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Abstract

Attention mechanism, including global attention and local
attention, plays a key role in neural machine translation
(NMT). Global attention attends to all source words for word
prediction. In comparison, local attention selectively looks at
fixed-window source words. However, alignment weights for
the current target word often decrease to the left and right by
linear distance centering on the aligned source position and
neglect syntax distance constraints. In this paper, we extend
the local attention with syntax-distance constraint, which fo-
cuses on syntactically related source words with the predicted
target word to learning a more effective context vector for
predicting translation. Moreover, we further propose a double
context NMT architecture, which consists of a global context
vector and a syntax-directed context vector from the global
attention, to provide more translation performance for NMT
from source representation. The experiments on the large-
scale Chinese-to-English and English-to-German translation
tasks show that the proposed approach achieves a substantial
and significant improvement over the baseline system.

1 Introduction
Recent works of neural machine translation (NMT) have
been proposed to adopt the encoder-decoder framework
(Kalchbrenner and Blunsom 2013; Cho et al. 2014;
Sutskever, Vinyals, and Le 2014), which employs a recur-
rent neural network (RNN) encoder to represent source sen-
tence and a RNN decoder to generate target translation word
by word. Especially, the NMT with an attention mechanism
(called as global attention) is proposed to acquire source
sentence context dynamically at each decoding step, thus
improving the performance of NMT (Bahdanau, Cho, and
Bengio 2015). The global attention is further refined into a
local attention (Luong, Pham, and Manning 2015), which
selectively looks at fixed-window source context at each de-
coding step, thus demonstrating its effectiveness on WMT
translation tasks between English and German in both direc-
tions.

Specifically, the local attention first predicts a single
aligned source position pi for the current time-step i. The de-
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coder focuses on the fixed-window encoder states centered
around the source position pi, and compute a context vec-
tor cli by alignment weights αl for predicting current target
word. Figure 1(a) shows a Chinese-to-English NMT model
with the local attention, and its contextual window is set
to five. When the aligned source word is “fenzi”, the lo-
cal attention focuses on source words {“zhexie”, “weixian”,
“fenzi”, “yanzhong”, “yingxiang”} in the window to com-
pute its context vector. Meanwhile, the local attention is to
obtain the positions of five encoder states by Gaussian dis-
tribution, which penalty their alignment weights according
to the distance with word “fenzi”. For example, the syntax
distances of these five source words are {2, 1, 0, 1, 2} in
contextual window, as shown in Figure 1(b). In other words,
the greater the distance from the aligned word in the win-
dow is, the smaller the source words in the window to the
context vector would contribute. In spite of its success, the
local attention is to encode source context and compute a
local context vector by linear distance centered around cur-
rent aligned source position. It does not take syntax distance
constraints into account.

Figure 1(c) shows the dependency tree of the Chi-
nese sentence in Figure 1(b). Support the word “fenzi0”
as the aligned source word, its syntax-distance neighbor
window is {“zhexie1”, “weixian1”, “fenzi0”, “yingxiang1”,
“yanzhong2”, “zhengce2”} , where the footnote of a word is
its syntax-distance with the central word. In comparison, its
local neighbor window is {“zhexie”, “weixian”, “yanzhong”,
“yingxiang”, “zhengchang”} based on linear distance. Note
that the “zhengce” is very informative for the correct trans-
lation, but it is far away from “fenzi” such that it is not easy
to be focused by the local attention. Besides, the syntax dis-
tances of “yanzhong” and “yingxiang” are two and one, but
the linear distances are one and two. This means that the
“yingxiang” is syntactically more relevant to the “fenzi” than
“yingxiang”. However, the existing attention mechanism, in-
cluding the global or local attention, does not allow NMT to
distinguish syntax distance constraint from source represen-
tation.

In this paper, we extend the local attention with a novel
syntax-distance constraint, to capture syntax related source
words with the predicted target word. Following the depen-
dency tree of a source sentence, each source word has a
syntax-distance constraint mask, which denotes its syntax
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Figure 1: (a) NMT with the local attention. The black dotted box is the current source aligned word and the red dotted box is
the predicted target word. (b) Linear distances for the source word “fenzi”, for which the number denotes the linear distance.
(c) Syntax-directed distances for source word “fenzi”, for which the blue number represents syntax-directed distance between
each word and “fenzi”.

distance with the other source words. The decoder then fo-
cuses on the syntax-related source words within the syntax-
distance constraint to compute a more effective context vec-
tor for predicting target word. Moreover, we further pro-
pose a double context NMT architecture, which consists
of a global context vector and a syntax-directed local con-
text vector from the global attention, to provide more trans-
lation performance for NMT from source representation.
The experiments on the large-scale Chinese-to-English and
English-to-German translation tasks show that the proposed
approach achieves a substantial and significant improvement
over the baseline system.

2 Background

2.1 Global Attention-based NMT

In NMT (Bahdanau, Cho, and Bengio 2015), the context of
translation prediction relies heavily on attention mechanism
and source input. Typically, the decoder computes a align-
ment score eij between each source annotation hj and pre-
dicted target word yi according to the previous decoder hid-
den state si−1

eij = f(si−1, hj), (1)

where f is a RNN with GRU. Then all alignment scores are
normalized to compute weight αij of each encoder state hj

αij =
exp(eij)∑J
k=1 exp(eik)

. (2)

Furthermore, the αij is used to weight all source annotations
for computing current time-step context vector cgi :

cgi =

J∑
j=1

αijhj . (3)

Finally, the context vector ci is used to predict target word
yi by a non-linear layer:

P (yi|y<i, x) =

softmax(Lotanh(LwEy[ŷi−1] + Ldsi + Lcgc
g
i )) (4)

where si is the current decoder hidden state and yi−1 is
the previously emitted word; the matrices Lo, Lw, Ld and
Lcg are transformation matrices. Intuitively, this attention is
called as global attention because of the context vector c

g
i

takes all source words into consideration (Luong, Pham, and
Manning 2015).

2.2 Local Attention-based NMT

Compared with the global attention, the local attention se-
lectively focuses on a small window of context (Luong,
Pham, and Manning 2015). It first generates a source aligned
position pi for the predicted target word at current decoder
time-step i:

pi = J · sigmoid(vT tanh(Wph
′
i)), (5)

where J is the length of source sentence and h
′
i is decoder

hidden state, vT and Wp are weights.
To focus on source words within the fixed-window, the

αl
ij is refined by the follow eq.(6):

αl
ij =

{
αijexp(− (j−pi)

2

2σ2 ), j ∈ [pi −D, pi +D]

0, j /∈ [pi −D, pi +D],
(6)

where [pi-D, pi+D] denotes the local window and the stan-
dard deviation is empirically set as σ = D

2 .1 Moreover,
the local attention focuses on source annotations in window

1The D is set as 10 in local attention of (Luong, Pham, and
Manning 2015).
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[pi−D, pi+D] to compute the current time-step local con-
text vector cli:

cli =
∑

j∈[pi−D,pi+D]

αl
ijhj . (7)

Finally, the context vector cli is then used to predict target
word yi by a non-linear layer:

P (yi|y<i, x) =

softmax(Lotanh(LwEy[ŷi−1] + Ldsi + Lclcli)), (8)

where si is the current decoder hidden state and yi−1 is the
previously emitted target word.

3 Syntax-Directed Attention

3.1 Syntax Distance Constraint

In NMT, the decoder computes the current context vector
by weighting each encoder state with alignment weight to
predict target word. Actually, these alignment weights are
defined by the linear distance with the aligned source center
position, such as the word “fenzi” in Figure 1(a). In other
words, the greater the distance to the center position is, the
smaller the contribution of the source word to the context
vector is. Recently, the source long-distance dependency has
been explicitly explored to enhance the encoder of NMT,
thus improving target word prediction (Chen et al. 2017;
Wu, Zhou, and Zhang 2017). This means that syntax context
is beneficial for NMT. However, the existing NMT cannot
adequately capture the source syntax context by the linear
distance attention mechanism.

To address this issue, we propose a syntax distance con-
straint (SDC), in which we learn a SDC mask for each
source word, as shown in Figure 2. Specifically, given a
source sentence F with dependency tree T , each node de-
notes a source word xj and the distance between two con-
nected nodes is defined as one. We then traverse every word
according to the order of source word, and compute the dis-
tances of all remaining words to the current traversed word
xj as its SDC mask mj . Finally, we learn a sequence of SDC
mask {m0,m1, ...,mJ}, and organize them as a J ∗ J ma-
trix M, in which J denotes the length of source sentence,
and elements in each row denote the distances of all word to
the row-index word,

M = [[m0], [m1], ..., [mJ ]]. (9)

As shown in Figure 2, the third row denotes the syntax
context mask of word “fenzi”. Specifically, syntax distance
of “fenzi” itself is zero; the syntax distances of “zhexie”,
“weixian”, and “yingxiang” are one; the syntax distance of
“yanzhong” and “zhengce” are two; the syntax distance of
“zhengchang” and “yimin”, and “de” are four, as shown the
black dotted box in Figure 2.

3.2 Syntax-Directed Attention

To capture the source context with the SDC (in Section 3.1),
we propose a novel syntax-directed attention (SDAtt) for
NMT, as shown in Figure 3. The decoder first learn aligned
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Figure 2: Syntax distance constraint mask matrix M for the
dependency-based Chinese sentence in Figure 1(c), in which
each row denotes the syntax distance mask of one source
word, for example the dotted black box is syntax distance
constraint mask for source word “fenzi”.

Figure 3: Syntax-directed attention for NMT.

source position pi of the current time-step i by the eq.(5).
According to the position pi, we obtain its SDC mask mi

from matrix M in eq.(9), i.e., M[pi]. We learn alignment
score esi j with SDC mask M[pi] by the following equation:

esij = eijexp(− (M[pi][j])
2

2σ2
), (10)

where the Gaussian distribution centered around pi is used
to capture the difference of syntax distance, and further to
tune the alignment score eij in eq.(1). Besides, the stan-
dard deviation σ is set as n

2 , in which one syntax distance
is different from one linear distance of the local attention.
In other words, one syntax distance corresponds to multi-
ple syntax-related words instead of two words in local atten-
tion. The n is more similar to the order of n-gram language
model. Therefore, the n is empirically set as four in our ex-
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Figure 4: Double context for NMT.

periments, which means that we only take 4-gram SDC into
account.

The αsn
ij is normalized within n-gram SDC:

αsn
ij =

{
exp(esij)∑

k∈M[pi][k]≤n exp(esik)
, j ∈ [pi − n, pi + n]

0, j /∈ [pi − n, pi + n],
(11)

In other words, we only consider words within the n-gram
SDC and simply ignore the outside part of the n-gram SDC.

The context vector csi is, then, computed as a weighted
sum of these annotations hi by alignment weights with the
SDC:

csi =
J∑
j

αsn
ij hj , (12)

Finally, similar to the eq.(8), the context vector csi is used to
predict the target word yi:

P (yi|y<i, x, T ) =

softmax(Lotanh(LwEy[ŷi−1] + Ldsi + Lcscsi )) (13)

where si is the current decoder hidden state and yi−1 is the
previously emitted word.

3.3 Double Context Mechanism

In Section 3.2, the proposed SDAtt uses a local context with
the SDC to compute current context vector instead of con-
text vector with linear distance constraint in global or local
attention. Inspired by the decoder with additional visual at-
tention (Calixto, Liu, and Campbell 2017; Chen et al. 2017),
we design a unique double context NMT as shown in Fig-
ure 4, to provide more translation performance for NMT
from SDAtt in Section 3.2. The proposed model can be seen
as an expansion of the global attention NMT framework de-
scribed in Section 2.1 with the addition of a SDAtt to incor-
porate source syntax distance constraint.

Compared with the global attention, we learn two context
vectors over a single global attention for target word pre-
diction: a traditional (global) context vector which always
attends to all source words and a syntax-directed context
vector that focuses on n-gram (i.e., 4-gram) source syntax

context words. To that end, in addition to the traditional con-
text vector cgi in eq.(3), we learn a context vector csi for the
SDC according to the eq.(12). Formally, the probability for
the next target word is computed by the following eq.(14),

P (yi|y<i, x, T ) = softmax(Lotanh(LwEy[ŷi−1]+

Ldsi + Lcgcgi + Lcscsi )). (14)

4 Experiments

4.1 Data sets

The proposed methods were evaluated on two data sets.2

• For English (EN) to German (DE) translation task, 4.43
million bilingual sentence pairs of the WMT’14 data set
was used as the training data, including Common Crawl,
News Commentary and Europarl v7. The newstest2012
and newstest2013/2014/2015 was used as dev set and test
sets, respectively.

• For Chinese (ZH) to English (EN) translation task, the
training data set was 1.42 million bilingual sentence pairs
from LDC corpora, which consisted of LDC2002E18,
LDC2003E07, LDC2003E14, Hansards portion of
LDC2004T07, LDC2004T08, and LDC2005T06. The
NIST02 and the NIST03/04/05/06/08 data sets were used
as dev set and test sets, respectively.

4.2 Baseline Systems

Along with the standard phrase-based SMT (PBSMT) im-
plemented in Moses (Koehn et al. 2007) and standard NMT
with global attention (GlobalAtt) (Bahdanau, Cho, and Ben-
gio 2015) baseline systems, we also compared the proposed
methods to the recent related NMT methods:

• Chen et al.(2017): extracted a local source dependency
unit (including parent, siblings, and children of each
source word) and learned its semantic representation.
They introduced source dependency representation into
the Encoder and Decoder by two kinds of NMT mod-
els, which extended source word with dependency rep-
resentation and enhanced the global attention with depen-
dency representation, respectively. Their methods are one
of state-of-the-art syntax based NMT methods, which out-
performed significantly the method of (Sennrich and Had-
dow 2016).

• LocalAtt: Luong et al. 2015 selectively computed align-
ment probabilities for fixed-window source words center-
ing around current aligned source position instead of all
source words.

• FlexibleAtt: Shu and Nakayama 2017 proposed a flexible
attention NMT, which can dynamically create a window
of the encoder states instead of fixed-window method of
(Luong, Pham, and Manning 2015), and thus learned a
flexible context to predict target word.

• GlobalAtt+LocalAtt/FlexibleAtt: we implemented the
global attention with additional the local/flexible atten-
tion, to further evaluate our double context NMT.
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ZH-EN Dev (NIST02) NIST03 NIST04 NIST05 NIST06 NIST08 AVG

PBSMT 33.15 31.02 33.78 30.33 29.62 23.53 29.66
GlobalAtt 37.12 35.24 37.49 34.60 32.48 26.32 33.23
Chen et al. (2017) 37.42 35.98 38.34 35.28 33.58 27.23 34.08
LocalAtt 37.31 35.57 37.85 34.93 32.74 26.83 33.58
FlexAtt 37.19 35.46 37.81 34.76 32.83 26.71 33.51
SDAtt 38.01 36.67∗∗† 38.66∗∗† 35.74∗∗† 34.03∗∗† 27.66∗∗† 34.55

EN-DE Dev (newstest2012) newstest2013 newstest2014 newstest2015 AVG

PBSMT 14.89 16.75 15.19 16.84 16.35
GlobalAtt 17.09 20.24 18.67 19.78 19.56
Chen et al. (2017) 17.48 21.03 19.43 20.56 20.31
LocalAtt 17.19 20.74 19.00 20.15 19.96
FlexibleAtt 17.24 20.57 19.12 20.03 19.91
SDAtt 17.86 21.71∗∗† 20.36∗∗† 21.57∗∗† 21.21

Table 1: Results on ZH-EN and EN-DE translation tasks for the proposed SDAtt. “*” indicates that the model significantly
outperforms GlobalAtt at p-value<0.05, “**” indicates that the model significantly outperforms GlobalAtt at p-value<0.01.
“†” indicates that the model significantly outperforms the best baseline Chen et al.2017’s Model at p-value<0.05. AVG is the
average BLEU score for all test sets. The bold indicates that the BLEU score of test set is better than the best baseline system.

ZH-EN Dev (NIST02) NIST03 NIST04 NIST05 NIST06 NIST08 AVG

PBSMT 33.15 31.02 33.78 30.33 29.62 23.53 29.66
GlobalAtt 37.12 35.24 37.49 34.60 32.48 26.32 33.23

+Chen et al. (2017) 38.11 37.35 39.00 36.12 33.78 27.81 34.81
+LocalAtt 37.89 37.06 38.73 36.10 33.62 27.43 34.59
+FlexibleAtt 37.97 36.86 38.56 35.62 33.94 27.37 34.47
+SDAtt 38.61 38.19∗∗† 39.81∗∗† 36.74∗∗ 34.63∗∗† 28.61∗∗† 35.60

EN-DE Dev (newstest2012) newstest2013 newstest2014 newstest2015 AVG

PBSMT 14.89 16.75 15.19 16.84 16.35
GlobalAtt 17.09 20.24 18.67 19.78 19.56

+Chen et al. (2017) 18.03 21.44 19.96 21.07 20.82
+LocalAtt 17.78 21.26 19.87 20.67 20.6
+FlexibleAtt 17.56 21.10 19.76 20.74 20.53
+SDAtt 18.65 22.11∗∗† 20.75∗∗† 22.05∗∗† 21.64

Table 2: Results on ZH-EN and EN-DE translation tasks for the double context mechanism.

All NMT models were implemented in the NMT toolkit
Nematus (Sennrich et al. 2017).3 We used the Stanford
parser (Chang et al. 2009) to generate the dependency trees
for source language sentences, such as Chinese sentences of
ZH-EN and English sentences of EN-DE translation tasks.
We limited the source and target vocabularies to 50K, and
the maximum sentence length was 80. We shuffled train-
ing set before training and the mini-batch size is 80. The
word embedding dimension was 620-dimensions and the
hidden layer dimension was 1000-dimensions, and the de-
fault dropout technique (Hinton et al. 2012) in Nematus was
used on the all layers. Our NMT models were trained about
400k mini-batches using ADADELTA optimizer (Zeiler
2012), taking six days on a single Tesla P100 GPU, and
the beam size for decoding was 12. Case-insensitive 4-gram
NIST BLEU score (Papineni et al. 2002) was as the evalua-
tion metric, and the signtest (Collins, Koehn, and Kucerova

2Our method also was verified on the English-to-French trans-
lation task of the WMT’14 data set

3https://github.com/EdinburghNLP/nematus

2005) was as statistical significance test.

4.3 Evaluating SDAtt NMT

Table 1 shows translation results on ZH-EN and EN-DE
translation tasks for syntax-directed attention NMT in Sec-
tion 3. The GlobalAtt significantly outperforms PBSMT by
3.57 BLEU points on average, indicating that it is a strong
baseline NMT system. All the comparison methods, includ-
ing Chen et al.(2017)’s model, LocalAtt, and FlexibleAtt,
outperform the baseline GlobalAtt.

(1) Over the GlobalAtt, the proposed SDAtt gains an
improvement of 1.32 BLEU points on average on ZH-EN
translation task, which indicates that our method can effec-
tive improve translation performance of NMT.

(2) The SDAtt surpasses LocalAtt and FlexibleAtt by
0.97/1.04 BLEU points on average on ZH-EN translation
task. This indicates that the proposed syntax distance con-
straint can capture more translation information to improve
word prediction than linear distance constraint.

(3) The SDAtt also outperforms Chen et al.(2017)’s model
on ZH-EN translation task by 0.47 BLEU points on average.
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Figure 5: Translation qualities of different sentence lengths
for SDAtt on the ZH-EN task.

Figure 6: Translation qualities of different sentence lengths
for GlobalAtt+SDAtt on the ZH-EN task.

This shows that our method can capture more source depen-
dency information to improve word prediction.

(4) For EN-DE translation task, the proposed SDAtt gives
similar improvements over the baseline system and compar-
ison methods. These results show that our method also can
effectively improve the English-to-German translation task.
In other words, the proposed SDAtt is a robust method for
improving the translation of other language pairs.

4.4 Evaluating Double Context Mechanism

To further verify the effectiveness of the proposed double
context mechanism, we compared it with three similar mod-
els, including +Chen et al. (2017)’s Model, +LocalAtt, and
+FlexibleAtt. Table 2 showed translation results of the pro-
posed double context method on ZH-EN and EN-DE trans-
lation tasks.

(1) All the comparison methods and our +SDAtt out-
perform the baseline GlobalAtt. In particularly, they gain
further improvements by the corresponding single context
NMT in Table 1, for example, +FlexibleAtt (34.81) vs Loca-
lAtt (33.58). This indicates that the proposed double-context

Figure 7: Translation qualities of different sentence lengths
for SDAtt on the EN-DE task.

Figure 8: Translation qualities of different sentence lengths
for GlobalAtt+SDAtt on the EN-DE task.

mechanism for NMT is more effective than single context
NMT.

(2) The +SDAtt outperforms GlobalAtt by 2.37 BLEU
points on average on ZH-EN translation task. Especially, the
+SDAtt gains improvements of 1.01/1.13 BLEU points on
average over the +LocalAtt/FlexibleAtt. This shows that the
proposed SDAtt give more translation information for NMT
from source representation.

(3) The +SDAtt outperforms +Chen et al.(2017)’s Model
by 0.79 BLEU points on average on ZH-EN translation task.
This means that the SDAtt is more effective than enhancing
global attention with source dependency representation of
Chen et al. (2017).

(4) For the EN-DE translation task, the proposed +SDAtt
shows similar improvements over the baseline system and
comparison methods. These results indicate that our dou-
ble context architecture also can effectively improve the
English-to-German translation task.

4.5 Effect of Translating Long Sentences

We grouped sentences of similar lengths on the test sets of
the two tasks to evaluate the BLEU performance. For exam-
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ple, sentence length “50” indicates that the length of source
sentences is between 40 and 50. We then computed a BLEU
score per group, as shown in Figures 5-8.

Take ZH-EN task as a example in Figure 5 and 6, our
methods, including SDAtt and +SDAtt, always yielded con-
sistently higher BLEU scores than the baseline GlobalAtt in
terms of different lengths. When the length came to “30”,
they outperformed the best baseline Chen et al. (2017). This
was because our methods can selectively focus on syntactic
related source inputs with the current predicted target word
and capture more source information to improve the perfor-
mance of NMT. Moreover, our models also showed similar
improvements for EN-DE task in Figures 7 and 8. This again
showed the effectiveness of our method on long sentence
translation.

5 Related Work

Recently, many efforts have been initiated on exploiting
source- or target-side syntax information to improve the per-
formance of NMT. Sennrich and Haddow (2016) augmented
each source word with its corresponding part-of-speech tag,
lemmatized form and dependency label. Li et al. (2017)
linearized parse trees of source sentences to obtain struc-
tural label sequences, thus capturing syntax label informa-
tion and hierarchical structures. To more closely combine
the NMT with syntax tree, Eriguchi et al. (2017) proposed
a hybrid model that learns to parse and translate by combin-
ing the recurrent neural network grammar into the attention-
based NMT, and thus encouraged the NMT model to in-
corporate linguistic prior during training, and lets it trans-
late on its own afterward. Wu et al. (2017) then proposed
a sequence-to-dependency NMT model, which used two
RNNs to jointly generate target translations and construct
their syntactic dependency trees, and then used them as con-
text to improve word generation. They extended source word
with external syntax labels, thus providing richer context in-
formation for word prediction in NMT.

Eriguchi et al. (2016) proposed a tree-to-sequence atten-
tional NMT, which use a tree-based encoder to compute the
representation of the source sentence following its parse tree
instead of the sequential encoder. It further was extended by
bidirectional tree encoder which learns both sequential and
tree structured representations (Huadong et al. 2017). Wu
et al. (2017) enriched each encoder state from both child-
to-head and head-to-child with global knowledge from the
source dependency tree. Chen et al. (2017) extended each
source word with local dependency unit to capture source
long-distance dependency constraints, achieving an state-of-
the-art performance in NMT, especially on long sentence
translation. These methods focused on enhancing source
representation by capturing syntax structures in the source
sentence or target sentence, such as phrase structures and
dependency structures for improving translation.

In this paper, we extend the local attention with a novel
syntax distance constraint to capture syntax related encoder
states with the predicted target word. Following the de-
pendency tree of a source sentence, each source word has
a distance mask, which denotes its syntax distances from

the other source words. This mask is called as the syntax-
distance constraint. The decoder then focuses on the syntax-
related source words within this syntax-distance constraint
to compute a more effective context vector for predicting
target word. Moreover, we further propose a double context
NMT architecture, which consists of a global context vector
and a syntax-directed local context vector from the global
attention, to provide more translation performance for NMT
from source representation.

This work refines the local attention by syntax-distance
constraint instead of traditional linear distance in the global
or local attention, and thus selectively focuses on syntax-
related source words to compute a more effective context
vector for predicting target word.

6 Conclusion

In this paper, we explored the effect of syntactic distance
on the attention mechanism. We then proposed a syntax-
directed attention for NMT method to selectively focus
on syntax related source words for predicting target word.
Moreover, we further proposed a double context NMT ar-
chitecture to provide more translation performance for NMT
from source representation. In the future, we will exploit
richer syntax information to improve the performance of
NMT.
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