The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

Automatic Generation of Text
Descriptive Comments for Code Blocks

Yuding Liang, Kenny Q. Zhu*
liangyuding @sjtu.edu.cn, kzhu@cs.sjtu.edu.cn
Department of Computer Science and Engineering
Shanghai Jiao Tong University
800 Dongchuan Road, Shanghai, China 200240

Abstract

We propose a framework to automatically generate descrip-
tive comments for source code blocks. While this problem
has been studied by many researchers previously, their meth-
ods are mostly based on fixed template and achieves poor
results. Our framework does not rely on any template, but
makes use of a new recursive neural network called Code-
RNN to extract features from the source code and embed
them into one vector. When this vector representation is input
to a new recurrent neural network (Code-GRU), the overall
framework generates text descriptions of the code with accu-
racy (Rouge-2 value) significantly higher than other learning-
based approaches such as sequence-to-sequence model. The
Code-RNN model can also be used in other scenario where
the representation of code is required. '

1 Introduction

Real-world software development involves large source
code repositories. Reading and trying to understand other
people’s code in such repositories is a difficult and unpleas-
ant process for many software developers, especially when
the code is not sufficiently commented. For example, if the
Java method in Fig. 1 does not have the comment in the be-
ginning, it will take the programmer quite some efforts to
grasp the meaning of the code. However, with a meaning-
ful sentence such as “calculates dot product of two points”
as a descriptive comment, programmer’s productivity can be
tremendously improved.

/ *
* @return float =/

Calculates dot product of two points.
public static float ccpDot (final CGPoint vl1, final
CGPoint v2) {

return vl.x x v2.x + vl.y * v2.y;

Figure 1: source code example

A related scenario happens when one wants to search for
a piece of code with a specific functionality or meaning. Or-
dinary keyword search would not work because expressions

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
"Kenny Q. Zhu is the contact author.

5229

in programs can be quite different from natural languages.
If methods are annotated with meaningful natural language
comments, then keyword matching or even fuzzy semantic
search can be achieved.

Even though comments are so useful, programmers are
not using them enough in their coding. Table 1 shows the
number of methods in ten actively developed Java reposito-
ries from Github, and those of which annotated with a de-
scriptive comment. On average, only 15.4% of the methods
are commented.

To automatically generate descriptive comments from
source code, one needs a way of accurately representing the
semantics of code blocks. One potential solution is to treat
each code block as a document and represent it by a topic
distribution using models such as LDA (Blei, Ng, and Jor-
dan 2003). However, topic models, when applied to source
code, have several limitations:

e a topic model treats documents as a bag of words and ig-
nores the structural information such as programming lan-
guage syntax and function or method calls in the code;

e the contribution of lexical semantics to the meaning of
code is exaggerated;

e comments produced can only be words but not phrases or
sentences.

One step toward generating readable comments is to use
templates (McBurney and McMillan 2014; Sridhara et al.
2010). The disadvantage is that comments created by tem-
plates are often very similar to each other and only rele-
vant to parts of the code that fit the template. For example,
the comment generated by McBurney’s model for Fig. 1 is
fairly useless: “This method handles the ccp dot and returns
a float. ccpDot() seems less important than average because
it is not called by any methods.”

To overcome these problems, in this paper, we propose to
use Recursive Neural Network (RNN) (Socher et al. 2011a;
2011b) to combine the semantic and structural information
from code. Recursive NN has previously been applied to
parse trees of natural language sentences, such as the ex-
ample of two sentences in Fig. 2. In our problem, source
codes can be accurately parsed into their parse trees, so re-
cursive NN can be applied in our work readily. To this end,
we design a new recursive NN called Code-RNN to extract
the features from the source code.



Table 1: Ten Active Projects on Github

[ Project | Description | #of bytes | #of Java Files | # of Methods [ # Methods Commented |
Activiti a light-weight workflow and Business Process Management (BPM) Platform 168M 2939 15875 1080
aima-java Java implementation of algorithms from “Artificial Intelligence - A Modern Approach” 182M 889 4078 1130
neodj the worlds leading Graph Database. 270M 4125 24529 1197
cocos2d cocos2d for android, based on cocos2d-android-0.82 T78M 512 3677 1182
rhino a Java implementation of JavaScript. 2IM 352 4610 1195
spring-batch a framework for writing offline and batch applications using Spring and Java 56M 1742 7936 1827
Smack an open source, highly modular, easy to use, XMPP client library written in Java 41M 1335 5034 2344
guava Java-based projects: collections, caching, primitives 8OM 1710 20321 3079
jersey a REST framework that provides JAX-RS Reference Implementation and more. 73M 2743 14374 2540
libgdx a cross-platform Java game development framework based on OpenGL (ES) 989M 1906 18889 2828

A comment here refers to the description at the beginning of a method, with more than eight words.

eeeo® XXX
@60 ® XX X)) XX X))
(eeee @®eee @Geeeo (eeeo (ee0e® @©oed o0
The <cats eat mice She likes me

Figure 2: The Recursive Neural Networks of Two Sentences

Using Code-RNN to train from the source code, we can
get a vector representation of each code block and this vec-
tor contains rich semantics of the code block, just like word
vectors (Mikolov et al. 2013). We then use a Recurrent Neu-
ral Network to learn to generate meaningful comments. Ex-
isting recurrent NN does not take good advantage of the
code block representation vectors. Thus we propose a new
GRU (Cho et al. 2014) cell that does a better job.

In sum, this paper makes the following contributions:

e by designing a new Recursive Neural Network, Code-
RNN, we are able to describe the structural information
of source code;

e with the new design of a GRU cell, namely Code-GRU,
we make the best out of code block representation vector
to effectively generate comments for source codes;

e the overall framework achieves remarkable accuracy
(Rouge-2 value) in the task of generating descriptive com-
ments for Java methods, compared to state-of-the-art ap-
proaches.

2  Framework

In this section, we introduce the details of how to repre-
sent source code and how to use the representation vector
of source code to generate comments.

2.1 Code Representation

We propose a new kind of recursive neural network called
Code-RNN to encapsulate the critical structural informa-
tion of the source code. Code-RNN is an arbitrary tree form
while other recursive neural nets used in NLP are typically
binary trees. Fig. 3 shows an example of Code-RNN for a
small piece of Java code.

In Code-RNN, every parse tree of a program is encoded
into a neural network, where the structure of the network
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is exactly the parse tree itself and each syntactic node in
the parse tree is represented by a vector representation. >
One unique internal node “CombineName” indicates a com-
pound identifier that is the concatenation of several primi-
tive words, for example, “allFound” can be split into “all”
and “found”. More on the semantics of identifier will be dis-
cussed later in this section.

There are two models for the Code-RNN, namely Sum
Model and Average Model:

1. Sum Model
V = Vaode + f(Wx Y Ve +b) (1
ceC
2. Average Model
1
V = Viode W x — V.+b 2
det fWx = Vetb) @

ceC

Here V' is the vector representation of sub-tree rooted at NV;
Vihode 18 the vector that represents the syntactic type of N
itself, e.g., IfStatement; C'is the set of all child nodes of N;
V. is the vector that represents a subtree rooted at ¢, one of
N’s children. During the training, W and b are tuned. V,
Viode and V.. are calculated based on the structure of neural
network. f is RELU activation function.

These equations are applied recursively, bottom-up
through the Code-RNN at every internal node, to obtain the
vector representation of the root node, which is also the vec-
tor of the entire code piece.

Identifier Semantics In this work, we adopt two ways to
extract the semantics from the identifiers. One is to split all
the long forms to multiple words and the other one is to re-
cover the full words from abbreviations.

Table 2 shows some example identifiers and the results
of splitting. Many identifiers in the source code are combi-
nation of English words, with the first letter of the word in
upper case, or joined together using underscores. We thus
define simple rules to extract the original English words ac-
cordingly. These words are further connected by the “Com-
bineName” node in the code-RNN.

Table 3 shows some abbreviations and their intended
meaning. We can infer the full-versions by looking for

We use JavaParser from https://github.com/javaparser/
javaparser to generate parse tree for Java code in this paper.



@es o [fStatement

if (!found) {
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if (allFound) {

return true;
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Figure 3: Code-RNN Example

longer forms in the context of the identifier in the code.
Specifically, we compare the identifier with the word list
generated from the context of the identifier to see whether
the identifier’s name is a substring of some word from the
list, or is the combination of the initial of the words in the
list. If the list contains only one word, we just check if the
identifier is part of that word. If so, we conclude that the
identifier is the abbreviation of that word with higher prob-
ability. If the list contains multiple words, we can collect all
the initials of the words in the list to see whether the iden-
tifier is part of this collection. Suppose the code fragment
is

Matrix dm = new DoubleMatrix (confusionMatrix);

We search for the original words of “dm” as follows. Since
“dm” is not the substring of any word in the context, we col-
lect the initials of the contextual words in a list: “m” “dm”
and “cm”. Therefore, “dm” is an abbreviation of “Dou-
bleMatrix”.

Table 2: Example of Split Identifiers

l Identifier [ Words l

contextInitialize context, initialize

apiSettings api, settings

buildDataDictionary build, data, dictionary

add, result

add_result

Table 3: Example of Abbreviation

Abbreviation [ Origin [ Context l

val value key.value()

cm confusion, matrix new ConfusionMatrix()

conf configuration context.getConfiguration()

RandomUtils.getRandom()

rnd random

Training Each source code block in the training data has
a class label. Our objective function is:

3

where V,,, is the representation vector of source code, Vipe;
is an one-hot vector to represent the class label. W and by

arg min CrossEntropy(softmax(WsVm + bs), Viaver)
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are parameters for softmax function and will be tuned during
training. We use AdaGrad (Duchi, Hazan, and Singer 2011)
to apply unique learning rate to each parameter.

2.2 Comment Generation

Existing work (Elman 1990; Sutskever, Martens, and Hin-
ton 2011; Mikolov et al. 2010) has used Recurrent Neural
Network to generate sentences. However, one challenge to
utilize the code block representation vector in Recurrent NN
is that we can not feed the code block representation vector
to the Recurrent NN cell directly. We thus propose a vari-
ation of the GRU based RNN. Fig. 4 shows our comment
generation process.

“gets” “character” END
® O
WDh

o
/th
® O

“gets” “character”

Code-RNN

@

START

Figure 4: Comment Generation

We use pre-trained model Code-RNN to get the represen-
tation vector of the input code block V,,,. This vector V,,
is fixed during training of comment generation model. Then
we feed code block vector into the RNN (Recurrent Neural
Network) model at every step. For example in Fig. 4, we in-
put the START token as the initial input of model and feed
the code block vector into the hidden layer. After calculating
the output of this step, we do the back-propagation. Then at
step two, we input the word “gets” and feed the code block
vector V,,, into hidden layer again, and receive the h;_; from
the step one. We repeat the above process to tune all param-
eters. The equations of comment generation model are listed
below.



2t = U(Wz : [ht—l,l’tD 4
Tt = U(Wr [ht—l,l’t]) (5
Ct = U(Wc : [ht—l,xt]) (6)
hy = tanh(W - [ry « hy—1, ¢t * Vi, 24]) (7
hy = l—zt)*ht_l—kzt*i{t ®)
yr = softmax(Wynhy + by) 9)

where V,, is the code block representation vector, h;_; is
the previous state and x; is the input word of this step.

To better use the code block vectors, our model differs
from existing RNNSs, particularly in the definition of ¢, in
the Equation 6 and 7. The new RNN cell, illustrated in Fig.
5, aims to strengthen the effect of code block vectors. This
modified GRU is hereinafter called Code-GRU. Code block
vector contains all information of code block but not all in-
formation is useful at all steps. Therefore, we add a new gate
called choose gate to determine which dimension of code
block vector would work in Code-GRU. In Fig 5, the left
gate is the choose gate, and the other two gates are the same
as the original GRU.

Vi ) Vin
' _J| -
JARA! JL 3

hecs J ) h
Nl 4

Figure 5: Structure of Code-GRU

During test time, we input the “START” token at first and
choose the most probable word as the output. Then from
the second step the input words of every step are the output
words of previous one step until the output is “END” token.
So that we can get an automatically generated comment for
code blocks in our model.

To gain better results, we also apply the beam search
while testing. We adopt a variant of beam search with a
length penalty described in (Wu et al. 2016). In this beam
search model, there are two parameters: beam size and
weight for the length penalty. We tune these two parame-
ters on the validation set to determine which values to use.
Our tuning ranges are:

e beamsize: [1,2,3,4,5,6,7,8,9, 10]

e weight for the length penalty: [0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6,0.7,0.8,0.9, 1.0]

3 Evaluation

Our evaluation comes in two parts. In the first part, we eval-
uate Code-RNN model’s ability to classify different source
code blocks into k& known categories. In the second part, we
show the effectiveness of our comment generation model

5232

by comparing with several state-of-the-art approaches in
both quantitative and qualitative assessments. The source
code of our approach as well as all data set is available at
https://adapt.seiee.sjtu.edu.cn/CodeComment/.

3.1 Source Code Classification

Data Set The goal is to classify a given Java method (we
only use the body block without name and parameters) into
a predefined set of classes depending on its functionality.
Our data set comes from the Google Code Jam contest
(2008~2016), which there are multiple problems, each as-
sociated with a number of correct solutions contributed by
programmers. > Each solution is a Java method. The set of
solutions for the same problem are considered to function
identically and belong to the same class in this work. We
use the solutions (10,724 methods) of 6 problems as training
set and the solutions (30 methods) of the other 6 problems
as the test set. Notice that the problems in the training data
and the ones in the test data do not overlap. We specifically
design the data set this way because, many methods for the
same problem tend to use the same or similar set of identi-
fiers, which is not true in real world application. The details
of training set and test set are shown in Table 4.

Table 4: Data Sets for Source Code Clustering

l [ Problem [ Year [ # of methods l
Cookie Clicker Alpha 2014 1639
Counting Sheep 2016 1722
. Magic Trick 2014 2234
Training Set
Revenge of the Pancakes 2016 1214
Speaking in Tongues 2012 1689
Standing Ovation 2015 2226
All Your Base 2009 5
Consonants 2013 5
Dijkstra 2015 5
Test Set
GoroSort 2011 5
Osmos 2013 5
Part EIf 2014 5
Baselines We compare Code-RNN with two baseline ap-

proaches. The first one is called language embedding (LE)
and only treats the source code as a sequence of words, mi-
nus the special symbols (e.g., “$”, “(”, “+”, ---). All con-
catenated words are preprocessed into primitive words as
previously discussed. Then the whole code can be repre-
sented by either the sum (LES) or the average (LEA) of word
vectors of this sequence, trained in this model.This approach
basically focuses on the word semantics only and ignores the
structural information from the source code.

The second baseline is a variant of Code-RNN, which
preprocesses the code parse tree by consistently replacing
the identifier names with placeholders before computing the
overall representation of the tree. This variant focuses on the
structural properties only and ignores the word semantics.

3 All solutions are available at http://www.go-hero.net/jam/16.



Result of Classification At test time, when a method is
classified into a class label, we need to determine which test
problem this class label refers to. To that end, we compute
the accuracy of classification for all possible class label as-
signment and use the highest accuracy as the one given by a
model.

Table 5 shows the purity of the produced classes, the F1
and accuracy of the 6-class classification problem by differ-
ent methods. It is clear that Code-RNN (avg) perform better
uniformly than the baselines that use only word semantics
or only structural information. Therefore, in the rest of this
section, we will use Code-RNN(avg) model to create vector
representation for a given method to be used for comment
generation. The F1 score for each individual problem is also
included in Table 6.

Table 5: Purity, Average F1 and Accuracy

Purity F1 Accuracy
LEA 0.400 0.3515 0.3667
LES 0.3667  0.2846 0.3667
CRA(ni) 04667  0.4167 0.4667
CRS(ni) 0.4667  0.4187 0.4667
CRA 0.533 0.4774 0.5
CRS 0.4667  0.3945 0.4333

LEA = Language Embedding Average model; LES = Language Embedding Sum
model; CRA = Code-RNN Average model; CRS = Code-RNN Sum model; (ni) =
no identifier.

Table 6: F1 scores of individual problems

Dijkstra Part EIf All Your Base GoroSort Consonants Osmos

LEA 0.25 0.33 0.43 0.33 0.4 0.36
LES 0.33 0 0.53 0 0.53 0.31
CRA(ni) 0.6 0 0.44 0.40 0.56 0.5
CRS(ni)  0.62 0.29 0.67 0.5 0.44 0
CRA 0.67 0 0.6 0.57 0.53 0.52
CRS 0.73 0 0.44 0.55 0.4 0.25

3.2 Comment Generation Model

Data Set We use ten open-source Java code repositories
from GitHub for this experiment (see Table 1). In each of
these repositories we extract descriptive comment and the
corresponding method pairs. Constructor methods are ex-
cluded from this exercise. These pairs are then used for train-
ing and test. Notice that all the method names and parame-
ters are excluded from training and test.

Baselines
methods.

We compare our approach with four baseline

e Moses® is a statistical machine translation system. We re-
gard the source codes as the source language and the com-
ments as the target, and use Moses to translate from the
source to the target.

e CODE-NN (Iyer et al. 2016) is the first model to use neu-
ral network to create sentences for source code. In this
model author used LSTM and attention mechanism to

*Home page of Moses is http:/www.statmt.org/moses/.
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generate sentences. The original data set for CODE-NN
are StackOverFlow thread title and code snippet pairs. .
In this experiment, we use the comment-code pair data in

place of the title-snippet data.

e We apply the sequence-to-sequence (seq2seq) model used
in machine translation (Britz et al. 2017) and treat the
code as a sequence of words and the comment as another
sequence.

e A. Karpathy and L. Fei-Fei (Karpathy and Fei-Fei 2015)
proposed a meaningful method to generate image de-
scriptions. It also used Recurrent NN and representation
vector, so we apply this method to comment generation
model. The main equations are:

b'u - Whi‘/nL (10)
he = f(Whaxt + Whnhe—1 + by + by) (11)
vy = softmazx(Wophy + b,) (12)

where Wi, Wha, Whn, Won, x; and by, b, are parameters
to be learned, and V/,, is the method vector. We call this
model Basic RNN.

Moses and CODE-NN has its own terminate condition.
Seq2Seq, Basic RNN and our model run 800 epochs during
training time. For one project, we separate the commented
methods into three parts: training set, validation set and test
set. We tune the hyper parameter on the validation set. The
results of ten repositories are shown in Table 7.

Evaluation Metric We evaluate the quality of comment
generation by the Rouge method(Lin 2004). Rouge model
counts the number of overlapping units between generated
sentence and target sentence. We choose Rouge-2 score in
this paper where word based 2-grams are used as the unit,
as it is the most commonly used in evaluating automatic text
generation such as summarization.

Table 7: Rouge-2 Values for Different Methods

Activiti

neo4j cocos2d jersey aima-guava Smack rhino
java
0.081 0.1440.134

0.105 0.1240.153

springdibgdx
batch

0.147 0.212
0.184 0.208

MOSES.076
CODE-0.077
NN
Seq2sed).039
Basic  0.133
RNN*

Code- 0.141
GRU*

0.147
0.136

0.145
0.135

0.104
0.103

0.082
0.171

0.115
0.152

0.183 0.1080.152
0.214 0.2070.156

0.109
0.150

0.158
0.203

0.171 0.247
0.237 0.218

0.169
0.163

0.158 0.230 0.2090.164 0.162 0.200 0.213 0.233 0.165

*: both models use the method representation vector from
Code-RNN.

Examples of Generated Comment Fig. 6 shows the com-
ments generated by the competing methods for three exam-
ple Java methods coming from different repositories. Be-
cause we delete all punctuation from the training data, the
generated comments are without punctuation. Nonetheless,
we can see that comments by our Code-GRU model are gen-
erally more readable and meaningful.

Data comes from https://stackoverflow.com/. Source code of
CODE-NN is available from https://github.com/sriniiyer/codenn.



Gold if the lock state matches the given stamp performs one of the fol-
Project: Jjersey lowing actions if the stamp represents holding a write lock re-
public long tryConvertToReadLock (long stamp) { leases it and UNK a read lock or if a read lock returns it or if
long a = stamp & ABITS, m, s, next; WNode h; an optimistic read acquires a read lock and returns a read stamp
while (((s = state) & SBITS) == (stamp & SBITS)) { only if immediately available this method returns zero in all other
if ((m = s & ABITS) == 0L) { cases
if (a != OL) break; MOSES if the lock state matches the given if the lock state matches the
else if (m < RFULL) { given gets of processing sbits state matches the given sbits string
if (U.compareAndSwapLong (this, STATE, s, of the lock hold abits 11 break component of rfull that runs sets
next = s + RUNIT)) of processing of runit or create a new pattern if this inc reader
return next;} overflow | create a human readable description of component of
else if ((next = tryIncReaderOverflow(s)) != whbit break if the lock of processing of wbit runit h whead by the
0L) return next;} given status release the given action if the sum associated with
else if (m == WBIT) { the given component 1 lock state matches the given action wbit
if (a != m) break; get returns break 1
state = next = s + (WBIT + RUNIT); CODE-NN returns code true if the lock is not a link org glassfish jersey server
if ((h = whead) != null && h.status != 0) mvc
release (h); Seq2Seq UNK a new item to the list of superclass timeout version
return next;} Basic RNN* get a UNK to a link javax ws rs core UNK
else if (a != 0L && a < WBIT) return stamp; Code-GRU* if the lock state matches the given stamp performs one of the fol-
else break;} lowing actions if the stamp represents holding a write lock returns
return O0L;} it or if a read lock if the write lock is available releases the read
lock and returns a write stamp or if an optimistic read returns
Gold Calculates dot product of two points
project: cocos2d MOSES subtract another subtract another the given vector
public static float ccpDot (final CGPoint v1, final CODE-NN rotates two points
CGPoint v2) { Seq2Seq returns the closest long to the specified value
return vl.x % v2.x + vl.y » v2.y; } Basic RNN* | calculates cross product of two points
Code-GRU* calculates cross product of two points
project: libgdx Gold creates an int buffer based on a newly allocated int array
public static IntBuffer allocate (int capacity) { MOSES based on the creates a new backing buffer
if (capacity < 0) { CODE-NN creates a byte buffer based on a newly allocated char array
throw new IllegalArgumentException(); Seq2Seq creates a float buffer based on a newly allocated float array
} Basic RNN* creates a char buffer based on a newly allocated char array
return BufferFactory.newIntBuffer (capacity);} Code-GRU* creates a long buffer based on a newly allocated long array

Figure 6: Examples of generated comments and corresponding code snippets

In the first example, we can see that CODE-NN, Seq2Seq
and Basic RNN’s results are poor and have almost nothing
to do with the Gold comment. Even though both MOSES
produces a sequence of words that look similar to the Gold
in the beginning, the rest of the result is less readable and
does not have any useful information. For example, “if the
lock state matches the given” is output repeatedly. MOSES
also produces strange terms such as “wbit” and “runit” just
because they appeared in the source code. In the contrast,
Code-GRU’s result is more readable and meaningful.

In the second example, there is not any useful word in
the method body so the results of MOSES, CODE-NN and
Seq2Seq are bad. Code-RNN can extract the structural in-
formation of source code and embed it into a vector, so both
models that use this vector, namely Basic RNN and Code-
GRU, can generate the relevant comments.

In the third example, although all results change the type
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of the value, that is, Basic RNN changes “int” to “char”
while Code-GRU changes to “long”. “long” and “int” are
both numerical types while “char” is not. Thus Code-GRU is
better than Basic RNN. For the result of Seq2Seq, although
“float” is also a numerical type, it is for real numbers, and
not integers.

4 Related Work

Mining of source code repositories becomes increasingly
popular in recent years. Existing work in source code min-
ing include code search, clone detection, software evolution,
models of software development processes, bug localization,
software bug prediction, code summarization and so on. Our
work can be categorized as code summarization and com-
ment generation.

Sridhara et al. (Sridhara et al. 2010) proposed an au-
tomatic comment generator that identifies the content for



the summary and generates natural language text that sum-
marizes the methods overall actions based on some tem-
plates. Moreno et al. (Moreno et al. 2013) also proposed a
template based method but it is used on summarizing Java
classes. McBurney and McMillan (McBurney and McMil-
lan 2014) presented a novel approach for automatically gen-
erating summaries of Java methods that summarize the con-
text surrounding a method, rather than details from the
internals of the method. These summarization techniques
(Murphy 1996; Sridhara, Pollock, and Vijay-Shanker 2011;
Moreno et al. 2013; Haiduc et al. 2010) work by select-
ing a subset of the statements and keywords from the code,
and then including information from those statements and
keywords in the summary. To improve them, Rodeghero et
al. (Rodeghero et al. 2014) presented an eye-tracking study
of programmers during source code summarization, a tool
for selecting keywords based on the findings of the eye-
tracking study.

These models are invariably based on templates and care-
ful selection of fragments of the input source code. In con-
trast, our model is based on learning and neural network.
There are also some models that apply learning methods to
mine source code.

Movshovitz-Attias and Cohen (Movshovitz-Attias and
Cohen 2013) predicted comments using topic models and
n-grams. Like source code summarization, Allamanis et
al. (Allamanis et al. 2015) proposed a continuous embed-
ding model to suggest accurate method and class names.

Iyer et al. (Iyer et al. 2016) proposed a new model called
CODE-NN that uses Long Short Term Memory (LSTM)
networks with attention to produce sentences that can de-
scribe C# code snippets and SQL queries. Iyer et al.’s work
has strong performance on two tasks, code summarization
and code retrieval. This work is very similar to our work, in
that we both use the Recurrent NN to generate sentences
for source code. What differs is that we propose a new
type of Recurrent NN. Adrian et al. (Kuhn, Ducasse, and
Girba 2007) utilized the information of identifier names and
comments to mine topic of source code repositories. Punya-
murthula (Punyamurthula 2015) used call graphs to extract
the metadata and dependency information from the source
code and used this information to analyze the source code
and get its topics.

In other related domains of source code mining, code
search is a popular research direction. Most search en-
gines solve the problem by keyword extraction and signa-
ture matching. Maarek et al. (Maarek, Berry, and Kaiser
1991) used keywords extracted from man pages written in
natural language and their work is an early example of ap-
proaches based on keywords. Rollins and Wing (Rollins and
Wing 1991) proposed an approach to find code with the sig-
natures present in code. Mitchell (Mitchell 2008) combined
signature matching with keyword matching. Then Garcia et
al. (Garcia-Contreras, Morales, and Hermenegildo 2016) fo-
cused on querying for semantic characteristics of code and
proposed a new approach which combines semantic charac-
teristics and keyword matching.

Cai (Cai 2016) proposed a method for code paral-
lelization through sequential code search. That method
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can also be used for clone detection. Williams and
Hollingsworth (Williams and Hollingsworth 2005) de-
scribed a method to use the source code change history of
a software project to drive and help to refine the search
for bugs. Adhiselvam et al. (Adhiselvam, Kirubakaran, and
Sukumar 2015) used MRTBA algorithm to localize bug to
help programmers debug. The method proposed in this paper
can also benefit natural language search for code fragments.

5 Conclusion

In this paper we introduce a new Recursive Neural Net-
work called Code-RNN to extract the topic or function of
the source code. This new Recursive Neural Network is the
parse tree of the source code and we go through all the tree
from leaf nodes to root node to get the final representation
vector. Then we use this vector to classify the source code
into some classes according to the function, and classifica-
tion results are acceptable. We further propose a new kind
of GRU called Code-GRU to utilize the vector created from
Code-RNN to generate comments. We apply Code-GRU to
ten source code repositories and gain the best result in most
projects. This frame work can also be applied to other pro-
gramming languages as long as we have access to the parse
tree of the input program.

As future work, we can add call graphs into our model,
so that Code-RNN can contain invocation information and
extract more topics from source code.
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