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Abstract

We propose a generative adversarial neural network model
for relation classification that attempts to emulate the way in
which human analysts might process sentences. Our approach
provides two unique benefits over existing capabilities: (1)
we make predictions by finding and exploiting supportive ra-
tionales to improve interpretability (i.e. words or phrases ex-
tracted from a sentence that a person can reason upon), and
(2) we allow predictions to be easily corrected by adjusting
the rationales. Our model consists of three stages: Genera-
tor, Selector, and Encoder. The Generator identifies candidate
text fragments; the Selector decides which fragments can be
used as rationales depending on the goal; and finally, the En-
coder performs relation reasoning on the rationales. While
the Encoder is trained in a supervised manner to classify re-
lations, the Generator and Selector are designed as unsuper-
vised models to identify rationales without prior knowledge,
although they can be semi-supervised through human anno-
tations. We evaluate our model on data from SemEval 2010
that provides 19 relation-classes. Experiments demonstrate
that our approach outperforms state-of-the-art models, and
that our model is capable of extracting good rationales on its
own as well as benefiting from labeled rationales if provided.

Introduction
Sentence-level entity relation classification is the task
of recognizing the relationship between two entities
within a sentence. It is the core function of autonomous
knowledge discovery in unstructured text (such as web
documents), and thus is critical for applications in-
cluding information extraction, knowledge base con-
struction, and many other higher level NLP tasks (?;
?). For example, given the following sentence:

He had chest pains and [headaches]e1 from [mold]e2 in the
bedrooms.

with marked target entity e1 = “headaches” and e2 =
“mold”, the goal would be to correctly identify that this sen-
tence expresses a casual relationship from e2 to e1, for which
we use the notation Cause-Effect(e2,e1).

The field of entity-relation classification has greatly
benefited from recent developments in neural network
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models, and these benefits have propagated into many
other important applications like document classification,
sentiment analysis, summarization, topic discovery, word-
sense disambiguation, co-reference identification and more.
Initially neural models pushed classification performance to
new heights, improving F1 score on relation classification to
88% (?) compared to 82.2% using an SVM with engineered
features (?). However, neural models often seem to perform
incomprehensible operations on the sentence to reason
desired knowledge, whereas human readers usually derive
relations between entities by locating key indicating words.
For instance, given the following sentence, a human will
likely focus only on a few keywords that explain the
core relationships, such as the Component-Whole(e1,e2)
relationship, whereas a neural model will leverage every
word in the sentence based on computed scores:

Example sentence: The disgusting scene was retaliation
against her brother Philip who rents the [room]e1 inside this
apartment [house]e2 on Lombard street.
Human interpretation: The disgusting scene was retalia-
tion against her brother Philip who rents the [room]e1 in-
side this apartment [house]e2 on Lombard street.
Attention-based CNN models: The0.02 disgusting0.03
scene0.1 was0.02 retaliation0.03 against0.07 her0.015
brother0.02 Philip0.04 who0.08 rents0.03 the0.1 [room]e1
inside0.13 this0.03 apartment0.09 [house]e2 on0.01

Lombard0.03 street0.08.
(value behind the words stands for the derived impor-
tance of the word for determining the relation)

In this research, we aim to improve interpretability of neu-
ral models by imitating the logic used by human annota-
tors through a three-stage Generator-Selector-Encoder ap-
proach. The Generator first enumerates candidate text frag-
ments from the sentence using a Recurrent Neural Network
(RNN) model, then the Selector extracts fragments that are
informative for determining the relation and passes these on
to the Encoder to make final relation predictions. We refer to
the text fragments as rationales as per the definition in (?;
?; ?). Some good examples of rationales are like “inside” in
the above example sentence, or “caused”, “resulted in” and
“leads to” for entities of Cause-Effect relationship.

However, under most situations, a heavily annotated
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Figure 1: Model Structure with sample input sentence. Entities are given from the dataset. The Generator selects candidate
rationales, and the Selector enumerates all possible combinations of candidates with entities and selects one ‘best performing
candidate set’. An adversary Generator and Selector carry out the same process using a randomized approach. Candidate sets are
then transformed into a vector representation by the Encoder and are evaluated against the ground-truth. Rewards are fed back
to the Generator if the Encoder is able to identify candidate sets that are generated randomly, while the Selector is rewarded
if the best performing rationale candidate set outperforms the one in the adversary. The best performing candidate set from
Selector are finally considered as the extracted rationales, and then used in the Encoder to predict entity relation.

dataset with rationales is often too expensive to create; hence
our Generator and Selector are mostly trained to identify ra-
tionales in a unsupervised manner. The Generator and Se-
lector employ adversarial reinforcement learning where they
are rewarded when their outputs are favored in the Encoder
over a separate adversary set of Generator and Selector. We
illustrate the process in Figure ??. Finally, as many learning
systems can be manually optimized, we facilitate a refine-
ment process in our pipeline. The refinement process pro-
vides an interface for users to examine and correct rationales
to refine the predictions. After refinement, the model is then
retrained to incorporate the changes. When refinements are
provided, the Generator and Selector are trained in a semi-
supervised manner.

Experiments demonstrate that our model produces an
89.5% F1 score on relation classification tasks, compared
to a score of 88.0% for the leading state-of-the-art approach
(?). While the quality of interpretability is difficult to mea-
sure without human evaluation, we make the assumption
that rationales that lead to better F1 scores are more inter-
pretable than those that lead to lower scores. In effect, we
treat the Encoder as a proxy human reader. Based on this
assumption, we evaluated the quality of our rationales by
treating attention models as proxy rationale generating mod-
els, where rationales are the highest-scoring consecutive n-
grams in the attention model. Compared to the proxy ratio-
nale models, experiments using rationales generated from
our model show a 1.7∼5.0% improvement in F1 score. In

addition, in-depth analysis shows that our model is capa-
ble of identifying good rationales that a human reader can
use to infer relationships, and predictions can be corrected if
provided with better rationales. We naively annotated some
rationales using the guidelines in ? (?). We discovered that,
even with minimal annotations on the dataset, the refined
results showed improvement in both F1 score and training
speed.

Related Work

Interpretable neural network models have recently become
of increased interest to the natural language processing re-
search community (?). Several approaches to interpretability
have been introduced, including: visualization of activation-
functions within neural networks (?; ?), accrediting dis-
tributed word vectors (?), relevance propagation (?), atten-
tion based models (?), and rationale finding (?; ?; ?). Even
though each model is optimized for a slightly different task,
a common approach they adopted is to discriminate the in-
put data and selectively use fragments from the input. In-
terpretability can then be measured by the quality of the se-
lected fragments.

The major distinction between the attempts to demystify
neural networks is thus the degree of discrimination imposed
on the input data. Less-discriminating approaches like atten-
tion based models usually allow the model to use the whole
input data. These models introduce weights into the models
where the weights are commonly generated based on a sim-
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ilarity function between signals in the sentence with the de-
sired goal. Signals, which are often n-grams in the sentence,
receive higher weights if analogous to the desired goal, and
can be considered as “highlights” of the data. While the
major benefit of this approach is that can be effective even
with naive methods like n-gram to generate signals, weights
attributed to the signals do not always correspond to how
humans might approach a given problem. Also, complex-
ity of signal generation can become exponential if consid-
ering nonconsecutive n-grams cases. Most recent research
in entity-relation classification falls into the low-constraint
category.

High-discriminating approaches, which aim to extract ra-
tionales for reasoning, pose a higher degree of constraint of
selecting data to be used in the model. Models that fall un-
der this category are usually trained to select only part of the
data for reasoning, and to obscure the rest of the data. The
criteria for selection can be totally data-oriented or manu-
ally curated. The ultimate perk of posing constraints on the
model is the proximity to human reasoning which in turn
gives better interpretability. Furthermore, it introduces meth-
ods to selectively ignore data to be considered, which can in
turn helps downsize complexity for skipping n-grams cases.

We position this work on the high-constraint (rationale-
finding) side comparing with the attention-based models.
In our approach, we find and use nonconsecutive words as
rationales in a completely unsupervised way in O(NM)
where M ≤ N .

Adversarial Rationale Generation

We formalize here the general idea of rationale genera-
tion for entity relationship classification in this research.
Consider an input sequence of words x = {xt}Tt=1, where
e1 and e2 are the entities of interest and e1 and e2 ⊂
{x1, x2, ..., xT }. T is the length of the input sequence. The
goal of relation classification is to use (x,e1,e2) to predict
the relationship y between e1 and e2. On top of the repre-
sentation learning regime this research falls into, we refer
to the prediction process as encoding the matrix (x,e1,e2)
to a target vector that is representative of the desired rela-
tionship. We use enc(x,e1,e2) to represent this process. The
challenge in this research lies in the complexity within the
encoding structure that obscures interpretability. This results
in two problems: 1) unjustifiable results, and 2) difficulty in
adjusting the model when errors are detected.

The general idea of rationale generation for relation clas-
sification is to extract a set of rationales r that are incorpo-
rated into the encoding process as enc(r, x,e1,e2), where
r ⊂ {x1, x2, ..., xT } but r �∈ {e1, e2}. The goal of select-
ing rationales is to provide a set of terms that help to justify
relationships in the sentence, and that make sense to human
readers. For example, consider the following sentence:
Example sentence: The disgusting scene was retaliation
against her brother Philip who rents the [room]e1 inside this
apartment [house]e2 on Lombard street.

This entails a Component-Whole(e1,e2) relation-
ship, hence good rationales should be words like
{inside,apartment} which readers would use to describe the

relationship.
We split the rationale generation process into two steps:

the first step is candidate generation gen(x,e1,e2), which
samples c = {ct}Tt=1 from the input and ct ∈ [0, 1] repre-
sents that whether xt should be considered as a rationale ;
the second step is to sample rationales r from c and is rep-
resented as sel(c,e1,e2).

We can consider this as an adversarial problem where our
target is not to find the best words that the Encoder can rea-
son upon, but instead to find a set of words that is more use-
ful for the Encoder than another set of words. Hence, the
goal of the Generator and Selector is to generate rationales
that enc(r,x,e1,e2) can outperforms another set of ratio-
nales enc(r̃,x,e1,e2).

Building on the adversarial approach, the selection of ra-
tionales can be completely unsupervised. However, another
desirable characteristic is to make the model capable of hu-
man intervention. While the rationales are trained unsuper-
vised, we introduce a rre factor where “re” indicates refine-
ment, and can be used to support semi-supervised training.

A difference between this model and previous work is
worth noting: in ? (?), the aim is to generate concise and rea-
sonable summaries for customer reviews. In their research,
the goal of gen(x) is to generate rationales r that ensure
that enc(x) and enc(r) are at similar points in the target
vector space. In other words, the goal of r in their research
is to serve as a proxy of x and fool enc(·), while in our work
the goal of r is to outperform all possible short enumerations
of x in enc(·).

Encoder, Generator and Selector

We now describe the details of each component in our
model. We begin by describing the Encoder in order to high-
light the key contributions of our model.

Encoder

Given an input training tuple (x,e1,e2,y), where x =
{xt}Tt=1, and y is the one-hot m dimensional vector rep-
resenting the relation class. The goal of the Encoder
enc(r,x,e1,e2) is to produce a probability distribution ŷ that
approximates to y, given the set of rationales r as explained
in the previous section. The quality of the Encoder is thus
determined by the closeness between y and ŷ, where close-
ness is often referred to as loss, and quantified as:

loss =

|N |∑
i=1

−yi · log(ŷi) (1)

where N is the training set and |N | is the size of the set.
The Encoder performs two computations: 1) it generates

a representation of (r,x,e1,e2), and 2) it generates ŷ by pro-
jecting the representation of (r,x,e1,e2) to the y space. The
second part is achieved by a simple feed-forward neural net-
work with a softmax function. The first computation consists
of two parts: computing Vx which represents the encoded
sentence, and Vr which represents the encoded rationals r
and the entities (e1,e2).
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To compute Vx, we incorporate a Convolutional Neural
Network (CNN) model, which aims to represent the overall
sentence meaning. The choice of CNN is based on recent
successes in NLP applications (?; ?). As in ? (?), the CNN
model contains a set of convolutional filters W � and bias
terms b�. These filters are applied to all possible consecu-
tive n-grams of length � in the sentence so that we can learn
a representation for every n-gram in the sentence. Finally,
to derive a sentence representation from n-gram representa-
tions, we adopt the commonly used approach of taking only
the most significant feature for each dimension of the n-gram
representations - this is known as max-pooling.

We compute Vr through a feed-forward neural network
with a weight matrix Wr and a bias term br. Note that the
input is order sensitive. For example, if r = {x10, x15},
e1 = x4 and e2 = x7, which means the model uses the
10th and 15th word of the sentence as rationale, the input
should be sorted as (e1,e2,x10,x15), whereas the input will
be (x3,e1,e2,x10) if r = {x3, x10}.

In summary, the Encoder enc(r,x,e1,e2) receives as in-
put the selected rationales, the entities, and the target sen-
tence. In mathematical terms:

ŷ = enc(r,x, e1, e2) (2)
= softmax(Wenc · [Vr ⊕ Vx ⊕ e1 ⊕ e2] + benc)

(⊕ = vector concatenation)
Vr = Relu(Wr · [r, e1, e2] + br)

V �
xt

= Relu(W �
x · xt:t+� + b�x)

V �
x = [V �

x1
, V �

x2
, ..., V �

xT−�
]

Vx = {maxpooling(V �
x )}�∈L

Generator

The goal of the Generator gen(x) is to extract pieces of text
from input sentence x that can be used to connect and pre-
dict the relationships between target entities in the sentence.
A different way to view the role of the generator is to de-
rive another set of binary variables c = {ct}Tt=1 where each
ct ∈ [0, 1] is whether xt is chosen as a candidate rationale.
We represent it as c ∼ gen(x).

We adopted a recurrent neural network (RNN) model in
this work to compute c due to the sequential characteristics
of x and c. RNNs are ideal for sequential modeling, where
the output of step t is used as a part of the input for step t+1.
Specifically, all inputs of the model share the same set of
transformations and output functions, where these functions
help to project inputs to the target dimensional space, and
are fed back for use in the next step. In this work, we use
a bi-directional RNN where the input is modeled from both
ends, and shares the same parameters in both directions. In
the formal description in Equation (3), both W and U are
weight matrices, and b are bias terms.

RecurrentUnit : (3)
zt = σ(Wz · xt + Uz · ht−1 + bz)

ot = σ(Wr · xt + Ur · ht−1 + br)

ĥt = tanh(Wh · xt + Uh · (ht−1 ◦ ot) + bh)

ht = zt ◦ ĥt + (1− zt) ◦ ht−1

(◦ = elementwise-multiplication)
←−
ht = RecurrentUnit(xt,

←−−
ht+1)

−→
ht = RecurrentUnit(xt,

−−→
ht−1)

st = sigmoid(Ws · [←−ht ,
−→
ht , e1, e2] + bs)

In the most simplistic generator, the probability that xt is
chosen is conditionally independent of all other x. In other
words, we can sample candidate c from a uniform distri-
bution using {st}Tt=1. However, we observed from the data
set that our target rationales often consist only very lim-
ited words - for example “room inside apartment”. We thus
added the following Equation (4) for c to limit the number
of rationales selected to be at most J .

ct =

{
1, sort({(st > rand(0, 1)) · st}Tt=1)[1 : J ]

0, otherwise
(4)

c = {ct}Tt=1

Selector

The last component of the model is the Selector sel(c),
where the goal of the Selector is to choose rationales r from
c. The Selector is a feed-forward neural network can be con-
sidered as r ∼ sel(c), and defined as follows:

ĉjt =

{
1, sort({ct · st}Tt=1)[1 : j], j ∈ [1 : J ]

0, otherwise
(5)

ĉj = {ĉjt}
T

t=1,where ĉjt = 1

score(ĉj) = Wc · enc(ĉj ,x, e1, e2)
scoresj = softmax({score(ĉj)}Jj=1)

j

ˆscoresj =

{
1 , j = argmax(scores)

0 , otherwise

r = {xt},where ĉjt = 1, j = argmax(scores)

Notice that, in order to generate scores for each candidate,
the model adopts the same weight functions in the Encoder
section. A more intuitive way to understand this is that the
Selector scores each candidate by their expected projection
and contribution to the y-space. For instance, if using two
rationales (j = 2) outperforms using only one rationale (j =
1), the Selector will choose to use two rationales.
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Joint Objective and Adversarial Training

In order to jointly train the three components, we formu-
late a joint loss function that binds the components together.
However, the major challenge lies in the fact that both the
Generator and Selector are not provided with ground-truth
labels, and hence are unsupervised. In order to facilitate this
model, we formulate an adversarial training regime.

Our adversarial training model is similar to that used in
the GAN model (?). In previous work, the example appli-
cation was generating images based on sentences, where
the Generator generates a fake image that tries to fool the
Encoder. After training, the Generator becomes effective at
generating fooling images, and the Encoder become discern-
ing at identifying these fakes. We applied this same concept
in our model but with one key modification: all the com-
ponents of our model work together and compete with an
adversary Generator and Selector.

In our model, the Generator competes with an adversary
Generator, for which we use a randomized approach. The
adversary Generator will sample c̃ randomly from x. The
adversary rationales r̃ will then be selected using c̃ as per
Equation (5). r̃ will be passed to the Encoder to generate a
projection onto the target dimension, which we consider as
ỹ. We compare ỹ with ŷ in terms of their similarity to y and
is denoted by D ∈ {0, 1}. D = 1 when ŷ is closer to y com-
paring to ỹ and is noted as ‘model success case’, meanwhile
1 − D = 1 for the opposite situation and is noted as ‘ad-
versary success case’. We further split ŷ, ỹ and D into ŷj ,
ỹj , Dj and j ∈ [1 : J ], where Dj represents that ŷj out-
performs ỹj when using j rationales. Finally, we introduce a
penalizing factor P j when j �= argmax(scores) to penal-
ize gradients from less-performing cases. The objective for
each component reacts to the two different cases differently
during training, which we summarize as follows:

f(cjt ) = −log(st) · cjt − log(1− st) · (1− cjt )

fy(ŷ
j
i ) = −yi · log(ŷji )

Lgenerator =
J∑

j=1

T∑
t=1

Pj

[
Djf(ĉjt ) + (1−Dj)f(c̃jt )

]

Lselector =
J∑

j=1

−Dj ∗ ˆscoresj ∗ log(scoresj)

Lencoder =
J∑

j=1

P j

[
Djfy(ŷ

j)− (1−Dj)fy(ỹ
j)

]

(6)

The final joint objective and expected cost is defined as:

L(r,x, e1, e2, y) = Lgenerator +Lselector +Lencoder (7)

min
θeθgθs

∑
(x,e1,e2,y)∈N

Er∼sel(c),c∼gen(x)L(r,x, e1, e2, y)

(8)
where N is the training set and θe, θg, θs are parameters

used in the Encoder, Generator and Selector respectively.

Notice that the Generator and Encoder handle losses from
adversary success cases differently. The Generator exploits
the adversary success cases as a potential learning resource,
and uses r̃ to train the RNN model. However, the Encoder
is trying to make good predictions based only on rationales
from the Generator, so it will treat good rationales from the
adversary Generator as false cases and try to maximize ad-
versary losses.

Finally, if ground-truth labels or human interventions for
rationales rre are provided, then we change r in Equation
(2) and ĉ in Equation (6) to rre. This can be understood as a
simple sequential discriminatory model where the Generator
and the Selector is guided by rre. However, while keeping
the reminder of the model the same, introducing rre does
not guarantee the Selector and Encoder will use rre while
reasoning.

Experiments

Dataset

We performed our evaluation experiments on SemEval 2010
Task 8 data. A collection of sentences is provided, where
each sentence is labeled with the target entities and the rela-
tion between the entities.

The dataset contains 10,717 sentences, and 9 types of
relationship plus an “Other” class. Relationship types (ex-
cept for “Other”) are expressed bi-directionally, making 19
classes in total. Following SemEval 2010’s protocol, we
used the macro-F1 metric in the experiment, excluding all
cases of the “Other” class.

Experimental Setup

Here we describe the detailed parameters used in the exper-
iment. We initialized word vectors using the GoogleNews1

vector that is learned by word2vec algorithm. Word vector
dimensionality is set to 300. We naively set the the recurrent
unit size in the Generator to 50, and the CNN filter size in
the Encoder 50 for each �. We use at most 3 rationales and
set the penalizing factor P j to 0.5 based on our analysis on
the training set.

We used the Adagrad optimizer in our experiments - the
learning rate is initially set to 0.01, and reduces by 10% after
every iteration. During training, we sampled 50 times from
the Generator, and re-sampled 50 times when training the
Selector and Encoder.

Results

We present the comparison between our model and other
models in Table ??. Dependency tree models are neural net-
work models that utilize a grammar parser to predict relation
classes. Different models utilize the dependency tree differ-
ently. For instance in MVRNN (?) they used the whole de-
pendency tree, while in SPTree (?) they experimented using
both the whole tree and only nodes on the path that con-
nected the target entities. We refer to other models that work
without using a dependency tree as independent models.

1https://code.google.com/p/word2vec
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Classifier F1

Manually Engineered Models
SVM(?) 82.2
Dependency Tree Models
RNN (?) 77.6
MVRNN (?) 82.4
FCM (?) 83.0
Hybrid FCM (?) 83.4
DepNN (?) 83.6
DRNNs (?) 85.6
SPTree (?) 84.5
Independent Models
CNN & softmax (?) 82.7
Stackforward(?) 83.4
Vote-bidirect (?) 84.1
Vote-backward (?) 84.1
ATT-Input-CNN (?) 87.5
ATT-Pooling-CNN (?) 88.0
Our model 89.5

Table 1: Comparisons with benchmarking models

Besides the general goal of improving F1 score, we also
evaluated the generated rationales qualities. Due to the size
of the dataset, we were not able to annotate all samples man-
ually - in order to handle this, we make an assumption that an
Encoder will perform better if provided with rationales that
are more interpretable, that is, rationales which are seman-
tically closer to the entities and the desired goal. In effect,
we utilize a set of identically-initialized Encoders, and eval-
uate rationales from different rationale finding approaches
through a naive way by simply comparing the correspond-
ing F1 scores from each Encoder.

However, since there are few comparable rationale mod-
els in this field, we created a proxy rationale model for com-
parison. We adapted a CNN model similar to ? (?), and
added attention weights calculated by the similarity with
(e1,e2). To extract rationales from the proxy model, we first
trained the CNN model, then extracted the top-weighted text
fragments in the model as rationales. The proxy rationales
were finally sent to the Encoder to compare with our model.
We experimented this idea with 1, 2 and 3 rationales ex-
tracted from the proxy model, and results are shown in Table
??.

Classifier F1

Proxy attention model 87.5
Proxy rationales + Encoder
One rationale from proxy 84.5
Two rationales from proxy 85.3
Three rationales from proxy 87.8
Our model 89.5

Table 2: Comparison with proxy rationale models.

Finally, we summarized a few samples of rationales cho-
sen from the test set in Table ??. From the table, we see
that the selected rationales are similar to those that a human

reader might use to infer the relationship between entities.

Results with Ground Truth for Rationales

Finally we evaluate our model when human annotators are
included to provide ground-truth for rationales. While we
were not able to perform detailed labeling, we naively gen-
erated ground-truth for rationales following the guidelines
provided by SemEval 2010 task 8. We list the words that
were used as ground-truth for rationales in Table ??. The
Generator and Selector were trained in a supervised fash-
ion if a ground-truth rationale was contained in a training
sentence. Training samples that did not contain ground-truth
rationales were trained in an unsupervised manner.

We injected ground-truth at three different training stages
of the model: 1) converged, 2) converging, 3) from the be-
ginning. Providing ground-truth to converged and converg-
ing models is intended to simulate models at production
stage, and where human annotators are included only for fi-
nal adjustment. Intervention performed at the beginning is
designed to see how the model performs when it is closer to
a fully supervised model.

We show the results in Figure 2. We can see that, when
providing rationale labels at the beginning, the model learns
much faster. Note that there is a performance drop in the con-
verged and converging models immediately after ground-
truth is provided at iteration 15 and 25 respectively. This
result is expected since the input to the Encoder changes af-
ter introducing the labeled rationales, and this component
requires a few iterations to assimilate the changes. Eventu-
ally, models with ground-truth labels achieve slightly better
performance, typically a 1-1.5% improvement on F1 score.

Figure 2: F1 results using different intervention strategy.

Finally, we present a few example cases that were origi-
nally predicted incorrectly but that were subsequently cor-
rected after manual labeling of rationales. Rationales are de-
noted in bold below:
Example sentence: Instrument-Agency(e2,e1):
Before intervention - The [generator]e1 creates electricity
using much the same [principle]e2 as the alternator on your
car ( depending on the turbine type )”
(predicted as Cause-Effect(e2,e1))
After intervention - The [generator]e1 creates electricity
using much the same [principle]e2 as the alternator on
your car ( depending on the turbine type )”
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Relation Class Selected rationales with target entities

Cause-Effect congestione1 caused delayse2 , bombinge1 ... resulted in ... deathse2
devastatione1 caused by the ... tsunamie2 , anxietye1 caused by the accidente2

Component-Whole carriagese1 of ... traine2, titlee1 of the booke2, the kitchene1 has a fridgee2
horne1 has ... ende2, this ... machinee1 has ... reelse2, the shanke1 of the hooke2

Content-Container objecte1 was ... bage2, wallete1 was inside ... lockere2, a mousee1 ... found in ... loafe2
bottlee1 ... of ... duste2 , baskete1 was full ... facese2, the backpacke2 contained a ... computere2

Entity-Destination yeaste1 into ... tubese2 , niecee1 moved into... apartmente2 ...
he put ... forkfule1 ... mouthe2, heroe1 enters into the buildinge2

Entity-Origin artworke1 ... from ... eveninge2, crisise1 originated in ... sectore2
takara ... is a ... plume1 winee2, the soule1 departs from the bodye2

Instrument-Agency marking birdse1 ... researcherse2, this techniquee1 ... used ...websitese2
techniciane1 uses ... emulatore2, shamane1 cured ... with herbse2, mane1 attacked ... with a ... bate2

Member-Collection chiefe1 of ... policee2, deane1 of the facultye2 , father mothere1 was ... member ... teame2

clowdere1 of catse2, an anthologye1 of ... poemse2, the core ... bodye1 of ... traderse2

Message-Topic booke1 provides ... rolee2,this figuree1 illustrates ... resultse2, the talke1 was about ... operationse2
detailse1 about ... interviewe2, the ... episodee1 ... documented on videoe2

Product-Producer messagee1 from ... friende2, papere1 co-authored by ... staffe2 ,blisterse1 are caused by antibodiese2
coopere1 makes leak ... barrelse2, the researcherse1 produced a reporte2

Table 3: List of words/phrases that are selected as rationales by our model. Additional words are denoted as ... if they are located
between entities and rationales but are not selected as rationales.

Relation Class Selected Words
Cause-Effect from, cause, caused, causes
Component-Whole of
Content-Container in
Entity-Destination to, into
Entity-Origin from
Instrument-Agency use, uses, used, using
Member-Collection of, is
Message-Topic of,about
Product-Producer make, makes, made

Table 4: List of ground-truth rationales used

Example sentence: Instrument-Agency(e2,e1):
Before intervention - The [manufacturer]e1 assembles the
order using [parts]e2 supplied by his preferred supplier ,
and ships the order to the retailer.
(predicted as Product-Producer(e2,e1))
After intervention - ”The [manufacturer]e1 assembles the
order using [parts]e2 supplied by his preferred supplier ,
and ships the order to the retailer.”

Discussion

Rationale Labeling

In the previous section we chose to label the rationales using
a naive approach. The major drawback was that human lan-
guage is complicated and often there exists several ways to
express a relation class. While our naive approach only con-
siders only very basic cases, future research would benefit
from detailed annotated rationales for better generalizabil-
ity.

End-to-End Training and Combining Components

At early stages of this research, we experimented with com-
bining the Selector and Generator, and also tried end-to-end
training. However we noticed that these often led to worse
performance. We reason that this is because, in both se-
tups, the selected rationales are heavily biased by the first
few training epochs. However, this might not apply to cases
where ground-truth for rationales is provided.

No-Rationale Cases

We notice that there are few cases where the model might
provide ambiguous insight due to no good rationales being
present, such as in the following example. The selected ra-
tionale, which is not useful, is shown in bold:
Component-Whole(e2,e1) - At the bottom of the [church]e1
[steps]e2 were three brown parishioners; two more were
perched precariously on the railing of the deck.

We were focussed only on selecting rationales in this
work; however it may be possible to handle the no-rationale
case in future work by introducing a mechanism that turns
the Generator and Selector off under certain circumstances.

Potential Uses

Besides relation classification, another potential use-case for
our model is in generating rules for relation classification. It
should be possible to automatically discover sets of rules for
relation classification by supplying the Generator and Selec-
tor with carefully chosen test cases. This may be useful for
knowledge base construction since building extraction rules
manually becomes infeasible as the number of possible re-
lation classes increases.
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Conclusion

In this paper, we proposed a novel generative adversarial ap-
proach for entity relation class prediction. In our model, we
first generate a set of candidate rationales inside a genera-
tive RNN, and then predict the relationship between enti-
ties using a discriminative model that exploits the rationales.
The generative process in our model can be turned into a
semi-supervised model that is capable of incorporating hu-
man annotations. This not only boosts prediction accuracy
but also provides a way for users to easily interpret and
adjust the model. Quantitative analysis demonstrated that
our model provides better performance than state-of-the-art
dependency-tree and independent models. In addition, we
showed that our model is able to select rationales that make
sense to humans when combined with target entities.
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