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Abstract

In recent years, deep neural networks have achieved signifi-
cant success in Chinese word segmentation and many other
natural language processing tasks. Most of these algorithms
are end-to-end trainable systems and can effectively pro-
cess and learn from large scale labeled datasets. However,
these methods typically lack the capability of processing rare
words and data whose domains are different from training
data. Previous statistical methods have demonstrated that hu-
man knowledge can provide valuable information for han-
dling rare cases and domain shifting problems. In this pa-
per, we seek to address the problem of incorporating dictio-
naries into neural networks for the Chinese word segmenta-
tion task. Two different methods that extend the bi-directional
long short-term memory neural network are proposed to per-
form the task. To evaluate the performance of the proposed
methods, state-of-the-art supervised models based methods
and domain adaptation approaches are compared with our
methods on nine datasets from different domains. The exper-
imental results demonstrate that the proposed methods can
achieve better performance than other state-of-the-art neural
network methods and domain adaptation approaches in most
cases.

Introduction
Chinese word segmentation (CWS) is an important and es-
sential pre-processing step for Chinese language processing
tasks. In recent years, most methods have treated the task
as a sequential labelling problem (Xue 2003; Zhang et al.
2003). For a given piece of text, labels are assigned to all
of the characters in that text, indicating the position of a
character in the word (Xue 2003) or representing the in-
tervals between characters (Huang et al. 2007). Various su-
pervised learning approaches have also been carefully stud-
ied to achieve the task, including maximum entropy (ME)
(Berger, Pietra, and Pietra 1996), support vector machines
(SVM) (Boser, Guyon, and Vapnik 1992), hidden Markov
models (HMMs) (Eddy 1996), conditional random fields
(CRFs) (Lafferty, McCallum, and Pereira 2001), and oth-
ers.

Recently, along with the development of deep learning
methods, some neural network models have also been suc-
cessfully used for Chinese word segmentation tasks (Zheng,
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Figure 1: Examples of rare words and domain-specific
words in dictionaries.

Chen, and Xu 2013; Chen et al. 2015b; Zhang, Zhang, and
Fu 2016). Zheng et al. (2013) adopted the method proposed
by Collobert et al. (2011) to perform Chinese word seg-
mentation and POS tagging. Chen et al. (2015b) extended
LSTM to explicitly model previously important informa-
tion in memory cells to perform the task. Experimental re-
sults have demonstrated that the performance of these meth-
ods can compete with previous state-of-the-art systems. A
word-based neural model for Chinese word segmentation
has also been proposed to exploit not only character embed-
dings but also word embeddings pre-trained from large scale
corpus (Zhang, Zhang, and Fu 2016).

Despite the great success achieved by neural network
based methods, some issues still have not been well solved.
One significant drawback is that such methods rarely take
the integration of knowledge into consideration. These net-
works usually employ an end-to-end approach and try to di-
rectly learn information from large scale labeled data. How-
ever there are also a huge number of cases that rarely oc-
cur, and neural networks usually cannot handle such cases
well. Out-of-vocabulary (OOV) words are one of the most
common errors of supervised CWS methods (Peng, Feng,
and McCallum 2004). While, dictionaries contain both com-
monly used words and rare words. Figure 1 illustrates dictio-
nary examples. Since these words are rarely used, they are
normally not included in the labeled data. Hence, if we can
incorporate a dictionary into a neural network, rare words
and domain-specific words can be better processed.

Previous methods have shown that incorporating dictio-
naries can bring significant improvement to the Chinese
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word segmentation task. Peng et al. (2004) proposed using
CRF to perform the task. By analyzing the experimental re-
sults reported in the paper of Peng et al., we can see that a
method that takes dictionary features into consideration can
achieve much better performance than methods that do not
take dictionary features into account. Qian and Liu (2012)
introduced a method to jointly model Chinese word segmen-
tation, POS tagging and parsing with features extracted from
dictionaries. Liu et al. (2014) proposed a semi-supervised
method that uses CRF with domain specific dictionaries for
cross-domain Chinese word segmentation .

Although these approaches have demonstrated the useful-
ness of dictionaries on CWS task, existing neural network
based CWS methods usually focused on constructing more
complex network architecture and did not carefully study
this problem. Several studies have examined related issues.
Yang et al. (2017) exploited richer sources of external infor-
mation, including punctuation, automatic segmentation and
POS, to pretrain character and word embeddings to improve
performance. Zhang et al. (2017) studied the problem of in-
tegrating prior knowledge for a neural machine translation
task. They proposed a posterior regularization method to in-
corporate a phrase table, length ration, bilingual dictionary
and coverage penalty to perform the machine learning task.
Hence, how to incorporate dictionaries into neural networks
for CWS should be investigated.

In this paper, we propose a novel method to achieve the
task. We extend bi-directional long short-term memory and
conditional random field (Bi-LSTM-CRF) (Huang, Xu, and
Yu 2015) to model the CWS task as a character level se-
quence labeling problem. To integrate dictionaries, we de-
fine several templates to construct feature vectors for each
character based on dictionaries and contexts. Then, two dif-
ferent methods are introduced to integrate feature vectors
with character embeddings to perform the task. Three sim-
plified Chinese and two traditional Chinese corpora are used
for evaluation. Besides training and testing the proposed
methods on the same domain, we also show that the pro-
posed methods can achieve significantly better performance
on the domain adaptation task. When applying the model on
different domains, we only need to add extra domain spe-
cific dictionaries. The other learned parameters can remain
unchanged with no need for retraining.

The contributions of this paper can be summarized as fol-
lows.

• We studied the problem of integrating dictionaries into
neural networks based methods for the Chinese word seg-
mentation task.

• We proposed two methods to integrate information ex-
tracted from dictionaries into neural network based meth-
ods for a CWS task. The methods can solve the problem
caused by rare words and achieve significant improve-
ments in the cross-domain CWS task.

• Extensive experiments on nine corpora are conducted to
compare the proposed methods with state-of-the-art meth-
ods.

Bi-LSTM-CRF Model for Chinese Word

Segmentation

The Chinese word segmentation task is usually regarded as
a character-based sequence labeling task. Given a sentence
x = (x1, x2, ..., xn), each character xi in the sentence x
will be labeled as one of T = {B,M,E, S}, indicating the
character is in the beginning, middle, end of a word, or the
character is merely a single-character word. In this section,
we will give a brief description of the general Bi-LSTM-
CRF architecture for CWS.

Similar to other methods using neural networks, the first
step of the Bi-LSTM-CRF based CWS method is to repre-
sent characters in distributed vectors. In this work, we use
exi

∈ R
de to represent the embedding of character xi.

Bi-LSTM Layer

The long short-term memory network (LSTM) (Hochreiter
and Schmidhuber 1997) is a variant of the recurrent neural
network (RNN). Although, in theory, the RNN can process
any long-distance dependencies; in practice, it fails to do so
as a result of gradient vanishing/exploding problems. The
LSTM provides a solution by introducing gate mechanism
and memory cell. Formally, the input gate i, forget gate f ,
memory cell c, and output gate o could be defined as:

ii = σ(Wihi−1 +Uiexi + bi)

f i = σ(Wfhi−1 +Ufexi
+ bf)

c̃i = tanh(Wc̃hi−1 +Uc̃exi
+ bc̃)

ci = f i � ci−1 + ii � c̃i
oi = σ(Wohi−1 +Uoexi

+ bo)

hi = oi � tanh(ci),

where σ and � are the element-wise sigmoid function and
element-wise product, respectively. Wg ∈ R

4dh×dh , Ug ∈
R

4dh×de , and bg ∈ R
4dh are trainable parameters.

LSTM’s hidden state hi just takes information only from
past, not considering future information. In order to incorpo-
rate information from both past and future, an elegant solu-
tion is to use bi-directional LSTM (Bi-LSTM) (Graves and
Schmidhuber 2005). Specially, the hidden state of Bi-LSTM
could be defined as:

hi =
−→
h i ⊕←−

h i,

where
−→
h i and

←−
h i are the hidden states at position i of the

forward and backward LSTM, respectively. ⊕ represents the
concat operation. This representation has empirically proven
to be efficient in capturing both past and future information.

CRF Layer

For the character-based Chinese word segmentation task, it
is beneficial to consider the dependencies of adjacent labels.
For example, a B (begin) label should be followed by a M
(middle) label or E (end) label, and a M label cannot be fol-
lowed by a B label or S (single) label. Therefore, instead of
making tagging decisions using hi independently, we em-
ploy a conditional random field (CRF) to model the label
sequence jointly.
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Formally, for a given sentence x = (x1, x2, ..., xn) with
a predicted tag sequence y = (y1, y2, ..., yn), its prediction
score can be defined as:

s(x,y) =
n∑

i=1

(Ayi−1yi
+Pi,yi

),

where A is a transition score matrix and Ai,j measures the
score of jumping from tag i to j. Pi,yi

represents the score
of the yi-th tag of the xi. In particular, Pi could be precisely
defined as:

Pi = Wshi + bs

where hi is the hidden state of Bi-LSTM at position i. Ws ∈
R
|T |×dh and bs ∈ R

|T | are trainable parameters.
In the CRF layer, the probability of the sentence x being

tagged for sequence y could be computed as:

p(y|x) = es(x,y)∑
ỹ∈Yx

es(x,ỹ)
.

where Yx represents all possible tag sequences ỹ for
given sentence x. For training, we can use the maxi-
mum likelihood estimation to maximize the log-probability
log(p(ŷ|x)) of the ground truth tag sequence ŷ. While de-
coding, our prediction will be the tag sequence y∗ with the
highest score given by the following:

y∗ = argmax
ỹ∈Yx

s(x, ỹ).

We can use the Viterbi algorithm, a dynamic program-
ming algorithm, to solve the efficiency problem in the train-
ing and decoding process.

Incorporating Dictionaries for Chinese Word

Segmentation

From the brief description given above, we can observe
that the Bi-LSTM-CRF model can learn information from
large-scale labeled data. However, it cannot process rare
words and domain-specific words very well. Hence, in this
work, inspired by the success of integrating dictionaries
into the CRF models for CWS (Low, Ng, and Guo 2005;
Chang, Galley, and Manning 2008; Liu et al. 2014), we
consider integrating dictionaries into neural networks based
models.

For a given sentence x = (x1, x2, ..., xn), we first con-
struct feature vector ti for each character xi based on dic-
tionary D and the context. The feature vector ti represents
whether character segments that consist of character xi and
its surroundings are words or not. After that, we propose two
methods to integrate the feature vector ti into the Bi-LSTM-
CRF model. We will detail the feature vector construction
and proposed methods in the following section.

Feature Vector Construction

As described above, given a sentence x and an external dic-
tionary D, we first construct text segments based on the con-
text of xi using the pre-defined feature templates. The fea-
ture templates used in our work are listed in Table 1. For a

Type Template
2-gram xi−1xi, xixi+1

3-gram xi−2xi−1xi, xixi+1xi+2

4-gram xi−3xi−2xi−1xi, xixi+1xi+2xi+3

5-gram xi−4xi−3, ..., xi, xixi+1, ..., xi+4

Table 1: Feature templates for the i-th character, which are
used to generate feature vector ti.

text segment that appears in a feature template, we can gen-
erate a binary value to indicate whether the text segment is a
word in D or not. tik represents the value of the output cor-
responding to the k-th template for xi. Finally, we generate
an 8-dimensional vector containing word boundary informa-
tion extracted from the dictionary D. Figure 2 illustrates an
example of feature vector construction. Text segments are
generated based on the feature templates shown in Table 1.
Then, using the given dictionary D, we can obtain feature
vector ti for each character xi.

Figure 2: Example of feature vector construction. The char-
acter with the red shadow is the character xi. The character
segments with rounded rectangle are the words in the dictio-
nary D.

To some degree, the feature vector can represent the can-
didate labels of a character based on the given dictionary.
The values in the feature vector are dependent on the context
and dictionary. They are not impacted by other sentences
or statistical information. Hence, feature vectors can pro-
vide much information quite different from statistical-based
methods. One should also note that there are other more
complex ways to construct feature vector ti. For example,
we can construct more feature templates and use more so-
phisticated features. However, the simple way is encourag-
ing, and the focus of our work is not feature engineering.
Therefore, we do not explore these alternate ways, leaving
them for future work.

Model-I

Through introducing the feature vector construction step,
given a sentence x, we obtain both character embedding
exi

and feature vector ti for each character xi. As described
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Figure 3: Main architecture of Model-I. The ex and t rep-
resent character embeddings and feature vectors. The two
parallel Bi-LSTMs are used to extract context information
and potential word boundary information.

above, the basic Bi-LSTM-CRF-based model takes only the
exi

as inputs. Because feature vectors could provide valu-
able information about different aspects, we propose to inte-
grate it with the original Bi-LSMT-CRF model using another
Bi-LSTM network.

The general architecture of the proposed model is illus-
trated in Figure 3. The two parallel Bi-LSTM can extract
context information and potential word boundary informa-
tion, respectively. For sentence x, the hidden states of the
two parallel Bi-LSTM at position i can be defined as:

hx
i = Bi-LSTM(

−→
h x

i−1,
←−
h x

i+1, exi
)

ht
i = Bi-LSTM(

−→
h t

i−1,
←−
h t

i+1, ti),

where exi
denotes the embedding vector of xi, and ti repre-

sents the feature vector generated through an external dictio-
nary and the context of xi. Note that in our formulation, the
two parallel Bi-LSTM are independent, without any shared
parameters. Then we combine the two hidden states as the
inputs of CRF layer. Specifically, we simply adopt the con-
cat operation to combine hx

i and ht
i:

hi = hx
i ⊕ ht

i

The other part of this model uses the same operation as
the basic Bi-LSTM-CRF model.

Model-II

As described above, feature vectors represent the different
boundary candidates. Under different boundary candidates,
the weights for modeling xi should be different. However,
traditional LSTM have the weight-sharing constraints. In-
spired by Ha et al. (2016), we consider the use of a hyper-
network to incorporate the information extracted from dic-
tionaries. Specifically, we use ti as the inputs of a Bi-LSTM

Figure 4: Main architecture of Model-II. We use a HyperL-
STM to dynamically generate the weights for the MainL-
STM. The HyperLSTM takes feature vectors t as inputs,
while the MainLSTM takes embedding vectors ex as inputs.

to generate the weights for modeling xi. Figure 4 illustrates
the general architecture of the proposed model. The bot-
tom Bi-LSTM, which is called the HyperLSTM Layer, is
used to generate the weights for the top Bi-LSTM. The top
Bi-LSTM, which is called the MainLSTM layer, is used to
model the character sequence {x1, ..., xn}.

The HyperLSTM cell has its own input sequence and hid-
den units, and these hidden units will be used to generate
the weights for the MainLSTM. It provides an elegant way
to relax the hard weight-sharing constraints of the traditional
LSTM. This operation allows the weights of the MainLSTM
to change under different boundary candidates, which might
provide better results.

In contrast to Ha et al. (2016), the input to the HyperL-
STM in our model is only the feature vector ti, and does
not contain the hidden state of the MainLSTM hi−1 and
the embedding vector exi

. The weights for each of the four
{i, f , c̃,o} gates of the MainLSTM will be generated by a set
of embedding vectors zx, zh, zb unique to each gate. These
embedding vectors are linear projection of the hidden states
of the HyperLSTM, and their dimension is typically smaller
than the hidden unit number dht of the HyperLSTM. For
brevity and clarity, we use g to represent one of {i, f ,o, c̃}
instead of writing four sets of identical equations:

ht
i = LSTM(ht

i−1, ti)

zgh = Wg
hhth

t
i + bg

hht

zgx = Wg
xhth

t
i + bg

xht

zgb = Wg
bhth

t
i

where Wg
hht ,W

g
xht ,W

g
bht ∈ R

dz×dht , and bg
hht ,b

g
xht ∈

R
dz are trainable parameters of linear projection layer. The

ht is the hidden state of HyperLSTM.
Then, we use the embedding vectors z to generate the

weights of the MainLSTM. Considering the memory effi-
ciency, we use weight scaling vectors d to modify the rows
of weight matrices instead of generating weight matrices di-
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Datasets PKU MSR AS CITYU CTB6 Literature Computer Medicine Finance

Training set
#sent 19.1K 86.9K 709.0K 53.0K 25.5K
#word 1.11M 2.37M 5.45M 1.46M 0.70M PKU’s training set
#char 1.83M 4.05M 8.37M 2.40M 1.16M

Testing set
#sent 1.9K 4.0K 14.4K 1.5K 2.8K 0.7K 1.3K 1.3K 0.6K
#word 0.10M 0.11M 0.12M 0.04M 0.08M 35.2K 35.3K 31.5K 33.0K
#char 0.17M 0.18M 0.20M 0.07M 0.13M 50.3K 64.2K 52.2K 56.3K

OOV Rate 5.8% 2.6% 4.3% 7.2% 5.3% 7.0% 15.2% 11.0% 8.7%

Table 2: Statistics of the nine different datasets.

rectly. The gate g ∈ {i,g, f ,o} of the MainLSTM can be
computed:

gi = dg
h �Wgh

x
i−1 + dg

x �Ugexi + bg

dg
h = Wg

hzz
g
h

dg
x = Wg

xzz
g
x

bg = Wg
bzz

g
b + bg

0

where Wg
hz,W

g
xz,W

g
bz ∈ R

dhx×dz and bg
0 ∈ R

dhx .
Considering the fact that the backward HyperLSTM and

MainLSTM are the same as the forward ones, we will not
describe them.

Experiments

Datasets

We evaluated our models on nine frequently used
CWS datasets, including SIGHAN2005 (Emerson 2005),
CTB6 (Xue et al. 2005), and SIGHAN2010 (Zhao and
Liu 2010). Table 2 lists the statistics of the nine datasets.
Among these datasets, PKU, MSR, AS, CITYU (from
SIGHAN2005), and CTB6 (from Chinese TreeBank 6.0)
have been commonly used by previous state-of-the-art mod-
els. Note that AS and CITYU are traditional Chinese, and
we map them into simplified Chinese before segmentation.
SIGHAN2010 is usually used to evaluate domain adaptation
algorithms for CWS. It contains four different test sets from
the literature, computer, medical, and financial fields, while
its training set is the same as PKU.

We used the simplified Chinese dictionary1 sourced from
jieba (a popular open source project for CWS) as the external
dictionary in our work. In particular, for AS and CITYU, we
added an extra traditional Chinese dictionary2, taken from
the Taiwan version of jieba. All datasets are preprocessed
by replacing the Chinese idioms3, continuous English char-
acters and digits with a unique token. For evaluation, we
use the standard bake-off scoring program to calculate F1
scores.

Experimental Configurations

Hyper-parameters may influence the performance of a neu-
ral network model. We adopted the hyper-parameters as
shown in Table 3 for most of the datasets. The hidden unit

1https://github.com/fxsjy/jieba/tree/master/jieba/dict.txt.
2https://github.com/ldkrsi/jieba-zh TW/blob/master/jieba.
3This idiom dictionary comes from Cai and Zhao (2016), and it

is released at https://github.com/jcyk/CWS/tree/master/data/idioms

number 2 dht represents the hidden unit number of the
LSTM, which takes feature vectors t as inputs in our two
proposed models. The hyper embedding size dz is the em-
bedding vectors dimension of HyperLSTM in our model-
II. In particular, we adjusted the hidden unit number dhx of
PKU to 64, hidden unit number 2 dht of SIGHAN2010 cor-
pus to 160, and initial learning rate of MSR and AS to 0.001,
while the remaining hyper-parameters remained unchanged.

The character embeddings used in our work were pre-
trained using the word2vec (Mikolov et al. 2013) toolkit on
the Chinese Wikipedia corpus and fine tuned in the training
process. Following previous work (Pei, Ge, and Chang 2014;
Chen et al. 2015b; 2017), we also used bigram character em-
beddings, which were initialized by averaging the embed-
dings of two contiguous characters.

Character embedding size de = 100
Initial learning rate α = 0.01
Dropout rate p = 0.2
Batch size b = 128
Gradient clipping c = 5
Hidden unit number dhx = 128
Hidden unit number 2 dht = 128
Hyper embedding size dz = 16

Table 3: Hyper-parameters configuration

Results

In this section, we first give the experimental results for five
commonly used datasets for CWS. Then, we will discuss the
performance of our models on the cross-domain CWS.

In-domain evaluation Table 4 lists the main results for
five commonly used datasets, where the training and test-
ing sets are in the same domain. For PKU, MSR, AS, and
CITYU, only the training and testing sets were provided,
and we used the first 90% of the sentences of the training set
for training and the remaining 10% of the sentences as a de-
velopment set. For CTB6, we followed Zhang et al. (2014)
in constructing training, development, and testing sets.

In the first block, we give the performance of the lat-
est neural network models without external resources, with
the exception of pre-trained character embeddings. Cai et
al. (2017) designed a word-based greedy search algorithm
to improve the performance. Specially, Zhang et al. (2016)
(hybrid) used a hybrid neural model, which integrated man-
ual discrete features into their word-based neural network.
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Models PKU MSR AS CITYU CTB6
Cai and Zhao (2016) 95.5 96.5 - - -
Zhang et al. (2016) neural 95.1 97.0 - - 95.0
Zhang et al. (2016) hybrid 95.7 97.7 - - 96.0
Cai et al. (2017) 95.8 97.1 95.6 95.3 -
Chen et al. (2015a)* 96.1 96.2 - - 95.8
Chen et al. (2015b)* 96.0 96.6 - - 96.0
Cai and Zhao (2016)* 95.7 96.5 - - -
Chen et al. (2017)* - 96.0 94.9 - -
Cai et al. (2017)* 96.1 97.3 - - -
Yang et al. (2017)* 96.3 97.5 95.7 96.9 96.2
Bi-LSTM-CRF 95.1 97.0 95.3 95.3 95.6
Stacked Bi-LSTM-CRF 95.3 96.9 95.3 95.3 95.6
Model-I 96.2 97.6 95.6 96.0 96.1
Model-II 96.5 97.8 95.9 96.3 96.4

Table 4: Results on in-domain evaluation. There are four
blocks. The first two blocks contains the latest neural net-
work models, and the symbol * represents allowing the use
of external resources. The last two blocks give the results of
the baseline models and proposed models, respectively.

In the second block, we give the performance of the lat-
est neural network models, allowing the use of external re-
sources. Chen et al. (2015a; 2015b), Cai and Zhao (2016)
and Cai et al. (2017) used an idiom dictionary4 to replace
Chinese idioms with a unique token. Chen et al. (2017)
adopted an adversarial multi-criteria learning method to
integrate shared knowledge from multiple heterogeneous
segmentation criteria. Yang et al. (2017) exploited richer
sources of external information, including punctuation, au-
tomatic segmentation, heterogeneous segmentation criteria,
and POS data.

In the third block, we give the performance of two base-
line models that don’t use an external dictionary: Bi-LSTM-
CRF and stacked Bi-LSTM-CRF. The stacked Bi-LSTM
represents a two-layer Bi-LSTM. Based on the experimental
results, we can see that merely increasing the depth of the
Bi-LSTM cannot improve the performance.

In the last block, we give the performance of our two pro-
posed models. We can note that our model-II achieves the
best results on all of the datasets except for CITYU. This
might be because that the CITYU source is from the Hong
Kong corpora, and there are large differences between it and
our dictionary. Simultaneously, compared with the two base-
line models, the proposed models significantly improve the
performance with the help of the information extracted from
the external dictionary. This proves that incorporating dictio-
naries into neural network models can significantly boost the
performance of the CWS. In particular, model-II performs
better than model-I, possibly because model-II relaxed the
hard weight-sharing constraints of the traditional LSTM and
provided a more flexible way to extract features for each
character xi based on the dictionary and contexts.

4Their idiom dictionary was the same as the idiom dictionary
used in our work. Note that we didn’t use the original idiom dictio-
nary for Chen et al. (2015a; 2015b), because it was neither publicly
released nor specified the source until now. We give the results of
re-running their code using the given idiom dictionary.

Models Literature Computer Medicine Finance
Jiang et al. (2013) 93.53 91.19 93.34 93.16
Liu et al. (2014)
CRF+PA(Natural) 92.49 93.93 92.47 95.54
CRF+PA(Dict) - 93.47 91.68 -
CRF+PA(Natural+Dict) - 94.07 92.63 -
Bi-LSTM-CRF 93.05 93.20 91.85 95.20
Stacked Bi-LSTM-CRF 93.00 93.26 91.79 95.11
Model-I 92.61 92.32 91.18 94.64
Model-I + Domain dict 94.42 94.39 93.93 95.70
Model-II 92.87 92.65 91.27 94.95
Model-II + Domain dict 94.76 94.70 94.18 96.06

Table 5: Results on cross-domain evaluation. The first two
blocks contain latest domain adaption models. In particular,
PA, Natural, and Dict represent the partial annotation, nat-
ural annotation and dictionary. The last two blocks give the
results of the baseline models and proposed models, and do-
main dict represents domain-specific dictionary.

Evaluation on cross-domain datasets We also compared
our models with latest domain adaptation models for the
cross-domain task, and the main results are listed in Table
5. For these datasets, no corresponding development set was
provided. For a fair comparison, we did not select partial
sentences from the testing set as a development set, but in-
stead used the models trained on the training set for a fixed
epoch for testing.

In particular, our external dictionary contained most
domain-specific words of testing sets. In order to prove that
our models could profit from domain-specific dictionaries
for cross-domain tasks, we filtered partial domain-specific
words appearing in the external dictionary as domain-
specific dictionaries5 and only used them during testing.

In the first two blocks, we give the experimental results
of the latest domain adaptation models for CWS. Jiang et
al. (2013) utilized linguistic knowledge in a large number
of natural annotations to improve the performance of the
cross-domain CWS. Liu et al (2014) exploited a CRF-based
model, leveraging partial annotated data from dictionaries
and natural annotation to help CWS on different domains.

In the last two blocks, we give the experimental results
of the baseline models and our two proposed models. When
not using domain-specific dictionaries, our proposed mod-
els perform the same or a little worse than the baseline Bi-
LSTM-CRF models. This may be because we filtered par-
tial domain-specific words of testing sets from the external
dictionary, and the external dictionary cannot provide valu-
able information for domain-specific words. However, when
these filtered domain-specific words were added during test-
ing, our models achieved a great improvement and obtained
the state-of-the-art performance. This proves that our mod-
els could profit from domain-specific dictionaries. In par-
ticular, when our models are applied on a different domain
corpus, we only need to add an extra domain-specific dictio-
nary rather than retrain the models. Therefore, we can easily
apply our models to different domains for CWS.

5We regarded these out-of-vocabulary words appearing in the
external dictionary as domain-specific words and randomly ex-
tracted some of them as the domain-specific dictionaries.
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Figure 5: F1-scores with different sized dictionaries for
Model-II. We randomly select different proportions of words
from the original dictionary to generate new dictionaries.

Parameter analysis

In this section, we investigate the impact of the dictionary’s
size and hidden unit number dht . To simplify the experi-
ments, all of the experiments were only conducted on the
PKU, MSR, and CTB6 corpus.

Dictionary size We first investigated the effect of the dic-
tionary size. We randomly selected 80%, 85%, 90% and
95% of the words from the original dictionary to construct
new dictionaries with different sizes. Figure 5 shows the F1-
scores of our model-II with these dictionaries. From this
figure, we can see the performance of the proposed model
improves gradually with an increase in the dictionary size.
Therefore, we could infer that we will get better results if
we can obtain a dictionary containing more words.

Hidden unit number Then, we further investigate the in-
fluence of the hidden unit number dht of the LSTM, which
takes feature vectors t as the inputs in our proposed mod-
els. In our experiment, dht was set 32, 64, 128, and 160,
respectively. The results of our proposed models are shown
in Figure 6. From this figure, we can see that the hidden
unit number dht has no discernible effect on the results of
the proposed models, and our model-II performs better than
model-I with different hidden unit number dht .

Related work

Chinese word segmentation is always an active area in NLP
tasks, and there have recently been many studies that have
exploited various external resources to further improve the
performance. These works mainly focused on statistical
models and neural network models.

Liu et al. (2005) and Chang et al. (2008) both proposed
that incorporating external dictionaries into statistical mod-
els can boost the performance. Zhao et al. (2010) system-
atically investigated multiple external resources, including
an external dictionary, external name entity recognizer, and

Figure 6: F1-scores with different hidden unit number dht .
The suffix numbers 1 and 2 represent the results of Model-I
and Model-II, respectively.

assistant word segmenter. Liu et al. (2014) exploited a CRF-
based model, leveraging partial annotated data from dictio-
naries and natural annotation to help the CWS on different
domains.

Chen et al. (2015a; 2015b) used an idiom dictionary to re-
place Chinese idioms with a unique token, and then adopted
neural network models for CWS. Chen et al. (2017) pro-
posed an adversarial multi-criteria learning method to inte-
grate shared knowledge from multiple heterogeneous seg-
mentation criteria. Yang et al. (2017) investigated the influ-
ences of various external resources, including punctuation,
automatic segmentation, and POS, for neural word segmen-
tation. They regarded each external resource as an auxiliary
classification task, and used multi-task learning methods to
pre-train the shared parameters used for the context model-
ing of Chinese characters.

Unlike the above models, we investigated the problem of
incorporating dictionaries into neural network models.

Conclusion

In this study, we examined the problem of integrating dic-
tionaries into neural network-based Chinese word segmen-
tation methods. We proposed a method to extract infor-
mation based on given dictionaries for a sentence. Then,
two different models were introduced to use the informa-
tion extracted from these dictionaries. Because dictionaries
contain rare words and domain specific words, the models
could process them better than previous methods. Experi-
mental results showed that incorporating dictionaries could
significantly enhance neural word segmentation. Our models
achieved better results than state-of-the-art neural network
models and domain adaptation models.
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