloVe 0.6077 0.4919 0.3698 0.3231
Ours 0.7269 0.7049 0.4072 0.4028

Table 1: Spearman coefficients on WordSim353 and
SimLex-999.

Model SCWS
Cos ED

(Huang et al. 2012) 0.6570 -
(Neelakantan et al. 2014) 0.6910 -
(Iacobacci, Pilehvar, and Navigli 2015) 0.6240 -
(Mu, Bhat, and Viswanath 2016) 0.6367 -
(Zheng et al. 2017) 0.6990 -
Ours-MS 0.7042 0.6970

Table 2: Spearman coefficients on SCWS. “-” denotes the
data that were not reported by their authors.

To evaluate whether word representation models can cap-
ture both the direction and magnitude information, the co-
sine similarity (Cos) and Euclidean distance-based similar-
ity (ED), defined as

sim(w1, w2) =
(
1 + ‖vw1

− vw2
‖22
)−1

(26)

were also used to compute the similarity of each pair of
words. Then the Spearman’s coefficient was calculated to
measure performance of word representation, namely the
correlation between predicted similarities and golden sim-
ilarities rated by human annotators over the test set.

The results in Table 1 and Table 2 show that our model
achieved state-of-the-art performance on all the word sim-
ilarity tasks except for SimLex-999 using the cosine simi-
larity measure. It is also worth noting that, for other com-
petitive word representations (CBOW, SG and GloVe) on
WordSim353 and SimLex-999 tasks, their performance de-
graded severely if ED was used as a word similarity mea-
sure whereas the performance of our approach only dropped
slightly, which indicates that our approach is more capable
of capturing both direction and magnitude information of
word representations than other compared models as pre-
dicted by the previous theoretical analysis.

Nearest Neighbors

The nearest neighbors experiment was conducted to test
whether our multi-sense extension is able to model multi-
sense words as it is supposed to be, and the some exam-
ples were shown in Table 3. Instead of Cos, ED was used as
the measure for computing word similarity because ED take
both of direction and magnitudes of vectors into account.
First, we chose several typical words having multiple senses,
and searched the sample sentences for each sense of those
words on a dictionary website. Then their contexts were ran-
domly sampled from these sentences. For each word w in the
context c, its extensive representation vw|c was computed
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Target Context Nearest Neighbors

blackberry
Could I try some of that jam? Jam? That blackberry jam. Oh, of course,
darling. Actually, it’s sort of a fish berry jam. It’s called caviar.

apple, strawberry, jam,
mango, cherry

He said the technology would be compatible with most smartphones,
including the iPhone, BlackBerry and Android phone.

iphone, smartphone,
android, apple, app

show
He laughs: “So you know we lost a bit of money, but we had a great
time and the show was awesome.”

sketch, episode, show-
case, sitcom, premiere

Instead, I point you to the sample application for my latest book and
post snippets of that example to show what Spring can do for you.

talk, tell, explain,
showcase, reveal

kind
If there are too many results to easily manage, use one of these buttons
to see only the kind of file you are interested in.

sort, type, thing, mo-
ment, instance

You bet I am proud, but what really matters to me is that she grew up to
be warm and kind, with an easygoing, unassuming demeanor.

sort, gentle, generous,
ideal, nice

Table 3: Nearest neighbors under specific contexts.

by Eq. [25], and the derived representation was used to re-
trieve its nearest word vectors by computing the similarity
scores to all the words in the vocabulary. Finally we illus-
trated three representative words, “blackberry” (noun/noun),
“show” (noun/verb) and “kind”(noun/adjective), in Table 3.
As the table suggests, the word “blackberry”, for exam-
ple, was closer to other fruits under a fruit-related context
whereas a smartphone-related context was given, its nearest
neighbors became the words related to smartphones. Similar
phenomena were also observed in the cases of “show” and
“kind”. The experiment demonstrates that the representation
vw|c can truly reflect the meaning of a multi-sense word un-
der a specific context.

Word Analogy

Google (Mikolov et al. 2013a) and MSR dataset (Mikolov,
Yih, and Zweig 2013) were used to evaluate our word repre-
sentation on word analogy tasks, which aims to answer the
question “a is a∗ as b is to [b∗]”. We used two methods to
compute the target word b∗, 3CosAdd (Mikolov, Yih, and
Zweig 2013) and 3CosMul (Levy and Goldberg 2014a). For
3CosAdd, b∗ is predicted by

argmax
b∗∈V

(cos(b∗, b− a+ a∗)) (27)

whereas for the 3CosMul, it is predicted by

argmax
b∗∈V

(cos(b∗, b)− cos(b∗, a) + cos(b∗, a∗)) (28)

Following (Mikolov, Yih, and Zweig 2013), the vocabulary
of candidate words was generated as the intersection of the
vocabulary of the learned word representations and that of
evaluation dataset.

Model Google MSR
3CosAdd 3CosMul 3CosAdd 3CosMul

CBOW 0.7590 0.7639 0.6762 0.6846
SG 0.7563 0.7627 0.6477 0.6599
GloVe 0.6120 0.6484 0.6717 0.6807
Ours 0.7870 0.7860 0.7512 0.7527

Table 4: Accuracy on Google and MSR datasets.

The results in Table 4 showed that our model boosted the
performance on both datasets of the word analogy tasks.
On Google dataset, the accuracy achieved by our model
was 2.80%/2.21% higher than the maximum accurracy
achieved by other models with respect to two prediction
methods, whereas on MSR dataset, our model outperformed
other competitive models with a significant margin around
7.50%/6.81%.

Downstream Sequence Labeling

Two NLP tasks (POS-tagging and chunking) are performed
to compare the performance of different pre-trained word
representations. We are interested in how well the word em-
beddings can improve the performance of the supervised
learning model rather than whether state-of-the-art results
can be achieved on these tasks.

We advocate the following criterion imp(·) to quantify
the improvement caused by pre-trained word representa-
tions,

imp(e) =
s(ge)− s(gr)

1− s(gr)
, s(·) ∈ [0, 1] (29)

where s(ge) indicates the performance of the supervised
learning model g with initialized word representations e.
Note that e can be pre-trained word representations or ran-
dom initialization r. For example, the imp of a model with
randomly initialized word embeddings, which is usually
taken as a baseline model, equals to 0; for a perfect model
gp (s(gp) = 1), the imp equals to 1. The Eq. [29] is inspired
by measure of belief (Ihara 1987), and the imp measure acts
as a normalizer of original performance scores, aiming to re-
flect the real impact of word representations on supervised
learning for NLP tasks, eliminating the influence brought by
the supervised model itself.

For the POS-tagging, we used the Wall Street Journal
benchmark (Toutanova et al. 2003), and the performances
were reported in per-word accuracy (PWA). For the chunk-
ing, the CoNLL 2000 shared task5 was used, and perfor-
mances were evaluated with the standard F1-score, the har-
monic mean of precision and recall. Besides, “IOBES” tag-
ging scheme was applied for chunking.

5www.cnts.ua.ac.be/conll2000/chunking.
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We implemented the window approach networks with the
sentence-level log-likelihood (WNN-SLL) of (Collobert et
al. 2011) as the supervised learning model. In the experi-
ments, WNN-SLL with random initialization was taken as
the baseline system.

Model POS-tagging Chunking
PWA imp F1 imp

baseline 0.9419 0.0000 0.8826 0.0000
CBOW 0.9584 0.2840 0.9071 0.2087
SG 0.9597 0.3064 0.9068 0.2061
GloVe 0.9592 0.2978 0.9002 0.1499
Ours 0.9610 0.3287 0.9247 0.3586
Ours-MS 0.9642 0.3838 0.9289 0.3944

Table 5: Performance on sequence labeling tasks.

Table 5 shows that our model outperformed other com-
pared word embedding learning algorithms on both of POS-
tagging and Chunking tasks, which means that word rep-
resentations pre-trained by our approach provide better ini-
tialization for the supervised learning model, leading to bet-
ter generalization. It also can be seen that the highest score
was achieved by our multi-sense extension. By comparing
the performance of Ours and Our-MS, it demonstrated that
the extension gains further improvement with a significant
margin to original ones because the multi-sense version can
better model multi-sense words as expected.

Related Work
After the pioneer NNLM (Bengio et al. 2003) were pro-
posed to learn distributed word representations, many meth-
ods have been proposed for word representation learning,
such as word2vec (Mikolov et al. 2013a) and GloVe (Pen-
nington, Socher, and Manning 2014). These methods of-
fer a creative way to learn word embeddings and achieve
high performance on word similarity benchmarks. However,
the geometric relationships between word and context rep-
resentations underlying their methods has not been carefully
studied yet. Our paper aims to investigate such relationship
in mathematics when the algorithm reaches one of its local
minima, and proposes an improved approach to train word
representations according to our findings.

In order to obtain word representations with multiple
senses, many studies have been devoted to multi-prototype
models, including (Reisinger and Mooney 2010; Huang et
al. 2012; Neelakantan et al. 2014; Iacobacci, Pilehvar, and
Navigli 2015; Zheng et al. 2017). However, multi-prototype
models suffer from a problem that it is hard to determine
the number of prototypes for each word. In our model, a
sound method is proposed to approximately represent a pol-
ysemous word under a specific context, which is more effi-
cient in usage because the computational intense word dis-
ambiguation process is not required.

The motivation of our paper is similar to a recent paper
(Mu, Bhat, and Viswanath 2016) which also discussed the
geometry of word representations. However, they focus on
the polysemy representations whereas we pay attention to
word representations in a more general case.

The most relevant work was proposed by Vilnis and
McCallum (2014) that focuses on representing words with
Gaussian distributions whereas in our hierarchical model,
words and contexts are represented by points, and Gaus-
sian distribution is used for modeling their relationship. Be-
sides, their model is learned by optimizing the energy of co-
occurred word-word pairs in the corpus whereas our model
targets to predict the central word with a set of words in a
given context based on Bayesian approach. The way to gen-
erate context representations is also learned at the same time
in the learning process. Furthermore, in their work, each
word is associated with only one representation and unable
to model polysemy, but we proposed a novel extension to
represent multi-sense words.

Conclusions

We studied the geometric characteristics of word and context
representations and their relationship. The quantitative rela-
tionship between word and context representations has been
investigated under a general framework abstracted from
some typical word embedding learning algorithms, such as
NNLM, CBOW and SG. We proved that the representation
of each word learned by their approaches belongs to the
conic hull formed by representations of its contexts, indicat-
ing that the directions of word vectors are well constrained
by the context representations while their magnitudes are
not. Inspired by such observation, we proposed a joint word
and context representation learning approach based on the
combination of hierarchical Gaussian model and maximum
a posteriori estimation. In contrast to the existing typical ap-
proaches, the representation of each word learned by our
model is in the convex hull of representations of its contexts,
which puts constraints on the word vectors both in direc-
tion and magnitude. The geometric characteristics brought
by the convex hull allow us to easily extend our model in
the ability to represent polysemous words, and such abil-
ity was demonstrated by the nearest neighbors experiment.
The study on the geometric basis of word representations
also gives a possible explanation of why the existing typical
models usually achieve higher performances on word sim-
ilarity benchmarks using the cosine similarity as a similar-
ity measure than Euclidean distance-based one. The experi-
ments on word similarity tasks confirmed such explanation
empirically and also showed that our approach performed
well using both the similarity measures. Besides, the experi-
ments on multiple downstream sequence labeling tasks have
demonstrated that our word representations can improve the
performance of the neural network-based NLP systems more
than other competitors can. The source code of our model is
available at https://github.com/JiangtaoFeng/HGM-MAP.
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