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Abstract

With the explosive growth of multivariate time-series data,
failure (event) analysis has gained widespread applications.
A primary goal for failure analysis is to identify the fault sig-
nature, i.e., the unique feature pattern to distinguish failure
events. However, the complex nature of multivariate time-
series data brings challenge in the detection of fault signa-
ture. Given a time series from a failure event, the fault sig-
nature and the onset of failure are not necessarily adjacent,
and the interval between the signature and failure is usually
unknown. The uncertainty of such interval causes the uncer-
tainty in labeling timestamps, thus makes it inapplicable to
directly employ any standard supervised algorithms in sig-
nature detection. To address this problem, we present a novel
directional label rectification model which identifies the fault-
relevant timestamps and features in a simultaneous approach.
Different from previous graph-based label propagation mod-
els using fixed graph, we propose to learn an adaptive graph
which is optimal for the label rectification process. We con-
duct extensive experiments on both synthetic and real world
datasets and illustrate the advantage of our model in both ef-
fectiveness and efficiency.

Introduction

Recent advances in data collection, data storage and their
wide application in industrial business have led to the ex-
plosion of time-series data. The availability of large-scale
temporal datasets facilitates the in-depth study of the dy-
namic change and the trend evolution in different appli-
cations, whereas the complex nature of multivariate time-
series data also brings challenges in data analysis.

Given the large volume of multivariate data from different
sensors, fault analysis system is designed to identify the fault
signatures that characterize the failure events. The fault sig-
nature is usually represented by certain feature patterns w.r.t.
sensor records. When the input is on fleet level, where the
data involves both failure and healthy assets (data sources),
the identified fleet-level fault signature can be naturally em-
ployed for the discrimination between failure and healthy as-
sets, thus strongly supports the root cause analysis in early
warning and anomaly detection system.
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(a) Event 1

(b) Event 2

Figure 1: Illustration of two examples in real application
with unknown interval between the signature and the final
failure. In Fig. 1(a), the signature is characterized by the con-
current occurrence of low value of feature A and high value
of feature B, which appears 15 days before the final failure
and lasts for only 2 days. In Fig. 1(b), the signature corre-
sponds to a level-shift in feature C, which happens around
one month before the failure with the duration of merely 5
days. Such level-shift signature can be depicted by sliding-
window based auto-correlation, i.e., feature C-auc.

There are several challenges in fleet-level fault signature
discovery for multivariate time-series data: 1) The multivari-
ate sensor records consist of not only features relevant to the
failure, but also a lot of redundant or irrelevant features; 2) In
a time series of a failure asset, the fault signature is not nec-
essarily adjacent to the final failure. As consequence, even
though the onset timestamp of failure is observed, the time
when the fault signature appears is usually unknown. Fig. 1
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presents two different types of fault signature in industrial
application. We can notice that in both cases a lag exists be-
tween the signature and the final failure, while the time of
occurrence and length of the signature varies.

In real world industrial problems, such “short” signature
and “lag” patterns are common and can be caused by dif-
ferent reasons: 1) Time delay between the signature and the
failure. As the system design is fairly complex, it may take
certain time for the root cause to spread to the whole sys-
tem and finally trigger the failure; 2) Bad data quality. Se-
vere data loss is sometimes accompanied by a fault signa-
ture, which leads to partial capturing of the real signature; 3)
Sliding window based time-series feature construction may
introduce a lag as shown in Fig. 1(b). Unfortunately, due
to the complexity in the large volume of noisy multivariate
temporal data, it is extremely difficult for any domain ex-
perts or existing machine learning techniques to accurately
target such fault signatures.

The uncertainty in the interval between signature and final
failure introduces uncertainty in labeling each timestamp. It
is easy to see that standard supervised frameworks are not
suitable for this situation, since they require the label infor-
mation (most if not all) to be reliable. If we label the times-
tamps adjacent to failure as positive (relevant to the fault
signature) while the rest as negative, traditional supervised
learning approaches will fail due to the bad quality of posi-
tive labels. For example, in Fig. 1(b), if we simply label all
instances within 60 days of the failure as positive while the
rest as negative, over 90% of the positive labels will be mis-
leading for the learning process. To address this problem, we
propose a novel label rectification model which overcomes
the limitations of classic supervised methods on such prob-
lem. We would like to point out the following contributions:

• We propose a novel “directional” label rectification algo-
rithm which automatically rectify the initial event labels
and distinguish the truly failure-relevant instances.

• We propose to automatically select the most relevant fea-
tures to the failure.

• We propose to adaptively learn an optimal affinity matrix
to represent the graph structure in label rectification.

• Our model is fairly efficient and scalable to large data.

Problem Definition

We begin this section by introducing several terminologies
in real industrial failure analysis. A time series is a sequence
of measurements indexed in time order. An asset is a data
source of a time series, e.g., a stock in the financial market,
or a machine that is monitored over time. Each instance is
recorded at a certain timestamp of an asset. An event is a
failure case which happens at certain timestamps in an as-
set. A failure mode is a possible way or mode that a system
might fail. In one analytic task, we usually concentrate on
one specific failure mode, with a few events collected from
one or multiple assets. Our target in failure analysis is to
identify the fault signature across these events, which indi-
cates the unique feature patterns to distinguish failure events
from the majority of healthy data.

Throughout this paper, unless otherwise specified, we use
uppercase letters to denote matrices, bold lowercase let-
ters for vectors and non-bold lowercase letters for scalars.
For a matrix Z ∈ R

m×n, we use Z(i, :), Z(:, j) and
Z(i, j) to denote its i-th row, j-th column and ij-th ele-
ment respectively. The Frobenius norm of Z is denoted as
‖Z‖F =

√∑
i,j

Z(i, j)2 =
√

tr(ZZ�), and its �2,1-norm as

‖Z‖2,1 =
m∑
i=1

‖Z(i, :)‖, where ‖Z(i, :)‖ =
√∑

j

Z(i, j)2 is

the �2-norm of Z(i, :). For a vector z ∈ R
m, we denote its

i-th element as zi. Im denotes an m ×m identity matrix. 1
denotes a vector with all elements being 1.

Specially, we use X = [x1,x2, ...,xn] ∈ R
m×n to denote

our input data, where m is the number of features and n is
the number of instances. In a fleet level analysis, instances in
X usually come from several different assets. The features
in X may involve not only raw sensor recordings, but also
time series features constructed with sliding-window based
methods. With the time constraints incorporated in time se-
ries features, instances in X do not necessarily follow any
specific time order. More details about time series feature
construction can be found in the experimental setup.

With the terminologies and notations clarified, now we are
ready to provide a mathematical definition of our problem
settings. Given an event asset that fails at a known times-
tamp, with certain domain knowledge we can reasonably as-
sume that the fault signature happens within a timestamps
ahead of the failure (the initial assumption). Without loss of
generality, we denote X = [Xa, Xb], where Xa ∈ R

m×a

represents the instances that appear within a timestamps be-
fore the failure (i.e., potentially relevant to the failure), and
Xb ∈ R

m×b denotes all other instances considered to be nor-
mal (usually b � a). In a fleet level multi-asset data, we can
easily extend the above setting by concatenating all event
(and normal) instances from different assets together in Xa

(and Xb). Suppose our data consists of k−1 event cases from
a same failure mode. We define E = [Ea, Eb] ∈ {0, 1}k×n

as the initial event labels based on the initial assumption.
There is exactly one “1” in each column of E, showing the
initial event label of each instance. Instances in Ea have
Ea(j, i) = 1 for some j < k indicating that the i-th in-
stance in Xa is potentially relevant to the failure in j-th
event. Meanwhile, all instances in Eb have Eb(k, i) = 1.

Our goal is to automatically identify the feature pattern
as well as the occurence timestamps of the fault signature.
In other words, we expect to simultaneously select the fea-
tures representing the signature and identify the subset of
instances in Xa that are truly relevant to the failure.

DRAG: Directional Label Rectification in

Adaptive Graph

As is discussed above, the key challenge of this problem lies
in the label uncertainty. Although the labels in Eb (or most
of them, if not all) are reliable, we cannot treat the prob-
lem as a classic supervised problem, since labels in Ea are
mostly unreliable. However, if we use the popular definition

2549



of unsupervised or semi-supervised frameworks and simply
ignore the labels in Ea, we lose the potential label informa-
tion from the initial assumption. In this section we introduce
a novel model to handle this situation.

There are two goals of our model: 1) select important fea-
tures for fault signature; 2) rectify the labels of Ea in an
automatic approach. We propose to learn a weight matrix
W ∈ R

m×k and a label matrix Y = [Ya, Yb] ∈ R
k×n. The

values in W show the contribution of features, where the
subset of features with the largest weights naturally charac-
terize the signature. Y indicates the label probability distri-
bution, where the instances with larger probability value on
the j-th row of Y (j < k) can be recognized as relevant to
the failure of the j-th event.

Our Framework

First, we briefly discuss the settings for feature selection.
According to previous works (Liu, Ji, and Ye 2009), the fea-
ture selection task can be formulated as the following prob-
lem w.r.t. the feature weight matrix W :

min
W

‖W�X − Y ‖2F + α‖W‖2,1, (1)

where the regularization term ‖W‖2,1 imposes structured
sparsity on the feature weight matrix W .

Next, we look into the problem of label rectification for
instances in Xa. We start off by reviewing the idea of la-
bel propagation in graph-based semi-supervised frameworks
(Zhu, Ghahramani, and Lafferty 2003). Suppose we are
given a set of partially labeled data X = [x1,x2, ...,xn] ∈
R

m×n and an affinity matrix S̃ ∈ R
n×n. The entries in S̃ in-

dicate the pairwise affinity between corresponding instance
pairs, where a larger S̃(i, j) value corresponds to a higher
affinity between xi and xj . We expect to learn the label ma-
trix Y ∈ R

k×n such that instances that are close to each
other tend to have similar labels. We can formulate the prob-
lem as the minimization of the quadratic energy function:

min
Y

∑
i,j

S̃(i, j)‖Y (:, i)− Y (:, j)‖2. (2)

In our problem, we can naturally treat Xb as labeled and
adopt Eq. (2) to learn the labels for Xa. However, we need
to emphasize three major differences in our case:
• Instances in Xa are not totally unlabeled and are usually

collected from different events. Different events may have
different patterns. We should integrate the information in
Ea so as to avoid mislabeling a potential failure instance
from one event to another event.

• We expect a “directional” label retification where labels of
Xa are determined according to the affinity with Xb. We
want to preclude the label propagation within Xa, since
a large portion of labels in Ea could be misleading. So
instead of S̃, we use a much smaller affinity matrix S ∈
R

a×b, which represents the affinity between instances in
Xa and Xb, in our label rectification.

• In most previous frameworks, the affinity matrix S is pre-
defined, thus the label propagation is sensitive and depen-
dent on the quality of the input graph. Moreover, as S is

constructed in the whole feature space, it is not appropri-
ate when we propagate the labels in a subspace of selected
features. In our model, we expect to adaptively learn an
optimal graph to represent the pairwise affinity in the se-
lected feature space.
To address the three needs listed above, we consider the

following problem for label rectification:

min
S,Y

‖S −X�
a Xb‖2F + μ‖Ya − Ea‖2F

+ β
∑
i,j

S(i, j)‖Ya(:, i)− Eb(:, j)‖2,

s.t. Y 1 = 1, Yb = Eb, S
�1 = 1, S ≥ 0.

(3)

It is notable that S is optimized in model (3) thus is more
adaptive for label rectification. We include the term ‖S −
X�

a Xb‖2F such that S cannot be too different from the graph
on the original features, thus avoid any abnormal structure
in the learned S. We involve the constraint Y 1 = 1 to let Y
encode the label probability distribution.

Combining (1) and (3), we propose to optimize the fol-
lowing objective function of our Directional label Rectifica-
tion in Adaptive Graph (DRAG) model:

J (W,S, Y )

= min
W,S,Y

‖W�X − Y ‖2F + α‖W‖2,1 + γ‖S −X�
a Xb‖2F

+ β
∑

i,j

S(i, j)‖Ya(:, i)− Eb(:, j)‖2 + μ‖Ya − Ea‖2F ,

s.t. Y 1 = 1, Yb = Eb, S
�1 = 1, S ≥ 0.

(4)

Optimization Algorithm

We employ the alternating optimization (AO) algorithm for
Problem (4), which iteratively minimize the problem over
each variable.
Given Y and S, optimize W . The objective function w.r.t.
W becomes

min
W

‖W�X − Y ‖2F + α‖W‖2,1. (5)

The cost function in Eq. (5) is convex in W . Following (Nie
et al. 2010), we can update W by taking derivative of the
function w.r.t. W and set it to 0, which yields the following:

W = (XX� + αBW )−1XY �, (6)

where BW is a diagonal matrix with the i-th diagonal ele-
ment as BW (i, i) = 1

2‖W (i,:)‖ .

Given Y and W , optimize S. The objective function w.r.t.
S can be written as

min
S�1=1,S≥0

γ‖S −X�
a Xb‖2F

+ β
∑

i,j

S(i, j)‖Ya(:, i)− Eb(:, j)‖2.
(7)

Eq. (7) can be decomposed into several independent sub-
problems w.r.t. each column of S as follows:

min
S(:,j)�1=1,S(:,j)≥0

‖S(:, j)− P (:, j)‖2, (8)
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where P (i, j) = Xa(:, i)
�Xb(:, j)− β‖Ya(:,i)−Eb(:,j)‖2

2γ . We
can update S(:, j) in Eq. (8) according to Theorem 0.1 as
follows.
Theorem 0.1. Given any v ∈ R

a, the solution to problem

min
u�1=1,u≥0

1

2
‖u− v‖2 (9)

can be formulated as ui = max(vi + λ∗, 0) with λ∗ satisfy-

ing
a∑

i=1

max(vi + λ∗, 0) = 1.

Proof. The Lagrangian function of Problem (9) is

L(u, λ, τ) = 1

2
‖u− v‖2 − λ(u�1− 1)− τ�u. (10)

Take derivative of function (10) w.r.t. u and set it to 0, we
get u = v + λ1 + τ . According to the KKT conditions,
we can derive τ�u = 0, thus u = max(v + λ1, 0). Below
we will discuss how to find an appropriate λ∗ such that the
constraint u�1 = 1 can be guaranteed.

Without loss of generity, suppose the entries in v are listed
in the descending order, i.e., v1 ≥ v2 ≥ · · · ≥ va, and we
have some d ≤ a satisfying{

vd + λ∗ ≥ 0

vd+1 + λ∗ < 0.
(11)

From the constraint
a∑

i=1

max(vi + λ∗, 0) = 1, we can infer

λ∗ =
1

d
(1−

d∑
i=1

vi). (12)

Substitute Eq. (12) into Eq. (11) and we get⎧⎪⎪⎨
⎪⎪⎩

d∑
i=1

(vi − vd) ≤ 1

d+1∑
i=1

(vi − vd+1) > 1,

thus d = max{l|
l∑

i=1

(vi − vl) ≤ 1}.

Given W and S, optimize Y . With the constraint Yb = Eb,
we can derive that the problem of updating Y is equivalent
to optimizing the following objective w.r.t. Ya:

min
Y �
a 1=1

‖Ya −W�Xa‖2F + μ‖Ya − Ea‖2F

+ β
∑
i,j

S(i, j)‖Ya(:, i)− Eb(:, j)‖2.
(13)

Let D be a diagonal matrix with the i-th diagonal element as
D(i, i) =

∑
j

S(i, j), then the Lagrangian function of Prob-

lem (13) is

L(Ya, η) = ‖Ya −W�Xa‖2F + μ‖Ya − Ea‖2F
+ βtr(YaDY �

a )− 2βtr(YaSE
�
b ) + η�(Y �

a 1− 1).
(14)

Take derivative of Eq. (14) w.r.t. Ya and set it to 0 we get:

Ya = (C − 1

2
1η�)((μ+ 1)Ia + βD)−1, (15)

where C = W�Xa+μEa+βEbS
�. Substitue the solution

in Eq. (15) to the constraint Y �
a 1 = 1 we get:

η =
2

k
(C� − (μ+ 1)Ia − βD)1.

Thus

Ya = (C − 11�

k
C)((μ+ 1)Ia + βD)−1 +

11�

k
. (16)

We summarize the alternating optimization steps in Algo-
rithm 1, with the time complexity O(m2nT + abT log a)
where T is the number of iterations. We provide conver-
gence and complexity analysis of Algorithm 1 in the sup-
plementary material.

Algorithm 1: Optimization Algorithm for DRAG
Input: X , E, α, β, μ, γ.
X = [Xa, Xb] ∈ R

m×n where n is #instances and
m is #features, while Xa ∈ R

m×a contains the
intances initially labeled as event instances and
Xb ∈ R

m×b are those initially labeled as normal
(usually b � a). E = [Ea, Eb] ∈ R

k×n are the initial
event labels, where E(j, i) = 1 with j < k if xi is
initialized as the j-th event, otherwise E(k, i) = 1.
Output: Feature weight W ∈ R

m×k, learned affinity
matrix S ∈ R

a×b, and instance weight
distribution Y ∈ R

k×n.
Initialize Y = E and Ya to be the first a columns of
Y ;

Initialize BW = Im;
while Not convergent do

Update W with Eq. (6) ;
Update S according to Theorem 0.1;
Update Y such that Yb = Eb and Ya is

calculated with Eq. (16) ;
end while ;

Related Work

To encode the local manifold structure in the data, several
spectral methods have been proposed in unsupervised (He
and Niyogi 2004; Nie, Wang, and Huang 2014; Wang et al.
2015) and semi-supervised learning (Zhu, Ghahramani, and
Lafferty 2003; Zhu 2005) frameworks. The basic assump-
tion is that instances with larger similarity possess a higher
probability to belong to the same cluster.

Several works incorporate such manifold assumption in
unsupervised feature selection by learning a mapping ma-
trix, which encodes the importance of features in preserv-
ing the local data structure (He, Cai, and Niyogi 2006;
Cai, Zhang, and He 2010). Nevertheless, without consider-
ing label information, unsupervised methods are not able to
detect features with discriminative power.
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Table 1: Description of comparing methods.
Category Description Methods

#1 Update feature weights and instance weights iteratively. Coselect (Tang and Liu 2013)
#2 First conduct classification and then feature selection. SVM-FS (Guyon et al. 2002)

#3 First conduct anomaly detection and then feature selection.
IForest-FS (Liu, Ting, and Zhou 2012),

1SVM-FS (Schölkopf et al. 2001),
GMM-FS (Mahadevan et al. 2010)

#4 First conduct feature selection and then anomaly detection. FS-GMM

Table 2: Summary of dataset statistics: number of assets,
events (k-1), features (m), initial event instances (a) and nor-
mal instances (b).

Dataset # assets # k # m # a # b
Synthetic 1 1 90 (s=12) 50 600
Data A 29 2 464(s=464) 342 65239
Data B 1597 3 209 (s=19) 454 2810667

In contrast, (semi-)supervised feature selection methods
integrate the label information (Liu, Ji, and Ye 2009; Chang
et al. 2014), and some concentrates on time-series analysis
(Yoon and Shahabi 2006). However, these methods require
the initial label information to be trustworthy, which cannot
be guaranteed in our problem setting. If we employ the pre-
vious methods to our rough initial label setting, they may
fail due to the low quality of positive labels, and the learned
features will represent an incorrect data structure thus be
misleading. Moreover, previous methods use a fixed affin-
ity graph which is not suitable to represent the data structure
in the selected feature subspace.

As illustrated a prior, our work is unique from three per-
spectives: 1) it simultaneously outputs instance weights (for
Xa) and feature weights while requires very rough initial la-
bel information; 2) it uncovers the consistent feature pattern
across failure events while also considers the pattern vari-
ety among different failure types; 3) it adaptively learns the
optimal graph structure for label rectification.

There are a number of recent works concentrating on time
series anomaly detection (Batal et al. 2012; Zhou et al. 2016;
Cheng et al. 2016), some of which are built on auto-
regression (e.g. ARIMA, VAR).

(Batal et al. 2012) converts time series into intervals of
temporal abstractions and detect discriminative subsequence
patterns according to predefined abstract states. This method
is sensitive to the setting of abstract states and cannot han-
dle high dimensional data. On the contrary, DRAG directly
learns the weight of features via optimization without any
complex conversion and is well applicable to large num-
ber of features. (Cheng et al. 2016) proposed to rank causal
anomalies according to the vanishing correlations on sen-
sor graph. This method assumes the existence of an invari-
ant network on sensors/features, which may not hold in real
world applications where the underlying data distribution
varies over time. Furthermore, this method is only applicable
for single asset analysis. Comparatively, our DRAG model
allows dynamic patterns in normal set (Xb) and is able to

deal with multiple assets (data sources).

Experiments

Experimental Setup

Currently, there are not many studies on label rectifying with
feature selection. To the best of our knowledge, we compare
with four categories of related methods and summarize their
description in Table 1.

All experiments are conducted on a standard laptop
(Quadcore Intel i7 CPU@2.7 GHz). We use linear kernel for
all SVM models (implementation is based on libsvm). Note
that all hyper-parameters of the comparing methods are set
according to the reported best or tuned to get the best perfor-
mance. Specifically, 1) for GMM models, we set the number
of components as 6; 2) for Coselect, we set α = 0.1, β = 0.01,
λ = 0.3, and construct the linking graph R with the follow-
ing strategy: if xi and xj belong to the same event in Xa

then R(i, j) = 1, otherwise zero; 3) for DRAG, the relative
magnitude relation of entries in Ya and W is relatively stable
w.r.t. parameters, so in Algorithm 1 we set the following by
default: α = m/k, β = 1/b, μ = s/2a and γ = 1.

We use both synthetic and real world datasets in our eval-
uation. The synthetic dataset 1 is constructed on the basis of
Yahoo Benchmark Dataset for Time Series Anomaly Detec-
tion (Laptev, Amizadeh, and Youssef Mar 25 2015). We ran-
domly select 12 features from the A2Benchmark dataset and
detrend them. For simplity, we assume that all the instances
are collected from one single asset and there is only one fail-
ure event at the last timestamp. We initially set the number of
event instances (a, number of instances in Xa) to be 50. To
make the task more challenging, we add a few anomalies at
random timestamps prior to the last 100 instances as noise.
The target anomaly signature happens at timestamps 621 to
624 on feature L and K. With the ground truth available, we
can test whether the methods are able to distinguish the truly
relevant instances and features by calculating the F1 score of
the positive (event) class on the selected features.

For real world data, we use two industrial fleet-level
datasets with different failure modes. Statistics of the
datasets are presented in Table 2. In real data, the size
of initial event instances (a) should be determined based
on domain knowledge and are application-specific. In our
datasets, we let a equal to the number of instances within 90
days before each failure event. Since the ground truth of key
features and occurence timestamps of the fault signature in

1https://goo.gl/16lM7h
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(a) Initial dataset (b) Worse instance
selection

(c) Better instance
selection

Figure 2: Illustration of our evaluation metric for real data.
Given the initial dataset (a) which consists of Xa (red) and
Xb (blue), the goal is to find the top-q instances from Xa

and the top-p features from the multivariate input, such that
a clear separation exists between the selected q instances and
Xb on the top-p feature. Here we evaluate each method using
the F1-score in linear SVM classification, which naturally
indicates how “well” the selected instances are spereated
from Xb. In this example, with the same selected features,
(c) indicates a better instance selection than (b). We can eval-
uate the quality of feature selection in a similar way.

real data is usually not available, we cannot directly assess
the methods as in standard classification problems. In the
following, we design an evaluation metric for real data.

Evaluation metric for real data: As we recall, the goal
of the task is to uncover the feature pattern of the signature
and identify the instances in Xa that are truly relevant to
the failure. A common assumption in anomaly detection is
that failure instances and normal instances conform to differ-
ent patterns, i.e., different distributions (Chandola, Banerjee,
and Kumar 2009). So in other words, we expect to identify
top-q instances in Xa and top-p features, such that the top-
q instances are clearly separable from Xb in the top-p fea-
ture space. Since b � a, we can use F1-score to as a qual-
ity check of the separation. Practically, linear separation has
better interpretability and is prefereable for domain experts,
therefore, we use linear SVM to evaluate the methods. That
is, we use F1-score of the positive (event) class to measure
whether the selected q instances in Xa and instances in Xb

are linearly separable on the selected features. We illustrate
our evaluation metric in Figure 2.

In the real world analysis we usually focus on a limited
number of features to narrow down the root cause. Here we
fix p = 3 and run experiments with q ∈ [3, 20]. Similarly,
we test the feature stability of the comparing methods with
p ∈ [3, 15] and fixing q = 3. To test the stability of the
comparing methods, we use down-sampling on Xb such that
b = 5a and generate sketches of the dataset. We run each
algorithm 10 times and report the average performance.

Time-series feature construction: We adopt sliding-
window-based methods to build time series features, such
that the temporal information can be incorporated into the
data. Given the window size ρ, each operation in the con-
struction is an algorithm g : R

ρ → R, that takes a time
series window (x′

1, x
′
2, ..., x

′
ρ) from one feature of a certain

asset as input, and outputs a single real number. We apply
two different operations in the experiments: autocorrelation

(of univariate raw sensor) and correlation (of pairwise raw
sensors). There are also other ways of time series feature
construction in previous literature (Fulcher and Jones 2014),
e.g., EMD, and FFT.

We first smooth the data using moving average in a win-
dow of length ρ and then conduct time-series feature con-
struction. We include both raw sensor record and time series
features, and the total number of features is m = 2r+ r(r−
1)/2 where r is the number of raw sensors. In the experi-
ments, we set ρ = 20 and scale each feature of X to [0, 1].
Specially, in Data A, since s is large and the information in
raw sensor record is enough for prediction, it is not neces-
sary to construct time-series features for this dataset.

Experiments on Synthetic Data

In this subsection, we conduct experiments on the synthetic
data as a sanity check. We first test the feature and instance
stability using the evaluation metric discussed in previous
subsection. As we can see from the results in Fig. 3(b) and
3(c), DRAG consistently outperforms all comparing meth-
ods in both settings. From Fig. 3(b) we can find that the
superiority of DRAG is more obvious when the number of
selected features is low, which indicates that DRAG is able
to correctly target the root cause with only a few selected
features. As p increases, the comparing methods gain im-
provements in the performance as they gradually include
root cause features. In Fig. 3(c), we can see a clear down-
ward performance trend with increasing q in the comparing
methods. This is because more failure-irrelevant instances
are misclassified to be positive as the selected instances be-
come more. However, DRAG still performs well with large
q, which illustrates the strong robustness of our model.

Moreover, since the ground truth of fault signature in syn-
thetic data is available, we also test the stability of the meth-
odsx when we use different a value in the initial event label
assignment. Fixing the real number of failure instances as 4,
we vary the size of Xa in the range of {30, 35, . . . , 90} and
evaluate the methods by comparing the selected instances
against the ground truth. From the results in Fig. 3(a), we
can notice that the performance of DRAG is fairly robust
to the change of a value. As a increases, more noise and
misleading information are involved in the data, thus the
comparing methods are impacted more or less. However, the
performance of DRAG is fairly stable when the size of Xa

varies. This is important to ensure that DRAG performs well
even without an accurate estimate of a in practice.

Experiments on Real World Data

We summarize the comparison results on real world data in
Fig. 5 and 6. It is worth mentioning that in the real fail-
ure analysis involving mutiple events, since the events come
from the same failure mode, we expect to identify the com-
mon subset of features associated with the failure across
events. Whereas, the importance order of the selected fea-
tures in each event can be different. As a consequence, in
the experiments we first select features across all events and
then evaluate the performance w.r.t. each event separately.

From the comparison in Fig. 5 and 6, we find that DRAG
performs well. In most cases DRAG performs better than all
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(a) Varying Xa size (b) Feature stability (c) Instance stability

Figure 3: Results on synthetic data. (a) F1-score againt the ground truth when Xa size varies. (b) feature stability with different
number of selected features p while the number of instances q = 3; (c) instance stability with different q while fixing p = 3.

Figure 4: Running time comparison on Data B with varying
size of Xb.

counterparts for at least 15%. In the results of feature stabil-
ity, methods in category 3 of Table 2 tend to select similar
top 3 instances, so they are fairly similar in the performance
for both Data A and Data B. As for the instance stabiity com-
parison, since the number of selected features is small, we
can notice that the methods in category 1, 2 and 3 of Ta-
ble 2 sometimes fail miserably due to the bad quality of the
selected features. This is because these methods select fea-
tures and instances separately, and any mistake in one step
can have a huge impact on the following step. On the con-
trary, DRAG and Coselect conduct feature and instance se-
lection simultaneously thus perform much better. In DRAG,
we learn an adaptive and optimal graph in each iteration,
which guarantees the quality of the affinity matrix hence the
performance.

Running Time Comparison

In this subsection, we report the running time of each
method with different data scales. We run the experiments
on Data B with varying size of Xb and plot the running time
comparison in Fig. 4. We report the real time of the train-
ing process, including both of the instance and feature selec-
tion steps. We can notice that Coselect is not scalable since
this method requires the full graph constructed on the whole
data. In contrary, DRAG uses a much smaller affinity matrix
constructed between Xa and Xb, thus is much more efficient
in implementation. FS-GMM is the fastest method because
it conducts GMM after selecting the top 3 features. From the

results we can find that DRAG is among the fastest methods
and is very well scalable to large data.

Conclusion

In this paper, we put forward a directional label rectification
model with adaptive graph for failure analysis in multivari-
ate time-series data. To deal with the label uncertainty prob-
lem, we proposed to dynamically rectify the initial event la-
bels according to the affinity with normal instances. Unlike
previous methods using a fixed graph as input, we adaptively
learned an optimal affinity matrix to represent the graph
structure in the subspace of selected features. The experi-
mental results verified that our model is effective in simul-
taneously selecting failure-relevant features and instances.
The results on scalability indicates that our model is very
well suited for large data.
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Figure 5: Experimental results on two real world datasets with different number of selected features p. Feature stability is
evaluated by fixing the number of selected instance q = 3.
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Figure 6: Experimental results on two real world datasets with different number of selected instances q. Instance stability is
evaluated with number of selected features p = 3.
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