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Abstract

Knowing the correct distribution of senses within a corpus
can potentially boost the performance of Word Sense Disam-
biguation (WSD) systems by many points. We present two
fully automatic and language-independent methods for com-
puting the distribution of senses given a raw corpus of sen-
tences. Intrinsic and extrinsic evaluations show that our meth-
ods outperform the current state of the art in sense distribu-
tion learning and the strongest baselines for the most frequent
sense in multiple languages and on domain-specific test sets.
Our sense distributions are available at http://trainomatic.org.

Introduction

Word sense disambiguation (WSD) is the task of assigning
the correct meaning to a word in a context, by choosing
among the senses available in an inventory such as Word-
Net (Fellbaum 1998). WSD has received considerable inter-
est from both academia and industry, thanks to its potential
in several fields of Al, such as text understanding, machine
translation and machine reading. Two main approaches have
been explored to address the task, namely a supervised and
a knowledge-based approach. The former exploits machine
learning — e.g., SVM (Zhong and Ng 2010) and, more re-
cently, Neural Networks (Raganato, Delli Bovi, and Navigli
2017) — in order to predict the most suitable sense of a target
word occurring in a given context. The latter, instead, relies
on the connection between concepts in a semantic network
and aims to find the correct sense of the target word in a con-
text by exploiting the information available in a knowledge
resource, often by applying graph techniques (e.g., PageR-
ank (Brin and Page 1998), densest subgraph approximation
(Moro, Raganato, and Navigli 2014), etc.).

Compared to tasks such as part-of-speech tagging where
the number of classes is limited, WSD faces the issue of a
different set of meanings for each word of interest, which
multiplies the size of the training set, and increases the fine
granularity of sense inventories. This inherently affects the
performance of the two above-mentioned approaches: super-
vised algorithms suffer from the lack of enough training ex-
amples, while knowledge-based systems are hampered by
poor contexts — as they do not exploit local features — and
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the lack of connectivity for lower frequency senses (Pilehvar
and Navigli 2014).

In order to cope with the so-called knowledge acquisition
bottleneck and provide reliable answers for all words in the
lexicon, both supervised and knowledge-based approaches
resort to the most frequent sense (MFS) baseline, that is,
they exploit the mode of the prior probability distribution on
senses of each word. This is computed based on the sense
frequencies within the largest manually annotated corpus
available for the English language, i.e., SemCor (Miller et
al. 1993). The MFS is normally used as a backoff strategy
when the WSD system is less confident or does not have any
training example for the target word at hand.

The MEFS strategy has become a very strong baseline for
English WSD and it is often hard to beat (Navigli, Jurgens,
and Vannella 2013; Moro and Navigli 2015), due to the
skewed distribution of word senses. While this is especially
true for knowledge-based systems, it also holds for super-
vised systems whose bias towards frequent senses strictly
depends on the number of examples in the training set.

Determining sense probability distributions based on
SemCor comes, however, with important limitations: first,
due to its size, the corpus lacks coverage of a significant
part of English vocabulary (for instance, words such as vi-
ral, or online) and of many senses of ambiguous words (for
instance, cloud in the computing sense, or bank as a sup-
ply held in reserve). Furthermore, it does not provide a reli-
able estimate of those words which, instead, are to be found
in it (for instance, the corpus contains two occurrences of
tiger, one for the animal and one for an audacious person,
which does not reflect the expected probability); second,
SemCor is almost 30 years old, with an outdated distribution
of word uses (for example, the predominant sense of pipe is
tobacco pipe while in modern English it is tube carrying
water (McCarthy et al. 2004a)); third, there are no corpora
of the same size in other languages, so sense distribution
estimation from sense-tagged corpora is mostly limited to
English, not to mention domain-specific estimates of word
sense priors (Faralli and Navigli 2012).

Given the above limitations, we advocate that the ability
to automatically learn the distribution of a word’s senses is a
necessary step to improve the performance of current state-
of-the-art WSD systems, to enhance domain-specific WSD
and to enable multilingual WSD for supervised systems. In



the last few years, various methods for automatically learn-
ing sense distributions have been proposed (McCarthy et al.
2004b; Lau et al. 2014; Bennett et al. 2016) and proven to
learn better distributions, in terms of Jensen-Shannon diver-
gence, than those extracted from a manually-annotated cor-
pus such as SemCor. However, not many extrinsic evalua-
tions have been conducted to prove that the learned distri-
butions improve the disambiguation quality and offer a real
alternative to those that are manually created and, even more
importantly, to the best of our knowledge, no experiment has
been carried out on languages other than English.

In this paper we propose two language-independent ap-
proaches to automatically learning the distribution of senses
from a given corpus. Both approaches are shown to outper-
form the current state of the art in intrinsic and extrinsic eval-
uations, including domain-biased settings, while performing
at least as well as the sense distributions built from SemCor.

Two Methods for Learning Sense Distributions

We present EnDi and DaD: two language-independent and
fully automatic methods for sense distribution learning from
raw text. Both methods share a procedure for producing a
sense probability distribution for a given word at the sen-
tence level: this procedure takes as input a lexicon £, a raw
corpus of sentences C and a semantic network G = (V, E).
We assume a WordNet-like structure for G (Fellbaum 1998),
i.e. the vertices in V' are synsets that contain different lex-
icalizations (lemmas) of the same concept. Sentence-level
sense distribution learning is performed in two steps:

e Semantic vector computation: in this step we compute
a vector for each synset in the semantic network. Its com-
ponents are all the synsets in the graph and their values
can be interpreted as a measure of relatedness between
the starting synset and the corresponding component.

e Sentence-level word sense distribution: in this step, for
each sentence in C and for each word w € £ we compute
a probability distribution over its senses by exploiting the
lexical vectors computed in the previous step.

Semantic vector computation

The first step aims at computing a semantic vector for each
synset, i.e. node, in the semantic graph that has as compo-
nents all the others nodes in the graph. This probability value
is computed by applying Personalized PageRank (PPR), a
variant of PageRank (Brin and Page 1998) in which the uni-
form restart probability is changed to a custom probability.
In our case, we concentrate all the restart probability mass
onto the synset for which the vector is calculated, so as to in-
crease the probability of reaching nodes in the surroundings
of the synset of interest.

Running PPR with restart on a given synset s produces a
semantic vector which represents the probability distribution
over the synsets in the network (including s itself) of being
reachable from, and thus related to, s.
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Figure 1: Probability of the senses of plane (left) and surface
(right).

Shallow sense distribution learning

In the second step, each sentence in C in processed sepa-
rately by considering all its content words' and building,
for each of them, a probability distribution over their senses.
Thus, given a word w € L contained in a sentence o € C,
we want to score each of the meanings of w (drawn from
the WordNet-like semantic network) with the probability of
seeing that sense in the given sentence. Such probability is
computed with the following formula:

P(o|s,w)P(s|w)

P(slo,w) = Plolw) (1
_ P(wlj;...,wn|s,w)P(s|w) )
(w17 s 7wn|w)
x P(wy,...,wy|s,w)P(s|lw) 3)
~ [[ P@'|s,w) &)
w'€ o
= H fmd(PPﬁs, w') 5)
w'eo

where s is a sense of w and w is contained in 0. We ap-
proximate the probability in Equation 3 by making the in-
dependence assumption between words in the sentence and
calculate the probability in Equation 4 with the function find
in Equation 5 which returns the highest-probability synset in
the first-argument vector v which has word w as one of its
lexicalizations:

find(V,w) = max U (s)

seCy

(6)

where C) is the set of all the components of 7 that have
w among their lexicalizations. Once we have applied this
procedure to all the sentences in the corpus C for each given
word w € L, we obtain a sense probability distribution for
all the sentences w occurs in. For example, given a sen-
tence o in the corpus (e.g. The coordinate plane is a two-
dimension surface), alexicon L = {plane, surface} and G =
WordNet, the above procedure outputs two distributions (for
plane and surface) as shown in Figure 1. Such distributions
are used in our two methods, described below, to compute a
unified distribution of senses for each word in the lexicon.

"We filter out non-content words and stopwords.



Sentence planel (aircraft) | plane? (geometry) | plane? (carpentry)
Two people on the plane died. 0.92 0.01 0.07
The flight was delayed due to trouble with the plane. 0.82 0.07 0.11
Only one plane landed successfully. 0.73 0.10 0.17
The cabinetmaker used a plane for the finish work. 0.20 0.18 0.62
A catalog of special plane curves. 0.10 0.85 0.05
[ Dpiane [ 0.55 [ 0.24 [ 0.21

Table 1: A sense distribution computation example for the word plane.

1) Entropy-Based Distribution Learning (EnDi)

We now introduce the first method for calculating a sense
distribution for a given word. This method takes as input the
lexicon L, the set of sense distributions 'y, = {73, : w € o}
for each word w € L, which have been computed in the
previous step, and a threshold 6.

In order to build a single sense distribution D,,, for each
word w in £, we first select the set of sense distributions for
all its sentences which have low entropy as follows:

Iy={15 €Ty : H(YG) < 6} (7

where ~y7, is the distribution over w’s senses in the sentence
o and H(7y) is the entropy of the input distribution :

H(y) ==Y 7(s)loga(v(s))

s€y

As a result I',, contains only skewed sense distributions
computed from sentences for which the sense bias is
stronger and, therefore, the final decision is clearer. Finally
the unified probability mass function D,, for a word w is
computed so as to have, for each sense s of w, the following

value:
> Aa(s)

75 €l

1

Dy(s =
(s) N

®)

For example, let’s consider the word plane and 5 sentences
that contain it (see Table 1, left column): we compute its
sense distribution by summing the probability of each sense
across the sentences and then renormalizing the results by
their sum (last row of the Table).

2) Domain-Aware Distribution Learning (DaD)

The second method for sense distribution learning again
takes as input the lexicon L, the set of sense distributions
Ty ={75 : w € o} for each word w € L, and a semantic
network G = (V, E). The idea here is to exploit associations
between synsets in V' and domains from a fixed set D.?

Note that each synset might be associated with zero,
one or more domains, and that these associations come
from an off-the-shelf resource, such as BabelNet domains
(Camacho-Collados and Navigli 2017).

We learn the sense distribution in two steps:

2The list of domains can be found at:
http://babelnet.org/javadoc/it/uniromal/lcl/babelnet/data/
BabelDomain.html
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1. Domain distribution: we compute the distribution of the
domains in the shallow disambiguated corpus.

2. Sense distribution computation: we augment the se-
mantic network with domain nodes and connect them to
the synsets in the semantic network they are associated
with. We then run Personalized PageRank on the aug-
mented semantic graph and obtain a sense distribution

over all the synsets in the graph.

Domain distribution. Given the set of sense distributions
for all the words in £ and all the sentences in the input cor-
pus, we calculate the following probability for each domain

deD: )
C(d) = m Z Z (s)

yel sEy:
d € domains(s)

9)

where domains(s) is the set of domains s is associated with.
Thus, each sense in a distribution ~y contributes to the proba-
bility of each domain it belongs to proportionally to its prob-
ability in ~. The average of these contributions provides the
final probability of domain d in the input corpus.

The hunch behind this step is that if a corpus is domain-
biased then synsets belonging to that domain should ap-
pear more often and with higher probabilities, therefore con-
tributing to increasing the corresponding domain probabil-
ity. A second hunch is that, even though the shallow dis-
tributions inherently come with some unavoidable noise,
sometimes due to fine-grained sense distinctions, abstract-
ing synsets with domains enables a coarser, hopefully more
accurate and wider coverage, level.

Sense distribution computation. Now that we have a dis-
tribution over domains, we add a node for each domain to
the original semantic network. We then connect with a di-
rect edge each domain node to all the synsets it is associated
with. We finally compute a probability for each synset by
applying Personalized PageRank by distributing the restart
probability on the domain nodes according to the domain
probability distribution computed with Equation 9. Given
the PageRank formula:

o) = (1 — )o@ 4 aMo® (10)
we therefore set v(?) to 0 except for those components (i.e.
nodes) corresponding to each domain d, which are set to
the corresponding domain probability C'(d). Thus, using the

analogy of the random walker, it means that every time the



walker decides to restart its walk, it will move to a new do-
main node with a certain probability.

As a result of the PageRank computation we have a dis-
tribution over all the semantic network’s nodes, i.e., synsets.
Note that at this stage the distribution is not specific to a
given word, but is general for all synsets in G. Thus the sense
distribution of a word can be retrieved by considering the
probabilities of all the synsets of that word (i.e., its senses)
in the resulting PageRank vector and normalizing them so as
to obtain a sense distribution of the word’s senses.

Experimental Setup

We carried out both intrinsic and extrinsic evaluations in or-
der to have a measure of how well the two methods perform
both theoretically and in practice. Both methods for sense
distribution learning have some parameters, namely: the se-
mantic network, the corpus and, for the first method, the en-
tropy threshold 6.

Semantic Network. We started from BabelNet, which is
currently the largest multilingual semantic network, with
around 14 million synsets covering hundreds of languages
and dozens of domains (Navigli and Ponzetto 2012). Babel-
Net is a superset of WordNet, Wikipedia, Wiktionary and
other resources and therefore is richer in terms of lexicaliza-
tions and semantic relations than any of the resources it in-
tegrates. However, because — similarly to alternatives in the
literature — we focused only on common nouns, we followed
Pasini and Navigli (2017) and chose the WordNet-induced
subgraph of BabelNet as the underlying network for the se-
mantic vector computation. In other words, the graph con-
tained only WordNet synset nodes, but with the considerably
larger set of relation edges and multilingual lexicalizations
coming from BabelNet.

Corpus. We chose Wikipedia as our input corpus because
it is available in hundreds of languages and it covers all
domains of human knowledge. We used the October 2014
dump of Wikipedia.

Entropy threshold. For EnDi we tried different values
of the threshold 6, ranging from 0.1 to 4.0 with step 0.1,
and tested the results on an in-house development set of
25 lemmas for which we computed the sense distribution
in Wikipedia and then selected the value of # based on the
best results in terms of similarity to the SemCor distribution
(as explained below). We thus set 6 to 1.0.

Comparison sense distributions and gold standard. We
compared the two sense distribution learning methods
against several alternative methods for deriving sense dis-
tributions for words, namely:

e EuroSense (Delli Bovi et al. 2017): a sense-annotated re-
source based on the multilingual joint disambiguation of
the Europarl corpus (Koehn 2005). For a given word, its
sense distribution is obtained by computing the normal-
ized frequency of its senses in the corpus.
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o LexSemTM (Bennett et al. 2016): an approach which
builds on top of (Lau et al. 2014) and exploits sense
glosses and usage examples of the target lemma to build
a topic model and then a distribution of the target word’s
senses.

e WordNet and BabelNet degree: we created sense distri-
butions based on the normalized out-degrees of the var-
ious senses of the target word in two different semantic
networks: WordNet and BabelNet. Given one of the two
graphs, we calculated the distribution as follows:

out-deg(s)

Dy (s
) Zs’ésenses(w) Out_deg(sl)

e SemCor gold-standard sense distribution: we also
compared against the sense distribution computed based
on sense frequencies in SemCor (Miller et al. 1993). No-
tice that this is a gold-standard distribution, as it is the
only distribution obtained from manually-annotated data.

Intrinsic Evaluation
Evaluation measures

For the intrinsic evaluation we evaluated the similarity be-
tween the two distributions learned with our entropy and
domain-based methods and all other comparison sense dis-
tributions introduced above. We used two different measures
for performing the comparison, i.e., Jensen-Shannon diver-
gence and Weighted Overlap. Both measures were computed
separately for each pair of distributions and then averaged by
the total number of words.

Jensen-Shannon divergence (JSD). This measure is
based on the Kullback-Leibler divergence and equals 0 when
the two distributions are identical, and is greater than 0 when
they are different in some way. It is computed as follows:

_ D(v,M) D, M)
2 2

JSD(v,7") (11)

where M = 2t and D is the Kullback-Leibler divergence

which is given by the following formula:

v(s)
ML

where, in our case, s are synsets in our sense distributions.

D(v,7) =D ¥(s)log( (12)

Weighted Overlap. This measure (Pilehvar, Jurgens, and
Navigli 2013, WO) determines how similar the sense rank-
ings of the two distributions are. It is 1 when the two distri-
butions have the same ranking of the components and lower
than 1 when they are different. It is defined as follows:

2i)-

where O is the intersection of the components of  and ~/
and r; and r} are the ranks of the i-th component in the

(ri +r)7"
1

0|
WO(v,7) =) (13)
=1



Method JSDgold WOgold JSDsys WOsys
EnDi 0.29 0.70 0.06 0.89
DaD 0.17 0.91 0.12 0.92
LexSemTM 0.29 0.67 0.07 0.89
EuroSense 0.60 0.39 0.24 0.75
BabelNet Degree 0.09 0.87 0.09 0.87
WordNet Degree 0.07 0.88 0.07 0.88

Table 2: Similarity with SemCor in terms of Jensen-Shannon
divergence and Weighted Overlap (gold evaluates against all
words in SemCor; sys evaluates only against the words for
which each method can provide a sense distribution).

respective distribution v and +/. The rank of a component
(i.e., sense) of the distribution vector is the position at which
the component can be found in the distribution vector when
sorted in descending order. The Weighted Overlap is thus a
measure that does not consider the value of the components
in the distributions, but only their ranking.

These two measures provide different insights about how
the sense frequencies of a given word are distributed both
numerically and when we only consider the components po-
sition when the distributions are sorted by value.

Results

Similarity to SemCor distributions. The first experiment
we performed aimed at investigating the similarity between
the various automatically learned distributions (both with
our two methods and the comparison distributions) and the
gold-standard SemCor distribution. In Table 2 we show the
JSD and WO (note that for JSD the lower the better, while
for WO the higher the better) averaged among all the words
in the test set. Both measures were computed, first, by con-
sidering all the lemmas in the test set and assigning 1 and 0
to JSD and WO, respectively, when the method was not able
to build a distribution for a given lemma (second and third
column), and then considering only the lemmas for which
the method was able to build the distribution (fourth and
fifth columns of the table). As can be seen both our methods
built distributions that are generally most similar to Sem-
Cor, in terms of both JSD and WO, than the state-of-the-art
LexSemTM and that are either better or on a par with alter-
native approaches.

More in detail, DaD performs best in the gold setting,
showing wide coverage of words, but a bit worse in numer-
ical terms according to JSD,,,. In contrast, EnDi performs
best in terms of J.S Dy, due to its ability to prune out noisy
sentences, slightly worse in the ranking evaluation and on a
par with LexSemTM across the board. Degrees fare well,
especially on JSD, but, as we will see, their extrinsic evalu-
ation results turn out to be considerably lower.

We show lemma coverage in Table 3: DaD and the degree-
based distributions have the highest coverage of words,
which is WordNet’s, while EnDi and LexSemTM - due to
filtering mechanisms — and EuroSense — due to lack of sense
annotations — have much lower word coverage.
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Method Missing Lemmas
EnDi 2655
DaD 23
LexSemTM 2783
EuroSense 5378
BabelNet Degree 23
WordNet Degree 23

Table 3: Lemmas for which a method was not able to build
a distribution.

Method JSD WO
EnDi 0.0991 | 0.937
DaD 0.204 | 0.902
LexSemTM 0.1167 | 0.932
EuroSense 0.344 | 0.713
BabelNet Degree | 0.224 | 0.832
WordNet Degree | 0.166 | 0.858
SemCor 0.255 | 0.837

Table 4: Similarity with the gold standard from Bennett et
al. (2016) in terms of JSD and Weighted Overlap. Values
tagged with T are statistical significant for p < 0.1.

Similarity to Bennett et al.’s (2016) distributions. So
far we have shown that our methods produced high-quality
sense distributions when compared against SemCor. While
this is a good result, we should consider that SemCor dates
back to almost 30 years ago and since then sense distribu-
tions have surely changed over time for a number of am-
biguous words (e.g. troll, tweet, etc.). To work on more re-
cent data, we performed a second intrinsic evaluation using
a gold standard dataset proposed by Bennett et al. (2016),
which provides distributions manually annotated for 50 lem-
mas. In this experiment we also evaluated the SemCor-
derived distribution against the 50-lemma gold standard. In
Table 4 we report the results in terms of JSD and WO on this
dataset®: our methods have lower JSD values than SemCor
distribution. Another interesting result is that both WordNet
and BabelNet degree baselines also beat SemCor by 0.09
and 0.03 points, while EuroSense achieved the worst results.
LexSemTM, instead, scored pretty well according to both
measures, achieving 0.116 on JSD and 0.932 on WO. DaD
on the other hand scored better than SemCor but worse than
LexSemTM on JSD and slightly worse on WO; in contrast,
EnDi turned out to be the best method according to the JSD
measure and was equivalent to LexSemTM on WO, achiev-
ing the state of the art on this dataset. Note also that JSD
values are statistical significant for p < 0.1.

Extrinsic Evaluation

We now move to the extrinsic evaluation, which was per-
formed in the context of all-words Word Sense Disambigua-
tion. It is well known in the literature that always outputting
the most frequent sense for each ambiguous word in context

3We note that, here, all the systems were able to generate a dis-
tribution for each lemma.



Method Precision | Recall | Fl

EnDi 0.66 0.66 | 0.66
DaD 0.61 0.61 | 0.61
LexSemTM 0.51 048 | 0.49
BabelNet degree 0.51 0.38 | 0.43
WordNet degree 0.55 0.44 | 049
WordNet MFS 0.68 0.68 | 0.68

Table 5: Most Frequent Sense performance on all Sense-
val/SemEval test sets from Raganato et al. (2017).

— the so-called Most Frequent Sense (MFS) baseline — is
a hard-to-beat disambiguation strategy (Navigli 2009). The
MES for English is usually calculated based on frequencies
as reported in WordNet, which exploit those in the SemCor
corpus. Therefore, we can evaluate each sense distribution
method by (1) for each word, identifying the predominant
(i.e., highest-probability) sense according to the returned
sense distribution, and (2) always outputting that sense every
time in a WSD dataset we are required to disambiguate the
given word. By applying this procedure, we compared the
results of the various approaches against the WordNet MFS
and BabelNet and WordNet degree. As test sets, we used the
benchmark from Raganato, Camacho-Collados, and Navigli
(2017) which is the union of all the past Senseval and Se-
mEval for all-words WSD, namely: Senseval-2 (Edmonds
and Cotton 2001), Senseval-3 (Snyder and Palmer 2004),
SemEval-2007 (Navigli, Litkowski, and Hargraves 2007),
SemEval-2013 (Moro and Navigli 2015) and SemEval-2015
(Moro and Navigli 2015).

As shown in Table 5, not only do both EnDi and DaD
beat LexSemTM by several points, but they also, especially
EnDi, have performance close to the WordNet MFS base-
line with a gap of 2 and 7 points, while both BabelNet and
WordNet scored lower or equal to LexSemTM. This result
corroborates the consistently good results of EnDi in the in-
trinsic evaluation. Moreover we think that this is a very sig-
nificant outcome since a fully automatic system was able to
learn sense distributions that perform very close to a hard-
to-beat baseline obtained from a manually sense-annotated
dataset.

This is again a good result, but, as mentioned above, an-
notated data exists for English from which usable sense dis-
tributions can be derived (however, this data is outdated and
limited in size, while our distributions can be updated over
time and cover much of the lexicon). To further show the
effectiveness of our methods, we performed experiments in
other languages, for which manually annotated data is not
available on a reasonable scale. Our methods are indeed
language-independent and, thanks to BabelNet lexicaliza-
tions, we can apply them to arbitrary languages. We there-
fore calculated sense distributions from the Italian and Span-
ish Wikipedia (dumps from Oct. 2014) and compared their
performance on the SemEval-2015 all-words multilingual
Word Sense Disambiguation task. We set the threshold 6 for
Italian and Spanish to 1.0 and 0.001 experimentally, equally
to how we did for English. The difference is due to the fact
that the Spanish part of BabelNet contains more ambiguous
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Method Precision | Recall | Fl1

EnDi 0.60 0.50 | 0.55
DaD 0.67 0.56 | 0.61
BabelNet Degree 0.57 0.52 | 0.54
BFS 0.54 0.50 | 0.52

Table 6: Comparison of Most Frequent Sense performance
for Italian on the SemEval-2015 WSD task.

Method Precision | Recall | F1

EnDi 0.58 0.48 | 0.52
DaD 0.64 0.54 | 0.58
BabelNet Degree 0.56 0.52 | 0.54
BFS 0.55 0.51 0.53

Table 7: Comparison of the Most Frequent Sense perfor-
mance for Spanish on the SemEval-2015 WSD task.

data.

Results for Italian are shown in Table 6. We compared
our two methods against the BabelNet Degree and the Ba-
belNet First Sense (BFS) baseline, a dictionary-based base-
line which was used as baseline in the task (due to the lack
of a manually annotated dataset from which an MFS could
be estimated in Italian). The results show that our method
performs better than the current best baseline. In particular,
DaD outperforms the BES by 9 F1 points. The gap is even
bigger when looking at precision, where our two methods
gain from 6 to 13 points, while recall is increased by 6 points
with DaD. BabelNet degree also performed better than the
BFS but anyway less effectively than both our systems. A
similar trend is observed for Spanish (Table 7), with DaD
attaining a 5% F1 improvement over the Spanish BFS.

Domain-Specific Evaluation

We next investigated how well our methods were able to pro-
duce skewed distributions of senses in specific domains.

Learning domain-specific sense distributions. To bias
sense distributions towards specific domains, we exploited
the 34 domains available in BabelNet (Camacho-Collados
and Navigli 2017). For each domain d, we collected all the
synsets in BabelNet tagged with that domain and which con-
tain a Wikipedia page. We then used all the sentences from
the retrieved pages to build a corpus for domain d. On each
corpus, we then applied EnDi and DaD to obtain sense dis-
tributions that were biased towards the domain of interest.

Evaluation. We tested our domain-biased sense distri-
butions against domain-specific documents from the same
SemEval-13 and SemEval-15 test sets used in the above ex-
trinsic experiment, as tagged by the task organizers. In con-
trast to the above experiments, results are therefore reported
individually for each domain where EnDi and DaD used
the corresponding distributions learned for that domain®*.

“We note that, here, the only additional information provided as
input to the methods was the domain label.



Method Metrics | Biology | Climate | Finance | Medicine | Politics | Social Issues | Sport
EnDi F1 0.71 0.53 0.60 0.46 0.62 0.63 0.57
DaD Fl1 0.79 0.63 0.64 0.64 0.67 0.68 0.54
LexSemTM F1 0.56 0.47 0.49 0.42 0.51 0.52 0.34
WN MFS F1 0.61 0.59 0.52 0.50 0.64 0.58 0.56
Table 8: Domain evaluation on SemEval-2013 WSD.
Method Domain Precision | Recall | Fl Carthy et al. 2007) and it is able to improve a system’s per-
EnDi Math & Computer 0.65 0.61 | 0.63 formance by many points (Pasini and Navigli 2017). Several
Biomedicine 0.65 0.62 | 0.63 approaches have been proposed which learn more precise
DaD Math &.C.omputer 0.66 0.66 | 0.66 distributi . der to i MFES £
Biomedicine 063 063 1063 sense distributions in order to improve performance.
LoxSemTn | Math & Computer 048 047 047 A seminal work was by McCarthy et al. (2004b), who re-
Biomedicine 0.64 061 1063 lied on distributionally similar words in order to find the
WN MES Math & Computer 0.48 046 | 047 predominant meaning of the target word. Subsequent stud-
Biomedicine 0.70 0.67 | 0.68 ies, instead, put the focus on distribution learning within do-

Table 9: Domain evaluation on SemEval-2015 WSD.

Results are shown in Tables 8 and 9. EnDi outperforms
LexSemTM on all domains across the two datasets. While
the latter performances are always lower than the WordNet
MEFS baseline, EnDi is instead able to surpass the baseline on
4 out of 7 domains on SemEval-2013 and on one of the two
domains of SemEval-2015. As regards DaD, not only does
it consistently beat LexSemTM, achieving up to 23 points
higher in F1, but it also beats the WordNet MFS on every
domain but one of SemEval-2013 and one of the two do-
mains of SemEval-2015, performing on average 8 F1 points
higher.

Related Work

Word Sense Disambiguation (WSD) has long been stud-
ied within the AI and the NLP communities, which have
come up with various approaches to the problem (Nav-
igli 2009). A mainstream direction has been supervised
WSD, which trains a machine learning classifier with large
amounts of training data. The most successful approaches
have been based on SVM (Zhong and Ng 2010) and, more
recently, on neural LSTM architectures (Yuan et al. 2016;
Raganato, Delli Bovi, and Navigli 2017). A second popular
approach has been knowledge-based WSD, which exploits
knowledge resources like WordNet and BabelNet to perform
the task. Examples include Babelfy (Moro, Raganato, and
Navigli 2014) and PPR (Agirre, de Lacalle, and Soroa 2014),
both performing random walks to identify the most relevant
meanings for words in context. Both directions have their
own limitations, but one they have in common is the well-
known knowledge acquisition bottleneck. In fact, supervised
systems cannot perform well in the absence of large amounts
of training data, a requirement that is even amplified with
neural network classifiers. On the other hand, knowledge-
based systems need well structured, rich semantic networks.
To mitigate this problem, systems started to use estimates of
the most frequent sense (MFS) of a word as a backoff strat-
egy for those words for which not enough information was
available. The MFES has proven a hard-to-beat baseline (Mc-
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mains (Chan and Ng 2006). More recently, Bhingardive et
al. (2015) exploited word embeddings to identify the most
frequent sense by comparing the word vector against all the
vectors of its senses.

A different approach was taken by Jin et al. (2009), who
analyzed the entropy of the distributions of senses in order to
decide when it is better to use the MFS as output and when
it is not. The most recent effort in this direction, and the pre-
vious state of the art, is the work by Bennett et al. (2016),
which in its turn was based on (Lau et al. 2014) and adopted
topic modeling and word sense induction techniques (Lau
et al. 2012) to learn word sense distributions. With EnDi
and DaD, instead, we exploit Personalized PageRank on a
WordNet-like semantic network, and, respectively, the en-
tropy of a sense distribution and domain profiling to learn the
probability distribution of senses in a given corpus, achiev-
ing state-of-the-art performance.

Conclusion

In this paper we presented EnDi and DaD, two knowledge-
based, language-independent methods for learning the dis-
tributions of senses from an input corpus without relying
on manual training data. They have been shown to per-
form well on intrinsic and extrinsic evaluations, outperform-
ing the other baselines. Thanks to effective entropy-based
filtering, EnDi outperforms LexSemTM, the previous state
of the art in sense distribution learning, in all evaluations
for the English language. We also showed that, in contrast
to other approaches, both methods scale well to other lan-
guages, with DaD surpassing all alternative methods in the
two SemEval multilingual disambiguation tasks. Thanks to
its domain awareness, not only has DaD proven to gener-
alize well across languages, but also to surpass the F1 per-
formance of the hard-to-beat WordNet MFS on 8 out of 9
domains from two SemEval tasks. LexSemTM is, instead,
surpassed by both methods across all domains.

Our data is available at http://trainomatic.org. As future
work, we plan to use our sense distributions as a backoff
strategy to increase the performance of disambiguation sys-
tems, especially in those tasks which lack manually anno-
tated training data.
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