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Abstract

Language Modeling (LM) is a fundamental research topic in a
range of areas. Recently, inspired by quantum theory, a novel
Quantum Language Model (QLM) has been proposed for In-
formation Retrieval (IR). In this paper, we aim to broaden the
theoretical and practical basis of QLM. We develop a Neural
Network based Quantum-like Language Model (NNQLM)
and apply it to Question Answering. Specifically, based on
word embeddings, we design a new density matrix, which
represents a sentence (e.g., a question or an answer) and en-
codes a mixture of semantic subspaces. Such a density matrix,
together with a joint representation of the question and the
answer, can be integrated into neural network architectures
(e.g., 2-dimensional convolutional neural networks). Experi-
ments on the TREC-QA and WIKIQA datasets have verified
the effectiveness of our proposed models.

Introduction

Language Models (LM) play a fundamental role in Artificial
Intelligence (Al) related areas, e.g., natural language pro-
cessing, information retrieval, machine translation, speech
recognition and other applications. The commonly used lan-
guage models include statistical language models and neural
language models. Generally speaking, statistical language
models compute a joint probability distribution over a se-
quence of words (Manning, Raghavan, and Schiitze 2008;
Zhai 2008), while neural language models can obtain a dis-
tributed representation for each word (Bengio et al. 2003;
Mikolov et al. 2013).

Recently, by using the mathematical formulations of
quantum theory, a Quantum Language Model (QLM), has
been proposed in Information Retrieval (IR). QLM encodes
the probability uncertainties of both single and compound
terms in a density matrix, without resorting to extend the
vocabulary artificially (Sordoni, Nie, and Bengio 2013). The
ranking of documents against a query is based on the von-
Neumann divergence between the density matrices of the
query and each document. QLM shows an effective perfor-
mance on the ad-hoc retrieval task.

QLM is theoretically significant, as for the first time it
generalizes LM via the formulations of Quantum theory.
However, it has the following limitations. First, in QLM, the
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representation for each term is a one-hot vector, which only
encodes the local occurrence, yet without taking into ac-
count the global semantic information. Second, QLM repre-
sents a sequence of terms (e.g., a query or a document) by a
density matrix, which is estimated via an ite-Lrative process,
rather than an analytical procedure. Thus it is difficult to in-
tegrate such a matrix in an end-to-end design. Third, QLM
deals with the representation, estimation and ranking pro-
cesses sequentially and separately. As a consequence, these
three steps cannot be jointly optimized, thus limiting QLM’s
applicability and impact in the related research areas.

In this paper, we aim to broaden the theoretical and practi-
cal basis of QLM, by addressing the above problems. Specif-
ically, we adopt the word embeddings to represent each word
since such a distributed representation can encode more se-
mantic information than one-hot vectors. By treating each
embedding vector as an observed state for each word, a sen-
tence (e.g., a question or an answer) can correspond to a
mixed state represented by a density matrix. Then, we can
derive such a density matrix without an iterative estimation
step. This makes the density matrix representation feasible
to be integrated into a neural network architecture and au-
tomatically updated by a back propagation algorithm. After
getting the word level and sentence level representations, we
can have a joint representation for two sentences (e.g., ques-
tion and answer sentences in the answer selection task).

Based on the above ideas, we propose an end-to-end
model, namely Neural Network based Quantum-like Lan-
guage Model (NNQLM). Two different architectures are de-
signed. The first is just adding a single softmax layer to the
diagonal values and its trace value of the joint representa-
tion. The second is built upon a Convolutional Neural Net-
work (CNN), which can automatically extract more useful
patterns from the joint representation of density matrices.
We clarify that our motivation of using quantum theory is
to inspire new perspectives and formulations for the natural
language applications, instead of developing quantum com-
putation algorithms. Indeed, one can build the analogy be-
tween quantum theory (e.g., quantum probability) and some
macro-world problems (Bruza, Wang, and Busemeyer 2015;
Wang et al. 2016). For sake of applicability, our model does
not fully comply with the theory of quantum probability, so
that we will use “quantum-like” instead of “quantum” when
referring to the language model we propose in this paper. To



the best of our knowledge, this is the first attempt to integrate
the quantum-like probability theory with the neural network
architecture in Natural Language Processing (NLP) tasks.
We apply the proposed end-to-end quantum-like language
models to a typical QA task, namely Answer Selection,
which aims to find accurate answers from pre-selected set of
candidates (Yang, Yih, and Meek 2015). For each single sen-
tence (question or answer), the density matrix will represent
the mixture of semantic subspaces spanned by embedding
vectors. For each question-answer pair, the joint density ma-
trix representation encodes the inter-sentence similarity in-
formation between the question and the answer. The neural
network architecture (e.g. 2-dimensional CNN) is adopted to
learn useful similarity pattens for matching and ranking the
answers against the given question. A series of systematic
experiments on TREC_QA and WikiQA have shown that the
proposed NNQLM significantly improves the performance
over QLM on both datasets, and also outperforms a state of
the art end-to-end answer selection approach on TREC_QA.

Quantum Preliminaries

The mathematical formalism of quantum theory is based on
linear algebra. Now, we briefly introduce some basic con-
cepts and the original quantum language model.

Basic Concepts

In quantum probability (Von Neumann 1955), the proba-
bilistic space is naturally represented in a Hilbert space, de-
noted as H". For practical reasons, the previous quantum-
inspired models limited the problem in the real space, de-
noted as R™ (Sordoni, Nie, and Bengio 2013). The Dirac’s
notation is often used, which denotes a unit vector & € R"
as a ket |u) and its transpose @’ as a bra (u|. The inner
product between two state vectors is denoted as (u|v). The
projector onto the direction |u) is |u)(u|, which is an outer
product (also called dyad) of |u) itself. Each rank-one pro-
jector |u)(u| can represent a quantum elementary event.

Density matrices are a generalization of the conventional
finite probability distributions. A density matrix p can be
defined as a mixture of dyads [);) (¥;]:

p= Zpi |hi) (Wil e))

where [1);) is a pure state vector with probability p;. p is
symmetric, positive semidefinite, and of trace 1 (tr(p)=1).
According to the Gleason’s Theorem (Gleason 1957), there
is a bijective correspondence between the quantum probabil-
ity measure p and the density matrix p (i.e., p1p(|u)(u|) =

tr(pfu)(ul)).

Quantum Language Model

A quantum language model represents a word or a com-
pound dependency between words by a quantum elemen-
tary event. For each single word w;, the corresponding pro-
jector II; = |e;)({e;|, where |e;), the standard basis vector
associated to a word, is an one-hot vector. Sordoni, Nie,
and Bengio (2013) utilized the Maximum Likelihood Esti-
mation (MLE) to estimate the density matrices p, and pg,
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Figure 1: Single Sentence Representation

which represent the query ¢ and document d, respectively.
The original MLE estimation uses a so-called RpR algo-
rithm, which is an Expectation-Maximization (EM) iterative
algorithm and does not have an analytical solution. After the
estimation of density matrices, the ranking is based on the
negative Von-Neumann (VN) Divergence between p, and
pa (e, —Ayn(pgllpa) = tr(pylog pa)). It turns out that
the original QLM cannot be directly integrated into an end-
to-end mechanism. This motivates us to consider a Neural
Network architecture.

Neural Network based Quantum-like
Language Model

In this section, we will describe our model in the context
of a typical Question Answering task, namely answer se-
lection, which aims to find accurate answers from a set of
pre-selected candidate answers based on a question-answer
similarity matching process. Note that the proposed model
is general and can also be applied to other NLP and IR tasks
that involve similarity matching and ranking.

Specifically, we introduce our model in three steps.
Firstly, we design an embedding based density matrix repre-
sentation for single sentences to model the intra-sentence se-
mantic information carried by a question/answer. Then, we
introduce a joint representation to model the inter-sentence
similarities between a question and an answer. Finally, the
question and answer are matched according to similarity
features/patterns obtained from the joint representation. All
these parts are integrated into a neural network structure.

Embedding based Density Matrix for Single
Sentence Representation

Formally, word embeddings are encoded in an embedding
matrix E € RIVIX4 where |V| is the length of the vo-
cabulary and d is the dimension of the word embeddings.
Different from the one-hot representation, word embeddings
are obtained from the whole corpus or certain external large
corpora, and thus contain global semantic information. As
shown in Figure 1, the i*" word in a sentence is represented
by a vector s/ € E. Such a distributed representation for
each word can naturally serve as an observed state for a sen-
tence. To obtain a unit state vector, we normalize each word



embedding vector (s_z-> € F) as follows:
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|s:) = (2)
Then, a sentence (e.g., question or answer) can correspond
to a mixed state represented by a density matrix. According
to the definition of density matrix, we can derive it as

p= Zpisi = va: |si)(si

where > . p; = 1, and p is symmetric, positive semidefi-
nite and of trace 1. S; is a semantic subspace spanned by
the embedding-based state vector |s;). Each outer product
|s;)(si| can be regarded as a partial Positive Operator-Valued
Measurement (partial POVM) (Blacoe 2014), which is more
general than the Projector-based Measurement in the origi-
nal QLM. In addition, compared with the projectors II; in
QLM, S; carries more semantic information due to the em-
bedding based state vectors |s;) as against the one-hot vec-
tors |e;) that forms I1T;.

In Eq. 3, p; (3, ps = 1) is the corresponding probability
of the state |s;) with respect to the i*" word s; in a given sen-
tence. In practice, the values of p; reflect the weights of the
words in different positions of the sentence, and can be con-
sidered as a parameter automatically adjusted in the training
process of the network.

To our best knowledge, current QA systems often directly
align the embedding vector for each word, but without con-
sidering the mixture of the semantic subspaces spanned by
the embedding vectors. With such a mixture space, we will
show that some useful similarity features/patterns will be de-
rived in our neural network based architecture. We can also
interpret the density matrix in Eq. 3 from the perspective
of covariance matrix. The density matrix to some extent re-
flects the covariance of different embedding dimensions for
a sentence. In other words, it represents how scattered the
words (in the sentence) will be in the embedded space.

3

Joint Representation for Question Answer Pair

Instead of separately modeling/projecting a text into one di-
mensional vector and then computing a distance-based score
between a pair of text fragments, two dimensional match-
ing model which uses a joint representation (a matrix or
multi-dimension tensor) have proven more effective (Hu et
al. 2014; Wan et al. 2016). Based on the density matrices for
a question and an answer, we can build a joint representation
for modeling the interaction between two density matrices
by their multiplication:

“

where p, and p, are the density matrix representation for
the question ¢ and the answer a, respectively.

In order to analyze the property of this joint representa-
tion, we can first decompose the density matrix of the query
through spectral decomposition:

pg =3 Nilri)(ril

Mqa = PqPa

(&)

5668

where )\; is an eigenvalue and |r;) is the corresponding
eigenvector. The eigenvector can be interpreted as a latent
semantic basis, and the eigenvalue can reflect how scat-
tered the words are in the corresponding basis. Similarly,
the answer density matrix p, can be decomposed into p,
>_;Aj|rj)(r;|. Then the joint representation between p,
and p, can be written as:

Papa = Y Nikj [ri) (rilr;) (1
i

, (6)
— Z)\i)\j (rilrj)|ra){r;l
]

In Eq. 6, the more similar two bases are, the bigger the
(ri|r;) (representing the inner product and the Cosine simi-
larity between |r;) and (r;|) is. Since (r;|r;) = tr(|r;)(r;|),

we have )
tr(pgpa) = Z)‘i/\j (rilr;) (7)
%,

which is the sum of Cosine similarities of between the la-
tent semantic dimensions. In this way, the joint representa-
tion can retain the distribution of similar bases and ignore
the dissimilar ones. More generally, tr(p,p,) is a general-
ization of inner product from vectors to matrices, which is
called trace inner product (Balkir 2014). Thus, the joint rep-
resentation matrix Mg, encodes the similarity information
across the question and the answer.

Learning to Match Density Matrices

Based on the above ideas, we propose two Neural Network
based Quantum-like Language Models (NNQLM) to match
the question-answer pairs.

NNQLM-I As shown in Figure 2, the first architecture
is designed to allow a direct and intuitive comparison with
the original QLM. In QLM, the similarity between a ques-
tion and an answer is obtained by the negative VN diver-
gence. However, because of the log operation for the matrix,
the negative VN divergence is hard to be integrated into an
end-to-end approach. In this paper, we adopt the trace inner
product. Formally, the trace inner product between two den-
sity matrices p, and p, (for a question ¢ and an answer a,
respectively) can be formulated as:

S(Pq: Pa) = tx(PgPa) (®)

Trace inner product has been used to calculate the similarity
between words or sentences (Blacoe, Kashefi, and Lapata
2013; Blacoe 2014) and has been proven to be an approx-
imation of the negative VN divergence (Sordoni, Bengio,
and Nie 2014). As aforementioned, it can be rewritten as
Ttrace = tT(Pan) - Zi,j )\z)\] <7"i|7"j>2, which can be un-
derstood as the semantic overlaps used to compute the sim-
ilarity between the density matrices of the question and the
answer. In addition, the diagonal elements (forming Zgiqg)
of M, are also adopted to enrich the feature representation,
since different diagonal elements may have different degrees
of importance for similarity measurement. Then, the feature
representation can be denoted as:

€))

'ffeat = [l'trace; fdiag]
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Figure 2: NNQLM-I. The first three layers are to obtain the single sentence representation, the fourth layer is to obtain the joint
representation of a QA pair, and the softmax layer is to match the QA pair.

A fully-connected layer and a softmax activation are
adopted. The outputs of the softmax layer are the probabili-
ties of positive and negative labels of an answer. The proba-
bility of the positive label is used as the similarity score for
ranking. The back propagation is trained with the negative
cross entropy loss:

N
L == [yilogh(Zsear) + (1 — yi) log(1 — h(Zsear))]

" (10)
where h(Zfcq:) is the output from softmax. In this way, we
extend the original QLM to an end-to-end method.

NNQLM-II In this architecture, we will adopt a “two-
dimensional” (2D) convolution (Hu et al. 2014) to learn rel-
atively more abstract representations, which are different
from the intuitive features (e.g., trace inner product Ty,qce
which is a similarity measure) in NNQLM-I. We think the
2D convolution is more suitable for the joint representa-
tion My,, as My, is not a simple concatenation of word
embedding vectors. For the simple concatenation represen-
tation, the convolution kernels slide only along each sin-
gle dimension, so that the corresponding convolution can
be considered as “one-dimensional” (1D) convolution (Hu
et al. 2014), which is actually used in many CNN-based
QA models (Severyn and Moschitti 2015; Yu et al. 2014;
Kim 2014).

The second architecture, namely NNQLM-II, is shown in
Figure 3. Recall that in the first architecture, only the diag-
onal values and the trace value of the joint representation
M, are involved in the training process (see Figure 2). In
NNQLM-II, we use 2D convolution kernels to scan all the
local parts (including the diagonal elements in the first archi-
tecture) of the joint representation and extract/filter as many
similarity patterns as possible in M.

Suppose the number of filters is c. The i** convolution
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operation is formulated as:

Ci = 0(Mya x W; +b;) (11)

where 1 < 7 < ¢, ¢ is the non-linear activation function, *
denotes the 2D convolution, W; and b; are the weight and
the bias respectively for the i*" convolution kernel, and C;
is the feature map. After the convolution layer obtains the
feature maps, we then use row-wise and column-wise max-
pooling to generate vectors 7{ € R4~*+1 and 7% € RI-F+1,
respectively, with the formulations as follows:

7=(g:7=12,....,d—k+1)
q; = max (C-(- )) (12)
T am<d—k41
i =(a;:j=1,2,...,d—k+1)
C_ o (13)
aj = _max  (Cim.,)
We concatenate these vectors as follow:
Teat = [P 705 3T T Tl Te) (14)

where 1 < ¢ < ¢ . The above convolution operation aims to
extract useful similarity patterns and each convolution ker-
nel corresponds to a feature. We can adjust the parameters
of the kernels when the model is being trained.

Related Work

Now, we present a brief review of the related work, including
the recent quantum-inspired work in Information Retrieval
(IR) and Natural Language Processing (NLP), and some rep-
resentative work in Question Answering.

Quantum-inspired Models for IR and NLP

van Rijsbergen (2004) argued that quantum theory can
unify the logical, geometric, and probabilistic IR models
by its mathematical formalism. After this pioneering work,
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Figure 3: NNQLM-II. The single sentence representation and the joint representation are the same as those in NNQLM-I, and
the rest layers are to match the QA pair by the similarity patterns learned by 2D-CNN.

Table 1: Statistics of TREC-QA and WikiQA

TREC-QA WIKIQA
TRAIN DEV TEST TRAIN DEV TEST
#Question 1229 82 100 873 126 243
#Pairs 53417 1148 1517 8672 1130 2351
%Correct  12.0 193 187 120 124 125

a range of quantum-inspired methods have been devel-
oped (Zuccon and Azzopardi 2010; Piwowarski et al. 2010;
Zhang et al. 2016), based on the analogy between IR rank-
ing and quantum phenomena (e.g., double-slit experiment).
Quantum theory has been also used for semantic represen-
tation in combination with Dependency Parsing Tree (Bla-
coe, Kashefi, and Lapata 2013), where state vectors repre-
sent word meanings and density matrices represent the un-
certainty of word meanings.

Sordoni, Nie, and Bengio (2013) successfully applied
quantum probability in Language Modeling (LM) and pro-
posed a Quantum Language Model (QLM), for which the
estimation of the density matrix is crucial. It is proven that
the density matrix is a more general representation for texts,
by looking at vector space model and language model in the
quantum formalism (Sordoni and Nie 2013). Using the idea
of quantum entropy minimization in QLM, Sordoni, Bengio,
and Nie (2014) proposed to learn latent concept embeddings
for query expansion. By devising a similarity function in the
latent concept space, the query representation will get closer
to the relevant document terms, thus benefiting the likeli-
hood of selecting good expansion terms. Indeed, this work
inspires us to develop QLM towards a supervised approach
and estimating density matrix analytically. Compared with
this work, our proposed model targets different application
task, and uses different approaches to density matrix estima-

5670

tion and learning architectures.

More recently, a session-based adaptive QLM was pro-
posed to model the evolution of density matrix and capture
the dynamic information need in search sessions (Li et al.
2015; 2016). The concept of quantum entanglement has also
been integrated into the quantum language model (Xie et al.
2015). Practically, the so-called pure high-order term asso-
ciation patterns (as a reflection of entanglement) are selected
as the compound terms for the input of density matrix esti-
mation. The above variants of QLM keeps the main archi-
tecture of QLM. In other words, they still carry out the rep-
resentation, estimation and ranking processes sequentially,
without a joint optimization strategy. Thus their potential to
improve the retrieval effectiveness is limited.

Answer Selection

In this paper, we apply the proposed end-to-end QLM in the
answer selection task. The aim of answer selection is to find
correct answer sentences from pre-selected answer candi-
dates given a question. In the answer selection task, end-to-
end methods represent the current state of the art.

Yu et al. (2014) used CNN to capture bigram information
in the question/answer. Severyn and Moschitti (2015) fur-
ther developed this idea and capture n-gram of higher order
dependency. Qiu and Huang (2015) also modeled n-gram
information in a single sentence and model the interactions



between sentences with a tensor layer. Later, more effec-
tive components are added to the CNN model, such as at-
tention mechanism (Yin et al. 2015; dos Santos et al. 2016)
and Noise-Contrastive Estimation (NCE) (Rao, He, and Lin
2016). Long-Short Term Memory (LSTM) has also been uti-
lized (Wang and Nyberg 2015; Tay et al. 2017).

Our work is the first attempt to introduce Quantum Lan-
guage Model (QLM) in the answer selection task. We will
show that the density matrix representation has a great po-
tential to effectively encode the mixture of semantic sub-
spaces and reflect how scattered the words of a sentence are
in the embedded space. To our best knowledge, such repre-
sentation for sentences and a further joint representation for
two sentences, are different from those representations used
in the aforementioned end-to-end QA approaches. In addi-
tion, different from existing QLM based models, we design
anew method to obtain density matrices and propose an end-
to-end model to integrate the density matrix representation
and the similarity matching into neural network structures.

Experiment
Datasets and Evaluation Metrics

Extensive experiments are conducted on the TREC-QA and
WikiQA datasets. TREC-QA is a standard benchmarking
dataset used in the Text REtrieval Conference (TREC)’s QA
track (8-13) (Wang, Smith, and Mitamura 2007). WikiQA
(Yang, Yih, and Meek 2015) is an open domain question-
answering dataset released by Microsoft Research, and we
use it for the subtask assuming there is at least one correct
answer for each question. The basic statistics of the datasets
are presented in Table 1. The evaluation metrics we use are
mean average precision (MAP) and mean reciprocal rank
(MRR), which are commonly used in previous works for the
same task with the same datasets.

Methods for Comparison and Parameter Settings

The methods for comparison are as follows. QLM is the
original quantum language model while QLM replaces
non-negative VN divergence with trace inner product as the
ranking function. NNQLM-I and NNQLM-II are our pro-
posed end-to-end QLMs.

For QLM, we initialize py by a diagonal matrix, in which
the diagonal elements are Term Frequency (TF) values of
the corresponding words. The initial matrices are normal-
ized with a unit trace. The size of sliding window is 5.

For NNQLMs, the hyper parameters are listed in Table
2. The parameters that need to be trained are the position
weights p; in density matrices (see Eq. 3), the weights of the
softmax layer, and the parameters for the convolution layer.
The word embeddings are trained by word2vec (Mikolov et
al. 2013) on English Wikimedia'. The dimensionality is 50,
and the Out-of-Vocabulary words are randomly initialized
by a uniform distribution in the range of (-0.25, 0.25). In
NNQLM-I, the embeddings are updated during training. For
NNQLM-II, we keep the embeddings static, which is found
in our pilot experiments to outperform dynamically updating
the embeddings.

"https://dumps.wikimedia.org/
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Results

A series of experiments are carried out for a systematic eval-
uation. Table 3 summarizes the experiment results.

In the first group, we compare QLM with QLM 7. On both
TREC-QA and WIKIQA, QLM achieves similar results to
QLM< . This is consistent with our previous explanation that
the trace inner product is an approximation of negative VN
divergence. Thus, it is reasonable to use it as a similarity
measure in our first architecture (NNQLM-I) based on the
joint representation.

In the second group, we compare two NNQLMs with
QLM. NNQLM-I can outperform QLM, which shows the
effectiveness of our new definition of the density matrix
together with the simple training algorithm. Recall that in
NNQLM-I, only the diagonal and trace values of the joint
representation are involved in the training process.

NNQLM-II, which uses 2D convolution neural network
(2D-CNN for short), largely outperforms NNQLM-I. It ver-
ifies our earlier analysis that the 2D-CNN is able to learn
richer similarity features than those learned from the first ar-
chitecture. It also implies that the joint representation of den-
sity matrices has a great potential as a kind of representation
for learning effective inter-sentence similarity information.

As we can see from Table 3, NNQLM-II can significantly
improve the original QLM on both datasets (by 11.87%
MAP and 13.61% MRR on TREC-QA, and by 27.15% MAP
and 28.09% on WIKIQA). The significant test is performed
using the Wilcoxon signed-rank test with p<0.05.

In the third group, we compare NNQLM-II with the ex-
isting neural network based approaches (Yu et al. 2014;
Severyn and Moschitti 2015; Yin et al. 2015; Wang and Ny-
berg 2015; Yang et al. 2016)>. On TREC-QA, NNQLM-
II achieves the best performance over the comparative ap-
proaches. Note that NNQLM-II outperforms a strong base-
line (Yang et al. 2016) by 2.46% MAP and 3.24% MRR. On
WikiQA, NNQLM-II has outperformed a baseline method
proposed (Yu et al. 2014), for which its WikiQA results are
reported in (Yang, Yih, and Meek 2015).

Discussions

NNQLM-II has not yet outperformed the other two baselines
on WikiQA. The possible reason is that although 2D-CNN
can learn useful similarity patterns for the QA task, there
can be other useful features (e.g, the structure in a sentence)
that could influence the performance. In fact, We can add
some other features and get improvements on WikiQA. In
our future work, we will improve the network structure of
NNQLM-II for a better model.

In addition, we would like to further explain the mech-
anism of our model in comparison with the existing QA
models. The difference of our proposed model stems from
the density matrix representation. Such a matrix can rep-
resent the mixture of the semantic subspaces, and the joint
representation of question and answer matrices can encode

>The WIKIQA results of the methods proposed in (Yu et al.
2014) and (Yin et al. 2015) are extracted from (Yang, Yih, and
Meek 2015) and (dos Santos et al. 2016), respectively, excluding
handcrafted features.



Table 2: The Hyper Parameters of NNQLM

Method TREC-QA WIKIQA
NNQLM-I NNQLM-II NNQLM-I NNQLM-II

learning rate  0.01 0.01 0.08 0.02

batchsize 100 100 100 140

filter number  / 65 / 150

filter size / 40 / 40

Table 3: Results on TREC-QA and WIKIQA

TREC-QA WIKIQA
Method MAP MRR MAP  MRR
QLM 0.6784 0.7265 0.5109 0.5148
QLMr 0.6683 0.7280 0.5108 0.5145
NNQLM-I 0.6791 0.7529 0.5462 0.5574
NNQLM-II 0.7589 0.8254 0.6496 0.6594
(Yuetal. 2014) 0.5693 0.6613 0.6190 0.6281
(Severyn and Moschitti, 2015, 2016)  0.6709  0.7280 0.6661  0.6851
(Yin et al. 2015) / / 0.6600 0.6770
(Wang and Nyberg 2015) 0.5928 0.5928 / /
(Yang et al. 2016) 0.7407 0.7995 / /

similarity patterns. By using the 2D-CNN, we can extract
useful similarity patterns and obtain a good performance on
the answer selection task. On the other hand, most existing
neural network based QA models concatenates word embed-
ding vectors. Based on such concatenation, the 1D convo-
lution neural networks (1D-CNN for short) can be directly
performed. We have carried out the above experiments for
a comparison. In the future, we will systematically analyze
and evaluate the above two different mechanisms in-depth.

Conclusions and Future Work

In this paper, we have proposed an Neural-Network based
Quantum-like Language Models (namely NNQLM), which
substantially extend the original Quantum Language Model
(QLM) to an end-to-end mechanism, with application to the
Question Answering (QA) task. To the best of our knowl-
edge, this is the first time for the QLM to be extended
with neural network architectures and for the quantum or
quantum-like models to applied to QA. We have designed a
new density matrix based on word embeddings, and such a
density matrix for a single sentence, together with the joint
representation for sentence pairs, can be integrated into the
neural network architectures for an effective joint training.

Systematic experiments on TREC_QA and WikiQA have
demonstrated the applicability and effectiveness of QLM
and NNQLMs. Our proposed NNQLM-II achieves a signif-
icant improvement over QLM on both datasets, and outper-
forms a strong baseline (Yang et al. 2016) by 2.46% (MAP)
and 3.24% (MRR) on TREC-QA.

A straightforward future research direction is to explore
other neural networks for NNQLM. Our models can also be
applied to other tasks, especially for short text pair matching
tasks. In addition, for those QA pairs that are not selected
by the similarity matching, e.g., in a casual inference case,
we can encode an additional component (e.g., an inference
function) in the quantum-like models. It is also interesting
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to explore the capability of NNQLMs using density matrices
for the representation learning task.
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