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Abstract

Prediction without justification has limited utility. Much of
the success of neural models can be attributed to their abil-
ity to learn rich, dense and expressive representations. While
these representations capture the underlying complexity and
latent trends in the data, they are far from being inter-
pretable. We propose a novel variant of denoising k-sparse
autoencoders that generates highly efficient and interpretable
distributed word representations (word embeddings), begin-
ning with existing word representations from state-of-the-art
methods like GloVe and word2vec. Through large scale hu-
man evaluation, we report that our resulting word embed-
ddings are much more interpretable than the original GloVe
and word2vec embeddings. Moreover, our embeddings out-
perform existing popular word embeddings on a diverse suite
of benchmark downstream tasks1.

Introduction

Distributed representations map words to vectors of real
numbers in a continuous space. These word vectors have
been exploited to obtain state-of-the-art results in NLP tasks,
such as parsing (Bansal, Gimpel, and Livescu 2014), named
entity recognition (Guo et al. 2014), and sentiment analy-
sis (Socher et al. 2013). However, word vectors have dense
representations that humans find difficult to interpret. For in-
stance, we are often clueless as to what a “high” value along
a given dimension of a vector signifies when compared to a
“low” value. To demonstrate this, we analyze embeddings
of few randomly selected words (see Table 1). For these
randomly picked words, we examine top participating di-
mensions (Top participating dimensions are the dimensions
that have highest absolute values for that word). For each
of these selected top dimensions, we note the words that
have the highest absolute values in that dimension. We ob-
serve that for embeddings from state-of-the-art word mod-
els like GloVe (Pennington, Socher, and Manning 2014)
and word2vec (Mikolov et al. 2013) are not ‘interpretable’,
i.e. the top participating words do not form a semantically
coherent group. This notion of interpretability — one that

∗AS, DP and HJ contributed equally to this paper.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Our code and generated word vectors are publicly available at
https://github.com/harsh19/SPINE

requires each dimension to denote a semantic concept —
resonates with post-hoc interpretability, introduced and dis-
cussed in (Lipton 2016).

We argue that this notion of interpretability can help in
gaining better understanding of neural representations and
models. Interpretability in a general neural network pipeline
would not just help us reason about the outcomes that they
predict, but would also provide us cues to make them more
efficient and robust. In various feature norming studies (Gar-
rard et al. 2001; McRae et al. 2005; Vinson and Vigliocco
2008), where participants were asked to list the properties of
several words and concepts, it was observed that they typ-
ically used few sparse characteristic properties to describe
the words, with limited overlap between different words.
For instance, to describe the city of Pittsburgh, one might
talk about phenomena typical of the city, like erratic weather
and large bridges. It is redundant and inefficient to list neg-
ative properties, like the absence of the Statue of Liberty.
Thus, sparsity and non-negativity are desirable characteris-
tics of representations, that make them interpretable. Many
recent studies back this hypothesis (Lee and Seung 1999;
Murphy, Talukdar, and Mitchell 2012; Fyshe et al. 2014;
2015; Faruqui et al. 2015; Danish, Dahiya, and Talukdar
2016). This raises the following question:

How does one transform word representations to a new
space where they are more interpretable?

To address the question, in this paper, we make following
contributions:
• We employ a denoising k-sparse autoencoder to ob-

tain SParse Interpretable Neural Embeddings (SPINE),
a transformation of input word embeddings.
We train the autoencoder using a novel learning objective
and activation function to attain interpretable and efficient
representations.

• We evaluate SPINE using a large scale, crowdsourced, in-
trusion detection test, along with a battery of downstream
tasks. We note that SPINE is more interpretable and effi-
cient than existing state-of-the-art baseline embeddings.
The outline of the rest of the paper is as follows. First, we

describe prior work that is closely related to our approach,
and highlight the key differences between our approach and
existing methods. Next, we provide a mathematical formula-
tion of our proposed method. Thereafter, we describe model
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Initial GloVe vectors Initial word2vec vectors

mathematics
intelligence, government, foreign, security
kashmir, algorithms, heat, computational
robes, tito, aviation, backward, dioceses

leukemia, enterprises, wingspan, info, booker
ore, greens, badminton, hymns, clay
asylum, intercepted, skater, rb, flats

remote
thousands, residents, palestinian, police

kashmir, algorithms, heat, computational
tamil, guerrilla, spam, rebels, infantry

basilica, sensory, ranger, chapel, memorials
microsoft, sr, malaysia, jan, cruisers

capt, obey, tents, overdose, cognitive, flats

internet
thousands, residents, palestinian, police

intelligence, government, foreign, security
nhl, writer, writers, drama, soccer

cardinals, tsar, papal, autobiography, befriends
gases, gov, methane, graph, buttons

longitude, carr, precipitation, snowfall, homer
SPOWV w/ GloVe (Faruqui et al. 2015) SPOWV w/ word2vec (Faruqui et al. 2015)

mathematics
particles, electrons, mathematics, beta, electron
standardized, wb, broadcasting, abc, motorway

algebra, finite, radcliffe, mathematical, encryption

educator, scholar, fluent, mathematician
algebra, instructor, teaches, graduating, graders

batsmen, bowling, universe, mathematician

remote
river, showers, mississippi, dakota, format

haiti, liberia, rwanda, envoy, bhutan
implanted, vaccine, user, registers, lam

mountainous, guerrillas, highlands, jungle
pp., md, lightweight, safely, compartment

junk, brewer, brewers, taxation, treaty

internet
sandwiches, downloads, mobility, itunes, amazon

mhz, kw, broadband, licenses, 3g
avid, tom, cpc, chuck ,mori

broadcasts, fm, airs, syndicated, broadcast
striker, pace, self, losing, fined

computing, algorithms, nm, binary, silicon
SPINE w/ GloVe SPINE w/ word2vec

mathematics
sciences, honorary, faculty, chemistry, bachelor
university, professor, graduate, degree, bachelor

mathematical, equations, theory, quantum

algebra, exam, courses, exams, math
theorem, mathematical, mathematician, equations
doctorate, professor, doctoral, lecturer, sociology

remote
territory, region, province, divided, district
wilderness, ski, camping, mountain, hiking

rugged, mountainous, scenic, wooded, terrain

villages, hamlet, villagers, village, huts
mountainous, hilly, impoverished, poorest, populated

button, buttons, click, password, keyboard

internet
windows, users, user, software, server

youtube, myspace, twitter, advertising, ads
wireless, telephone, cellular, cable, broadband

hacker, spam, pornographic, cyber, pornography
browser, app, downloads, iphone, download

cellular, subscriber, verizon, broadband, subscribers

Table 1: Qualitative evaluation of the generated embeddings. We examine the top participating dimensions for a few randomly
sampled words. We then look at the top words from these participating dimensions. Clearly, the embeddings generated by
SPINE are significantly more interpretable than both the GloVe and word2vec embeddings, and the Sparse Overcomplete
Word Vectors (SPOWV) (Faruqui et al. 2015). We also observe that often, the top participating dimensions for a given word are
able to cater to different interpretations or senses of the word in question. For instance, for the words ‘internet’ and ‘remote’,
we see dimensions that capture different aspects of these words.

training and tuning, and our choice of hyperparameters. Fur-
ther, we discuss the performance of the embeddings gener-
ated by our method on interpretability tests and on various
downstream tasks. We conclude by discussing future work.

Related Work

We first discuss previous efforts to attain interpretability in
word representations. Then, we discuss prior work related to
k-sparse autoencoders.

Interpretability in word embeddings

Murphy et al. (2012) proposed NNSE (Non-Negative
Sparse Embeddings) to learn interpretable word embed-
dings. They proposed methods to learn sparse representa-
tions of words using non-negative matrix factorization on the
co-occurrence matrix of words. Faruqui et al. (2015, a) con-
sider linguistically inspired dimensions as a means to induce
sparsity and interpretability in word embeddings. However,

since their dimensions are binary valued, there is no notion
of the extent to which a word participates in a particular di-
mension. Park et al. (2017) apply rotations to the word vec-
tors to improve the interpretability of the vectors.

Our method is different from these approaches in two
ways. Firstly, our method is based on neural models, and
is hence more expressive than linear matrix factorization or
simple transformations like rotation. Secondly, we allow for
different words to participate at varying levels in different
dimensions, and these dimensions are discovered naturally
during the course of training the network.

Faruqui et al. (2015, b) have proposed Sparse Over-
complete Word Vectors (SPOWV), that utilizes sparse cod-
ing in a dictionary learning setting to obtain sparse, non-
negative word embeddings. Given a set of representations
D = [X1,X2,X3, . . . ,XV ]

T ∈ R
V×d, where V is the vo-

cabulary size and d is the number of dimensions in the input
word embeddings, their approach attempts to represent each
input vector Xi ∈ D as a sparse linear combination of basis
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Table 2: Notation:
D : Input set of representations
H : Set of hidden units in a layer
Z

(X)
h : Activation value for the hidden unit

h for the input representation X

ρ∗h,D : Desired sparsity fraction for unit h
across dataset D

ρh,D : Observed average activation value
for unit h across dataset D

vectors aj ∈ A. The goal of the Sparse Overcomplete Word
Vectors (SPOWV) method is to solve

argmin
D,A

∥∥D −AD
∥∥2
2
+ λ

∥∥A∥∥
1
+ τ

∥∥D∥∥2
2

where D ∈ R
m×d is the dictionary of basis vectors, A is

the generated set of sparse output embeddings, and λ and τ
are coefficients for the regularization terms. Here, m is the
dimensionality of the output embedding space. Sparsity is
enforced through the �1 penalty imposed on A. The non-
negativity constraint is imposed in Faruqui et al. (2015) dur-
ing the optimization step, while solving the following equiv-
alent problem.

argmin
D,A

V∑
i=1

∥∥Xi − aiD
∥∥2
2
+ λ

∥∥ai∥∥1 + τ
∥∥D∥∥2

2

s.t. D ∈ R
m×d
≥0 and

A ∈ R
V×m
≥0

Here, A ∈ R
V×m is the set of sparse output embeddings.

We direct interested readers to (Faruqui et al. 2015; Lee et
al. 2007) for detailed investigations of this approach.

Their work is similar to ours in spirit and motivation, and
is the closest match to our goal of producing interpretable
and efficient representations. Thus, we compare our ap-
proach with SPOWV in both performance and interpretability
tests.

k-sparse autoencoders

A k-sparse autoencoder (Ng 2011) is an autoencoder for
which, with high probability, at most k hidden units are
active for any given input. Ng (2011) introduced a mech-
anism to train k-sparse autoencoders. The underlying idea
is to achieve an expected activation value for a hidden unit
that is equivalent to k completely activated hidden units. The
training algorithm does so by augmenting a standard input
reconstruction loss with a term that measures the deviation
between the observed and the desired mean activation val-
ues. However, as (Makhzani and Frey 2014) note, equating
the expected activation values does not necessarily produce
exactly (or less than) k-sparse representations. Our proposed
novel objective function and choice of activation function
mitigate this issue.

Methodology
In this section, we describe our neural approach to the task of
learning sparse, interpretable neural embeddings (SPINE).

Let D = [X1,X2,X3, . . . ,XV ]
T ∈ R

V×d be the set of in-
put word embeddings, where V is the vocabulary size and d
is the number of dimensions in the input word embeddings.
Our goal is to project these embeddings to a space R

m such
that the m-dimensional embeddings in this space are both
sparse and non-negative. That is, we wish to find a transfor-
mation R

V×d → R
V×m.

In contrast to the sparse coding (matrix factorization) ap-
proach of SPOWV, we obtain sparse, interpretable embed-
dings using a neural model. Specifically, we make use of a
denoising k-sparse autoencoder that is trained to minimize
a loss function that concisely captures the required spar-
sity constraints. The sparse activations corresponding to the
given input embeddings are the interpretable vectors gener-
ated by our model. Figure 1 depicts a k-sparse autoencoder
that produces sparse and interpretable activations for the in-
put word ‘internet’.

Let X̃i be the predicted output for an input embedding
Xi ∈ D. That is,

Z(Xi) = f(XiWe + be)

X̃i = Z(Xi)Wo + bo

where f is an appropriate element-wise activation func-
tion, and We ∈ R

d×m, Wo ∈ R
m×d, be ∈ R

1×m and
bo ∈ R

1×d are model parameters that are learned during
optimization. The set Z = {Z(X1), Z(X2), . . . , Z(Xm)} is
the set of required sparse embeddings corresponding to each
of the input embeddings.

In this setting, given D, our k-sparse autoencoder is
trained to minimize the following loss function.

L (D) = RL(D) + λ1ASL(D) + λ2PSL(D)

where RL(D) is the reconstruction loss over the data set,
ASL(D) is the average sparsity loss over the data set, and
PSL(D) is the partial sparsity loss over the data set. The
coefficients λ1 and λ2 determine the relative importance of
the two penalty terms. We define these loss terms below.

Reconstruction Loss (RL) RL(D) is the average loss in
reconstructing the input representation from the learned rep-
resentation. If the reconstructed output for an input vector
X ∈ R

d is X̃ ∈ R
d, then

RL (D) =
1

|D|
∑
X∈D

∥∥∥X− X̃
∥∥∥2
2

In the denoising autoencoder setting, we add isotropic
Gaussian noise (with mean 0, and variance σ2I) to enable
the autoencoder to learn more robust intermediate represen-
tations of the input.

Average Sparsity Loss (ASL) In order to enforce k-
sparse activations in the hidden layer, (Ng 2011) describe
a modification to the basic autoencoder loss function that
penalizes any deviation of the observed average activation
value from the desired average activation value of a given
hidden unit, over a given data set. We formulate this loss as
follows.

ASL (D) =
∑
h∈H

(
max

(
0, ρh,D − ρ∗h,D

))2
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Figure 1: Depiction of our k-sparse autoencoder for an input word ‘internet’. Our variant of the k-sparse autoencoder attempts
to reconstruct the input at its output layer, with only a few active hidden units (depicted in green). These active units correspond
to an interpretable set of dimensions associated with the word ‘internet’. The rest of the dimensions (depicted in orange) are
inactive for this word.

Please note that in addition to the original formulation
in (Ng 2011), we also allow for the observed average ac-
tivation value to be less than the desired average activation
value, using a max operator.

Partial Sparsity Loss (PSL) It is possible to obtain an
ASL value of 0 without actually having k-sparse representa-
tions. For example, to obtain an average activation value of
0.5 for a given hidden unit across 4 examples, one feasible
solution is to have an activation value of 0.5 for all the four
examples ((Makhzani and Frey 2014) too note this problem).

To obtain activation values that are truly k-sparse, we in-
troduce a novel partial sparsity loss term that penalizes val-
ues that are neither close to 0 nor 1, pushing them close to
either 0 or 1. We use the following formulation of PSL to do
so.

PSL (D) =
1

|D|
∑
X∈D

∑
h∈H

(
Z

(X)
h × (

1− Z
(X)
h

))

This key addition to the loss term facilitates the generation
of sparse embeddings with activations close to 0 and 1.

Choice of activation function As motivated earlier, non-
negativity in the output embeddings is a useful property in
the context of interpretability. This drives us to use activa-
tion functions that produce non-negative values for all pos-
sible inputs values. The activations produced by Rectified
Linear Units (ReLU) and Sigmoid units are necessarily pos-
itive, making them promising candidates for our use case.
Since we wish to allow for strict sparsity (the possibility of
exact 0 values), we rule out the Sigmoid activation function,
due to its asymptotic nature with respect to 0 activation.

Note that the ReLU activation function produces values
in the range [0,∞), which makes it difficult to argue about
the degree of activation of a given hidden unit. Moreover,
PSL is not well defined over this range of values. We re-
solve these issues by using a capped ReLU (cap-ReLU) ac-
tivation function, that produces activation values in the [0, 1]

Vectors ρ∗ |H| σ λ1 λ2

GloVe 0.15 1000 0.4 1 1
word2vec 0.15 1000 0.2 1 1

Table 3: Grid-search was performed to select values of the
following hyperparamters: Sparsity fraction (ρ∗), hidden-
dimension size (|H|), standard deviation of the additive
isotropic zero-mean Gaussian noise (σ), and the coefficients
for the ASL and PSL loss terms (λ1 and λ2).

range. Mathematically,

cap-ReLU(t) =

⎧⎨
⎩

0 , if t ≤ 0

t , if 0 < t < 1

1 , if t ≥ 1

Experimental Setup

In this section, we discuss model training, hyperparameter
tuning and the baseline embeddings that we compare our
method against.

Using the formulation described earlier, we train autoen-
coder models on pre-trained GloVe and word2vec embed-
dings. The GloVe vectors were trained on 6 billion tokens
from a 2014 dump of Wikipedia and Gigaword5, while the
word2vec vectors were trained on around 100 billion words
from a part of the Google News dataset. Both the GloVe and
word2vec embeddings are 300 dimensions long, and we se-
lect the 17k most frequently occurring words according to
the Leipzig corpus (Goldhahn, Eckart, and Quasthoff 2012).
We use 15k of these words for training, and use the remain-
ing 2k for hyperparameter tuning.

Hyperparameter tuning We tune our hyperparameters
using the automatic metric to evaluate topic coherence dis-
cussed in Lau et al. (2014). The metric aims to maximize
coherence among different dimensions of the representation,
which has been shown by the authors to correlate positively
with human evaluation. This is in contrast to (Faruqui et
al. 2015), who select hyperparameters that maximize per-
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formance on a word similarity task, which does not neces-
sarily correlate with topic coherence. Through experiments
with different configurations, we observe that high topic
coherence comes at the cost of high reconstruction loss,
which manifests itself in the form of poor performance on
downstream tasks. To mitigate this issue, we cap the maxi-
mum permissible reconstruction loss to a threshold and se-
lect the best performing hyperparameter setting within this
constraint. The best performing set of hyperparameters are
listed in Table 3. We observed that a hidden layer of size
1000 units is optimal for our case. Hence, we transform
X ∈ R

15000×300 to Z ∈ [0, 1]15000×1000. We also find util-
ity in making the autoencoder denoising, attaining embed-
dings that are 6% more sparse at similar reconstruction loss.

Note that through this exercise we evaluate the utility
of our additional loss formulation of Partial Sparsity Loss
(PSL), and we observe that λ2 = 1 outperforms λ2 = 0 (i.e
without the loss) by attaining 22% more sparsity on GloVe
and 67% more sparsity on word2vec embeddings at compa-
rable reconstruction loss values.

Inducing sparsity through �1 regularizer We experi-
ment with an alternate loss consisting of �1 regularizer in-
stead of PSL and ASL formulation. In order to achieve sim-
ilar levels of topic coherence with this formulation, we re-
quire very high regularizer coefficient, leading to high recon-
struction loss. For a given threshold of reconstruction loss,
we observe higher automated topic coherence scores for our
proposed ASL & PSL combination. We attribute the higher
score to its ability to force activations to 0 and 1, whereas,
�1 formulation drives values to 0. Further, �1 regularizer is
agnostic to the distributions of the sparse values in the em-
bedding. For example, say we have two-dimensional binary
embeddings. Regardless of whether the first dimension in
zero for all words, or whether the first dimension is zero for
half the words and the second dimension in zero for the rest,
�1 assigns the same penalty to both. Indeed, we noticed sim-
ilar trends in our experiments. However, this does not match
the hypothesis that every word has a few non-negative char-
acteristics. In contrast, our novel loss formulation does dif-
ferentiate between the two situations.

Baseline embeddings We compare the embeddings gen-
erated by our model (SPINE) against their corresponding
starting embeddings (i.e GloVe and word2vec). We also
compare our word vectors against Sparse Overcomplete
Word Vectors (SPOWV) from (Faruqui et al. 2015) , which
we believe is a more meaningful comparison, as their ap-
proach is also tailored to generate sparse, effective, and in-
terpretable embeddings. In order to perform a fair compari-
son, we use their method to generate 1000-dimensional out-
put embeddings, the same as ours. All other hyperparame-
ters were used as per the authors’ recommendations.

Interpretability

We evaluate the interpretability of the resulting representa-
tions against the ones obtained from baseline models. We
estimate the interpretability of the dimensions in two ways.
First, we conduct word intrusion detection tests to quantita-

Figure 2: A sample intrusion detection question. Here, ‘vi-
sual’ is the intruder word.

tively estimate the interpretability of dimensions in the out-
put embedding space. Second, we qualitatively examine the
top participating words from a few randomly sampled di-
mensions and see if they possess observable similarities.

Word Intrusion Detection Test

We adopt the evaluation mechanism from reading tree
leaves (Chang et al. 2009), that was first used to interpret
probabilistic topic models. Since then, intrusion detection
tests have been widely used in estimating interpretability
(Murphy, Talukdar, and Mitchell 2012), (Fyshe et al. 2014),
(Faruqui et al. 2015).

For a given dimension (column) Zh of the generated em-
beddings matrix Z, we sort the column in the decreasing
order of values, and then select the top 4 most active words
in that dimension. These four words, if coherent, should be
easily identifiable when mixed with a random intruder word.
Following the strategies in (Murphy, Talukdar, and Mitchell
2012; Faruqui et al. 2015), we select a random intruder word
that is both present in the bottom half of the dimension h in
question, and in the top 10 percentile in at least one other
dimension h′ ∈ H\{h}. A sample intrusion detection ques-
tion can be found in Figure 2.

We used the Amazon Mechanical Turk (MTurk) platform
to conduct these intrusion detection tests on a large scale.
For the two representations SPOWV and SPINE, and for
two different initializations (GloVe & word2vec), we ran-
domly sample 300 of the 1000 dimensions, and pose an in-
trusion detection test for each of these 300 dimensions. Each
Human Intelligence Task (HIT) on MTurk consisted of six
such questions. Further, every single HIT was independently
solved by three different workers. We also conducted similar
intrusion detection tests for each of the original GloVe and
word2vec embedding dimensions. Accounting for the vari-
ous settings, a total of 5400 questions were annotated. From
the three different annotations we receive for every question,
we take the majority vote, and choose that as the answer to
that question. In cases where all three annotators mark a dif-
ferent intruder, we randomly select one of the three choices
marked by annotators.

Benchmark Downstream Tasks

To test the quality of the embeddings generated by our
model, we use them in the following benchmark downstream
classification tasks: sentiment analysis, news classification,

4925



GloVe SPOWV SPINE
(original) (w/ GloVe) (w/ GloVe)

22.97 28.18 68.35

Word2vec SPOWV SPINE
(original) (w/ word2vec) (w/ word2vec)

26.08 41.75 74.83

Table 4: Precision scores on the Word Intrusion Detection
Test. Higher precision numbers indicate more interpretable
dimensions. Clearly, Sparse Interpretable Neural Embed-
dings (SPINE) outperform the original vectors and Sparse
Overcomplete Word Vectors (SPOWV) by a large margin.
This is the key result of our work.

GloVe SPOWV SPINE
(original) (w/ GloVe) (w/ GloVe)
76%, 22% 74%, 21% 83%, 47%

Word2vec SPOWV SPINE
(original) (w/ word2vec) (w/ word2vec)
77%, 18% 79%, 28% 91%, 48%

Table 5: Inter-annotator agreement across different models,
for different starting vectors. In each cell, we list two val-
ues: the first one corresponds to the percentage of questions
where 2 or more annotators agree, and the second value cor-
responds to the percentage of questions where all the three
annotators agree. Note that in the case of SPINE, nearly half
of the times all the annotators agree on a given choice.

noun phrase chunking, and question classification. We also
test them using the word similarity task discussed in this sec-
tion (Table 6). Like in (Faruqui et al. 2015), we use the aver-
age of the word vectors of the words in a sentence as features
for text classification tasks. We experiment with SVMs, Lo-
gistic Regression and Random forests, which are tuned on
the development set. Accuracy is reported on the test set.

1. Sentiment Analysis: This task tests the semantic proper-
ties of word embeddings. It is a sentence-level binary clas-
sification task on the Stanford Sentiment Treebank dataset
(Socher et al. 2013). We used the provided train, dev. and
test splits with only the non-neutral labels, of sizes 8337,
1081 and 2166 sentences respectively.

2. Noun Phrase Bracketing: We evaluate the word vectors on
NP bracketing task (Lazaridou, Vecchi, and Baroni 2013),
wherein a noun phrase of 3 words is classified as left
bracketed or right bracketed. The NP bracketing dataset
contains 2,227 noun phrases split into 10 folds. We ap-
pend the word vectors of three words to get feature rep-
resentation (Faruqui et al. 2015). For words not present
in the subset of 17K words we have chosen, we use all
zero vectors. We tune on the first fold and report cross-
validation accuracy on the remaining nine folds.

3. Question Classification (TREC): To facilitate research in
question answering, (Li and Roth 2006) propose a dataset
of categorizing questions into six different types, e.g.,
whether the question is about a location, about a person,
or about some numeric information. The TREC dataset
comprises of 5,452 labeled training questions, and 500

test questions. By isolating 10% of the training ques-
tions for validation, we use train/validation/test splits of
4906/546/500 questions respectively.

4. News Classification: Following (Faruqui et al. 2015), we
consider three binary news classification tasks from the
20 Newsgroups dataset2. Each task involves categorizing
a document according to two related categories (1) Sports:
baseball vs. hockey (958/239/796) (2) Computers: IBM
vs. Mac (929/239/777) (3) Religion: atheism vs. christian
(870/209/717).

5. Word Similarity Task: We use the WS-353 dataset
(Finkelstein et al. 2001), which contains 353 pairs of En-
glish words. Each pair of words has been assigned sim-
ilarity ratings by multiple human annotators. We use the
cosine similarity between the embeddings of each pair of
words, and report the Spearman’s rank correlation coeffi-
cient ρ between the human scored list and the predicted
similarity list. We consider only those pairs of words
where both words are present in the vocabulary. This leads
to the removal of 59 of the 353 pairs (17.3%).

Results and Discussion

In this section, we report the results of aforementioned ex-
periments and discuss the implications.

Interpretability Table 4 lists the precision scores of word
intrusion detection task for each model with different start-
ing vectors. We observe that our precision scores are notably
higher than those of the original vectors, and those of the
Sparse Overcomplete Word Vectors. This implies that anno-
tators could select the intruder much more accurately from
our dimensions with higher agreement (Table 5), showing
that the resulting representations are highly coherent and in-
terpretable. This forms the key result of our effort to produce
more interpretable representations.

Performance on downstream tasks From the results in
Table 6, it is clear that the embeddings generated by our
method perform competitively well on all benchmark tasks,
and do significantly better on a majority of them.

Qualitative assessment For a few sampled words, we in-
vestigate the top words from dimensions where the given
word is active. Table 1 lists the results of this exercise for
three particular words (mathematics, internet and remote),
for different models and different starting vectors. From Ta-
ble 1, we observe that the top dimensions of the word em-
beddings generated by our model (SPINE) are both coher-
ent, and relevant to the word under examination. Often, our
representations are able to capture different interpretations
of a given word. For instance, the word ‘remote’ can be
used in various settings: remote areas (like remote villages,
huts), the electronic remote (like buttons, click), and condi-
tions in remote areas (like poverty). From these examples,
we get anecdotal evidence about the higher interpretability
achieved by our model on the resulting representations.

2http://qwone.com/∼jason/20Newsgroups/
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Task
GloVe

(original)
SPOWV

(w/ GloVe)
SPINE

(w/ GloVe)
Word2vec
(original)

SPOWV

(w/ word2vec)
SPINE

(w/ word2vec)
Sentiment Analysis (Accuracy) 71.37 71.83 72.44 73.50 74.01 72.71

Question Clf. (Accuracy) 82.80 89.20 88.20 88.40 91.80 92.40

Sports News Clf. (Accuracy) 95.47 95.6 96.23 92.83 95.6 93.96
Religion News Clf. (Accuracy) 79.35 81.72 83.4 83.12 84.79 82.56

Computers News Clf. (Accuracy) 71.68 77.86 77.47 72.71 81.46 74.38
NP Bracketing (Accuracy) 73.11 70.28 74.85 78.13 72.19 75.41
Word Similarity (ρ in %) 66.82 66.77 64.77 68.42 63.73 62.79

Table 6: Effectiveness comparison of the generated word embeddings (all accuracies are in %). We compare the embeddings
generated by our SPINE model against the initial GloVe and word2vec vectors, and Sparse Overcomplete Word Vectors
(SPOWV) (Faruqui et al. 2015) on a suite of benchmark downstream tasks.

Retroffiting vs joint learning We follow a retrofitting ap-
proach to obtain sparse and interpretable embeddings. An
alternate to this is to add various sparsity and non-negativity
inducing regularizers when training Word2Vec or GloVe.
One practical advantage of our retrofitting approach is that
it does not need access to a giant corpus. Moreover, our pro-
posed method is agnostic to, and abstracted from, the under-
lying method used to create the word embeddings, making
it more widely applicable.

Interpretability and downstream performance Embed-
dings from our method outperform original word embed-
dings for some downstream tasks. This is counter-intuitive,
as an increase in interpretability might have come at the ex-
pense of downstream performance. We believe that this in-
creased performance is because sparse embeddings directly
capture the salient characteristics of concepts, which allow
downstream task models to efficiently converge to optimum
weight values. For example, if a dimension in the sparse
embedding signifies a location name, downstream chunking
task models would find it useful.

Further, on choosing 2000 or more hidden dimensions, we
found both topic coherence and interpretability to improve,
though at a severe cost of performance on downstream tasks.
On choosing 500 dimensions, topic coherence and inter-
pretability deteriorated. Theoretically, in the extreme case,
one can obtain one-hot vectors by setting the dimension size
to be equal to the vocabulary size. These representations
would be highly interpretable, but would perform signifi-
cantly worse on downstream tasks.

General discussion We attribute the success of our
method to the expressiveness of a neural autoencoder frame-
work, that facilitates non linear transformations in contrast
to existing linear matrix factorization based approaches. We
further strengthen the hypothesis that non-negativity and
sparsity lead to semantically coherent (interpretable) di-
mensions. As per this notion of interpretability, GloVe and
word2vec embeddings are highly uninterpretable, whose in-
dividual dimensions, by themselves, do not represent any
concrete concept or topic. Please note that we do not im-
ply that GloVe and word2vec representations fail to capture
the underlying semantic structure. In these representations,
similar words are close in the embeddings space, and neigh-

bouring words form a semantically coherent group. In fact, it
is due to this characteristic that these representations achieve
good scores in word similarity tasks (Table 6).

However, we argue that our notion of post-hoc inter-
pretability – one that requires each dimension to capture a
semantic concept – is a more pragmatic one. In many pre-
diction settings, a softmax layer precedes the class proba-
bilities. Weights from these softmax layers bind to the final
layer representation, and large positive and negative weights
sway the output class probabilities. In order to explain a
prediction, one necessarily has to understand the semantic
concepts that each of the dimensions corresponding to these
large weights represent. Hence, this notion of post-hoc inter-
pretability is more useful in explaining predictions.

Conclusion

We have presented a novel mechanism to generate inter-
pretable word embeddings using denoising k-sparse autoen-
coders. Large scale crowd-sourced experiments show that
our word embeddings are more interpretable than the em-
beddings generated by state-of-the-art sparse coding ap-
proaches. Also, our embeddings outperform popular base-
line representations on a diverse set of downstream tasks.
Our approach uses sub-differentiable loss functions and is
trained through back propagation, potentially allowing for
seamless integration into neural models, and end-to-end
training capabilities. As a part of future work, we are inves-
tigating the effect of inducing varying amounts of sparsity at
multiple hidden layers in more sophisticated networks, and
studying the properties of the resultant sparse activations.
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