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Abstract

How does the machine classify styles in art? And how does
it relate to art historians’ methods for analyzing style? Sev-
eral studies showed the ability of the machine to learn and
predict styles, such as Renaissance, Baroque, Impressionism,
etc., from images of paintings. This implies that the machine
can learn an internal representation encoding discriminative
features through its visual analysis. However, such a rep-
resentation is not necessarily interpretable. We conducted a
comprehensive study of several of the state-of-the-art convo-
lutional neural networks applied to the task of style classifi-
cation on 67K images of paintings, and analyzed the learned
representation through correlation analysis with concepts de-
rived from art history. Surprisingly, the networks could place
the works of art in a smooth temporal arrangement mainly
based on learning style labels, without any a priori knowledge
of time of creation, the historical time and context of styles, or
relations between styles. The learned representations showed
that there are a few underlying factors that explain the vi-
sual variations of style in art. Some of these factors were
found to correlate with style patterns suggested by Heinrich
Wölfflin (1846-1945). The learned representations also con-
sistently highlighted certain artists as the extreme distinctive
representative of their styles, which quantitatively confirms
art historian observations.

Introduction

Style is central to the discipline of art history. The word
“style” is used to refer to the individual way or manner
that someone makes or does something, for example Rem-
brandt’s style of painting. Style also refers to groups of
works that have a similar typology of characteristics, such as
the Impressionist style, or High Renaissance style. Art histo-
rians are obligated to identify, characterize, and define styles
based on the evidence of the physical work itself, in combi-
nation with an analysis of the cultural and historical features
of the time and place in which it was made. Although we
see style, and we all know that it exists, there is still no cen-
tral, agreed upon theory of how style comes about, or how
and why it changes. Some of the best scholars of art his-
tory have written persuasively about the importance of style
to the discipline, and the concomitant difficulty of defining
or explaining what it is and why it changes (Schapiro and
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Kroeber 1953; Gombrich 1968). Up to now connoisseurship
has proven to be one of the most effective means to detect
the styles of various artists, and differentiate style categories
and distinctions in larger movements and periods.

Recent research in Artificial Intelligence have shown the
ability of the machine to learn to discriminate between dif-
ferent style categories such as Renaissance, Baroque, Cu-
bism, etc., with reasonable accuracy, (e.g. (Shamir et al.
2010; Karayev et al. 2013; Saleh et al. 2016; Saleh and El-
gammal 2015)). However, classifying style by the machine
is not what interests art historians. Instead, the important is-
sues are what machine learning may tell us about how the
characteristics of style are identified, and the patterns or se-
quence of style changes. None of the aforementioned papers
brought any understanding of the problem of style that can
be useful to art historian. The ability of the machine to clas-
sify styles implies that the machine has learned an internal
representation that encodes discriminative features through
its visual analysis of the paintings. However, it is typical that
the machine uses visual features that are not interpretable by
humans. This limits the ability to discover knowledge out of
these results.

Our study’s emphasis is on understanding how the ma-
chine achieves classification of style, what internal repre-
sentation it uses to achieve this task, and how that represen-
tation is related to art history methodologies for identifying
styles. To achieve such understanding, we utilized one of the
key formulations of style pattern and style change in art his-
tory, the theory of Heinrich Wölfflin (1846-1945). Wölfflin’s
comparative approach to formal analysis has become a stan-
dard method of art history pedagogy. Wölfflin chose to sep-
arate form analysis from discussions of subject matter and
expression, focusing on the “visual schema” of the works,
and how the “visible world crystallized for the eye in certain
forms” (Wölflin 1950). Wölfflin identified pairs of works of
art to demonstrate style differences through comparison and
contrast exercises that focused on key principles or features.
Wölfflin used his method to differentiate the Renaissance
from the Baroque style through five key visual principles:
linear/painterly, planar/recessional, closed form/open form,
multiplicity/unity, absolute clarity/relative clarity. Wölfflin
posited that form change has some pattern of differentiation,
such that style types and changes can only come into being
in certain sequences.
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With advances in AI and the availability of comprehen-
sive datasets of images, we are now positioned to approach
the history of art as a predictive science, and relate its means
of determining questions of style to machine results. It was
nearly impossible to apply and empirically test Wölfflin’s
methods of style differentiation and analysis before devel-
opments in AI. No human being would be able to assemble
or analyze the number of examples needed to prove the value
of his methods for finding discriminative features.
Methodology: Deep convolutional neural networks have re-
cently played a transformative role in advancing artificial in-
telligence (LeCun, Bengio, and Hinton 2015). We evaluated
a large number of state-of-the-art deep convolutional neu-
ral network models, and variants of them, trained to classify
styles. We focused on increasing the interpretability of the
learned presentation by forcing the machine to achieve clas-
sification with a reduced number of variables without sacri-
ficing classification accuracy. We then analyzed the achieved
representations through linear and nonlinear dimensionality
reduction of the activation space, visualization, and correla-
tion analysis with time and with Wölfflin’s pairs.

Detailed Methodology

Challenges with Art Style Classification: In contrast to
the typical object classification in images, the problem of
style classification in art is different and has different set
of challenges. Style is not necessarily correlated with sub-
ject matter, which corresponds to existence of certain objects
in the painting. Style is mainly related to the form and can
be correlated with features at different levels, low, medium
and high-level. As a result, it is not necessary that networks
which perform better for extracting semantic concepts, such
as object categories would be perform as well in style classi-
fication. In the literature of object classification, deeper net-
works were shown to perform better (Simonyan and Zisser-
man 2014; He et al. 2016) since it facilitates richer represen-
tation to be learned at different levels of features. We do not
know if a deeper network will necessarily be better in the
style classification domain. This remains something to dis-
cover through our empirical study. However, the challenge,
in the context of art style classification, is the lack of images
on a scale of magnitude similar to ImageNet (million of im-
ages). The largest publicly available dataset, which we use,
is only in the order of 70K images. This limitation is due
to copyright issue, which is integral to the domain of art.
Moreover, collecting annotation in this domain is hard since
it requires expert annotators and typical crowd sourcing an-
notators are not qualified.

Another fundamental difference is that styles do no lend
themselves to discrete mutually exclusive classes as in su-
pervised machine learning. Style transition over time is typ-
ically smooth, and style labels are after-the-fact concepts im-
posed by art historians, sometimes centuries later. Paintings
can have elements that belongs to multiple styles, and there-
fore not necessarily identifiable with a unique style class.
Datasets: Training-testing Set: We trained, validated, and
tested the networks using paintings from the publicly avail-

able WikiArt dataset1. This collection (as downloaded in
2015) has images of 81,449 paintings from 1,119 artists
ranging from the fifteenth century to contemporary artists.
Several prior studies on style classification used subsets of
this dataset (e.g. (Karayev et al. 2013; Saleh et al. 2016;
Saleh and Elgammal 2015)). For the purpose of our study
we reduced the number of classes to 20 classes by merg-
ing fine-grained style classes with small number of images2.
We excluded from the collections images of sculptures and
photography. The total number of images used for training,
validation, and testing are 76,921 images. We split the data
into training (85%), validation (9.5%) and test sets (5.5%).
Visualization Set I: We used another smaller dataset con-
taining 1485 images of paintings from the Artchive dataset3
to analyze and visualize the representation. Previous re-
searches that have used this dataset (e.g. (Saleh et al. 2016)).
While the WikiArt collection is much bigger in size, this
dataset contains a better representation of the important
works of western art from 1400-2000AD by 60 artists.
Therefore, we mainly use it to visualize and analyze the
learned representation.
Visualization Set II: We also used 62K painting from the
Wikiart dataset for visualization and analysis of the repre-
sentations. We only included paintings that have date anno-
tation for the purpose of visualization and time correlation
studies.
Wölfflin’s pairs’ annotation: We also collected art histo-
rian’s rating annotations (scale of 1 to 5) for each of the
Wölfflin’s pairs for 1000 paintings from this data set and
use it in our correlation analysis.
Studied Deep Learning Models: We performed a com-
parative study on three networks: AlexNet (Krizhevsky,
Sutskever, and Hinton 2012), VGGNet (Simonyan and Zis-
serman 2014), and ResNet (He et al. 2016), as well as vari-
ants of them, adapted for the task of style classification. All
these models were originally developed for the task of object
recognition for the ImageNet challenge (Russakovsky et al.
2015) and each of them raised the state of the art when they
were introduced. For all the models, the final softmax layer,
originally designed for the 1000 classes in ImageNet, was
removed and replaced with a layer of 20 softmax nodes, one
for each style class. Our study included varying the training
strategies (training from scratch on art data vs. using pre-
trained models and fine-tuning them on art data), varying
the network architecture, and data augmentation strategies.
Fine-tuning is the standard practice when adapting well-
performing pre-trained models to a different domain.
Increasing the interpretability of the representation:

Having a large number of nodes at the fully connected
layer allows the representation to project the data into a
very high dimensional space where classification would be
easy (specially in our case with only 20 classes), without
enforcing similar paintings across styles to come closer in
the representation. To increase the interpretability of the

1Wikiart dataset http://www.wikiart.org
2The full list of style classes and merges is available in the sup-

plementary materials Table 1
3Artchive dataset http://www.artchive.com
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representation, we force the network to achieve classifica-
tion through a lower dimension representation. To achieve
this, after training the network (whether from scratch or
through fine-tuning), two more fully connected layers were
added with a reduced number of nodes. These reduced di-
mensional layers enforce the representation to use a smaller
number of degrees of freedom, which in turn enforces paint-
ings across styles to come closer in the representation based
on their similarity. In particular, we added two layers with
1024 and 512 nodes to all the models, and the models are
then fine-tuned to adjust the weights for the new layers. As
will be shown later, adding these dimensionality reduction
layers did not affect the classification accuracy. The experi-
ments showed that gradually reducing the number of nodes
in the fully connected layers forces the network to achieve a
“smoother” and interpretable representation.

Quantitative Comparative Results

Style Classification - Comparative Results Table 1 shows
the classification accuracy of different models using both
pre-training with fine-tuning, and training from scratch. In
all cases, the pre-trained and fine-tuned networks achieved
significantly better results than their counterparts that are
trained from scratch (7% to 18% increase). This is not sur-
prising and consistent with several models that adapted and
fine-tuned pre-trained networks for different domains. How-
ever, learned filters when the network trained from scratch
on the art domain were significantly different from the
ones typically learned on ImageNet, which typically shows
Gabor-like and blob-like filters (see Figure SM2). While it
is hard to interpret the filters trained for style classification,
we do not observe oriented-edge-like filters except of a hori-
zontal edge filter. This emphasizes the different in nature be-
tween the problems and suggests that the better performance
of the fine-tuned models could be out-performed if sufficient
data is available to train a style-classification network from
scratch on art data only.

Table 1: Comparison of classification of different models
and different training methodologies

Network Architecture Trained Pre-trained &
from scratch Fine-tuned

AlexNet Original:5 Conv layers+3 FC layers 48.1% 58.2%
AlexNet+2 Adding 2 reduced FC layers 47.2% 58.3%
VGGNet 13 Conv layers + 3 FC layers 51.6 % 60.1%
VGGNet+2 Adding 2 reduced FC layers 55.2% 62.8%
ResNet 152 Conv layers 63.7%

50 Conv layers 45.0%
ResNet+2 152 Conv layers +2 reduced FC layers 60.2%

50 Conv layers + 2 reduced FC layers 48.0%

Increasing the depth of the network only added no more
than 5% to the accuracy from AlexNet with 5 convolutional
layers to ResNet with 152 convolutional layer. In the case
for learning from scratch, increasing the depth didn’t im-
prove the results where a ResNet with 50 layers performed
worse than an AlexNet with only 5 convolution layers. VG-
GNet with 13 convolutional layers performed only 2-3%
better than AlexNet. Increasing the depth of VGGNet didn’t
improve the results. This limited gain in performance with
increase in depth, in conjunction with the difference in the

Table 2: The effect of adding two reduced dimension lay-
ers on the representation (subspace dimensionality and vari-
ance)

Model Training Original Architecture Adding two
Strategy dimensionality reduction layers

number of subspace retained number of subspace retained
nodes dim 1 variance 2 nodes dim1 variance2

AlexNet Pre-trained 4096 201 21.71 512 9 59.64
& Finetuned

AlexNet From Scratch 4096 397 35.62 512 10 62.78
VGGNet Pre-trained 4096 55 49.52 512 7 66.87

& Finetuned
VGGNet From Scratch 4096 36 51.16 512 7 72.52
ResNet Pre-trained 20483 491 17.53 512 6 73.71

& Finetuned
1 Subspace dim: Number of principle components cumulatively retaining 95% of variance.
2 Retained variance: Percentage of variance retained by the first two principle components.
3 ResNet does not have FC layers. This is the number of the nodes in the last pooling layer.

learned filters, suggests that a shallow network might be suf-
ficient for style classification along with better filter design.
Effect of adding layers with reduced dimensionality The
experiments showed that adding extra fully connected layers
with gradually reducing the number of nodes in them forces
the networks to achieve a “smoother” and more interpretable
representation. We quantified this phenomenon by examin-
ing the dimensionality of the subspace of the activation (us-
ing Principle Component Analysis (PCA (Jolliffe 2002)) of
the visualization dataset using two measures: 1) The num-
ber of components needed to preserve 95% of the variance.
2) The variance retained with the first two PCA dimensions.
We also evaluated the accuracy of the expanded models to
see if the added reduced layers resulted in any loss of ac-
curacy. In most of the cased the added layers enhanced the
accuracy (see Table 1)

Table2 shows that adding two reduced-dimension lay-
ers effectively and consistently reduced the dimensionality
of the subspace of the data while preserving the classifi-
cation accuracy. The reduction is significant for AlexNet
where 9 or 10 dimensions retained 95% of the variance com-
pared to 201 and 397 dimensions for the cases of fine-tuned
and learned from scratch networks respectively, with around
60% of the variance retained in the first two dimension. In-
terestingly, the representation achieved by VGGNets already
has reduced dimension subspaces compared to the AlexNet
and ResNet. However, adding the reduced dimension lay-
ers for VGG significantly lowered the subspace dimension
(only 7 dimensions retain 95% of the variance) while im-
proving its classification accuracy between 2-4%. The max-
imum reduction in subspace dimensionality was in ResNet
where the dimension of the subspace retaining 95% of the
variance was reduced from 491 to only 6 with 74% of the
variance in the first two dimensions (Figure SM3).

Table 3: Temporal correlation with the first two PCA dimen-
sions and the first LLE dimensions of the activation space in
different models

Pearson correlation coefficient with time
model training 1st PCA dim 2ndPCA dim Radial 1stLLE dim
AlexNet+2 Fine-tuned 0.4554 0.5545 0.6944 0.7101

From scratch -0.5797 0.2829 0.6697 0.6723
VGGNet+2 Fine-tuned -0.2462 0.5316 0.5659 -0.4012

From scratch 0.5781 0.3165 0.6239 -0.6532
ResNet+2 Fine-tuned -0.6559 0.4579 0.7712 0.8130
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Table 4: Correlation with Wölfflin’s concepts. Pearson Cor-
relation Coefficient of the first two PC dimensions and
the first two LLE dimensions of the activation space and
Wölfflin’s concepts. The concepts with maximum correla-
tion with each dimension is shown.

Pearson correlation coefficient(absolute values)
with Wölfflin’s concepts

Model Training 1st PCA dim 2ndPCA dim 1stLLE dim 2ndLLE dim
Planar vs. Linear vs. Planar vs. and Linear vs.
Recession Painterly Recession Painterly

AlexNet+2 Fine-tuned 0.4946 0.3579 0.501 0.3216
From scratch 0.5129 0.3272 0.4930 0.3111

VGGNet+2 Fine-tuned 0.3662 0.2638 0.4512 0.2646
From scratch 0.4621 0.4000 0.4897 0.3174

ResNet+2 Fine-tuned 0.5314 0.4795 0.5251 0.4158

Interpretation of the Representation

This section focuses on analyzing, visualizing, and interpret-
ing the activation space induced by the different networks
after trained to classify style. We define the activation space
of a given fully connected layer as the output of that layer
prior to the rectified linear functions. In particular, in this
paper, we show the analysis of activation of the last reduced
dimension fully connected layer prior to the final classifica-
tion layer, which consists of 512 nodes. We use the activa-
tions before the rectified linear functions in all the networks.
A Few Factors Explains the Characteristics of Styles:
The learned representation by the machine shows that there
are a few underlying factors that can explain the character-
istics of different styles in art history. Using PCA, we find
that only fewer than 10 modes of variations can explain over
95% of the variance in the visualization set in all of the stud-
ied models with additional reduced fully connected layers.
In ResNet and VGGNet the number of these modes is as
low as 6 and 7 respectively. In all of the networks, the first
two modes of variations explained from 60% to 74% from
the variance in the various models in visualization set I (Ta-
ble 1). Moreover, it is clear from the visualizations of both
the linear and nonlinear embedding of the activation mani-
fold in various models that art dated prior to 1900 lie on a
plane (subspace of dimension 2).

Consistent results are achieved by analyzing the 62K
painting from the Wikiart data set where it was found that
subspaces of dimensions 10, 9 and 7 retain 95% of the vari-
ance of the activation for AlexNet+2, VGGNet+2, ResNet+2
respectively (see SM). The consistency of results in all the
studied networks and the two datasets (varying in size from
1500 to 62K paintings) implies that the existence of a small
number of the underlying factors explaining the representa-
tion is an intrinsic property of art history, and not just an
artifact of the particular dataset or model.

We will start our interpretation of these dimensions by in-
vestigating the time correlation with these dimensions, fol-
lowed by correlation analysis with Wölfflin’s concepts.
Smooth Temporal Evolution of Styles: The results also in-
dicate that the learned representations, projected to the first
modes of variations of the activation space, show a smooth
temporal transition between styles (Fig.1, SM4). This is de-
spite the fact that the networks are trained only with images
and their discrete style labels. No information was provided
about when each painting was created, when each style took

place, which artist created which painting, nor how styles
are related (such as style x is similar to style y, or came af-
ter or before style z). Despite the lack of all these cues, the
learned representations are clearly temporally smooth and
reflect high level of correlation with time (Table 3).

Most interestingly, studying the modes of variations in
the representation showed a radial temporal progress, with
quantifiable correlation with time. In Figure 1-A, we can ob-
serve the temporal progress in a clock-wise way from Ital-
ian and Northern Renaissance at the bottom, to Baroque,
to Neo-classicism, Romanticism, reaching to Impression-
ism at the top followed by Post- Impressionism, Expression-
ism and Cubism. A full cycle completes with 20th century
styles such as abstraction and Pop Art coming back close to
Renaissance. In fact, the angular coordinates have a Pear-
son Correlation Coefficient (PCC) of 0.69 with time. The
strongest temporal correlation is in the case of ResNet with
0.76 PCC radial correlations. This conclusion is consistent
among all the networks that we tested (Table 3). Our study
shows that style changes smoothly over time and proves that
noisy style labels are enough for the networks to recover a
temporal arrangement, due mainly to visual similarities as
encoded through the learned representation. This is consis-
tent with Wölfflin’s sequence hypothesis.
Relation to Wölfflin’s Pairs: By studying the correlation
between the modes of variations and Wölfflin’s suggested
pairs, we find that the first mode of variation in all the
learned models consistently correlates the most with the
concept of plane vs. recession, while the second mode of
variation correlates the most with the concept of linear
vs. painterly. This correlation explains the radial temporal
progress and the loop closure between Renaissance and 20th
century styles since they share linearity and planarity in their
form. In Figure 1-A we can see the smooth transition from
linear-planar form in Renaissance at the bottom towards
more painterly-recessional form in Baroque to the extreme
case of painterly with Impressionism at the top. Next we
can see the transition back to linear-planar form in abstract
and Pop art styles. Projecting the data in these two dominant
modes of variations that are aligned with plane vs. recession
and linear vs. painterly explains why this representation cor-
relates with time in a radial fashion.

Figure 1-C shows the fourth and fifth dimensions of
AlexNet+2 representation, which spreads away strongly the
Renaissance vs. Baroque styles and put other styles in per-
spective to them. The fifth dimension (vertical) in particular
correlates with absolute vs. relative clarity, multiplicity vs.
unity, closed vs. open, and linear vs. painterly form from top
to bottom (with PCC -0.36, -0.30, -0.28, -0.16 respectively).
The fourth dimension correlates to a lesser degree with the
opposite of these concepts. Therefore, in Figure 1-C the Re-
naissance style appears at the top (absolute clarity, multiplic-
ity, closed, linear form), with the Baroque at the bottom (rel-
ative clarity, unity, and open, painterly form). This is quite
consistent with Wölfflin’s theory since he suggested exactly
the same contrast between these concepts to highlight the
difference between Renaissance and Baroque. We can also
see in the figure that Impressionism and Cubism are toward
the bottom of the plot since they share many of these same
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concepts with Baroque. The fourth dimension seems to sep-
arate Impressionism and Cubism to the right from Abstract
and Pop art to the left.
Identification of Representative Artists: Visualizing the
different representations shows that certain artists were con-
sistently picked by the machine as the distinctive repre-
sentatives of their styles, as they were the extreme points
along the dimensions aligned with each style. This is vis-
ible in the first three modes of variations of the represen-
tation learned by the VGGNet, shown in Figure 2A, which
retains 77% of the variance (Consistent results on a large-
scale collection is shown in Fig 2F-H). Besides the observ-
able temporal progress, the representation separates certain
styles and certain artists within each style distinctively from
the cloud at the center as non-orthogonal axes. Through
independent source separation4, we factorized these axes,
which are aligned with styles where extreme points on these
axes represent distinguishable artists in each style (Fig2B-E,
SM5). For example, such distinctively representative artists
are Van Eyck and Dürer for Northern Renaissance, Raphael
for Italian Renaissance, Rembrandt and Rubens for Baroque,
Monet for Impressionism, Cézanne and Van Gogh for Post-
Impressionism, Rousseau for Naı̈ve-Primitivism, Picasso
and Braque for Cubism, and Malevich and Kandinsky for
abstract. The fact that the representation chose a certain rep-
resentative artist or artists for each style – among thousands
of paintings by many artists in each style – highlights quanti-
tatively the significance of these particular artists in defining
the styles they belong to.
Activation Manifold and Understanding Influences: We
also studied the activation manifold of the different rep-
resentation learned by the machine5, which also reveals
smooth temporal progress captured by the representation, as
well as correlation with Wölfflin’s concepts (Figure 3, SM
Tables 3,4). Varying the neighborhood structure when con-
structing the manifold allowed us to discover different in-
teresting connections in the history of art in a quantifiable
way. For example, the manifold embedding in Figure 3-D
shows how Cézanne’s works are acting as a bridge between
Impressionism at one side and Cubism and abstract art at the
other side. Art historians consider Cézanne to be a key figure
in the style transition towards Cubism and the development
of abstraction in 20th century art. This bridge of Cézanne’s
paintings in the learned representation is quite interesting
because that is a quantifiable connection in the data, not
just a metaphorical term. Another interesting connection is
that between the Renaissance and modern styles such as Ex-
pressionism, Abstract-Expressionism with the works of El-
Greco, Dürer, Raphael, and other Renaissance painters (Fig-
ure 3-E). These artists are pulled away from the Renaissance
cluster at the left as outliers to the temporal progress be-
cause of their similarity to several works in modern styles.
Notably, both Cézanne’s connection and the El-Greco/Dürer

4This is achieved using Independent Component Analysis us-
ing the FastICA algorithm (Hyvärinen, Karhunen, and Oja 2001;
Hyvarinen 1999)

5We used Locally Linear Embedding (LLE) for achieving an
embedding of the activation manifold. (Roweis and Saul 2000)

connection appear consistently in the various representa-
tions learned by different networks, however manifested in
different forms.
Discovering Limitations of Wölfflin’s Concepts: Interest-
ingly, not all modes of variations explaining the data cor-
relate with Wölfflin’s concepts. In all learned representa-
tions, one of the first five modes of variation always has
close-to-zero linear correlation with all Wölfflin’s concepts.
A notable example is the fifth dimension of the embedded
activation manifolds, which separates Impressionism from
Post-Impressionism, and has almost zero linear correlation
with Wölfflin’s pairs (Fig SM6). This implies that the sep-
aration between these styles is not interpretable in terms of
Wölfflin’s pairs.

Discussion and Conclusion

The consistency of the results among the different models
and data sets indicate that the results are not just artifacts
of the data or the algorithms, but rather are due to intrin-
sic properties of style change in art over history. The im-
plication of the networks’ ability to recover a smooth tem-
poral progression through the history of art, in absence of
any temporal cues given at training other than the constraint
of putting paintings of the same style closer to each other
to achieve classification, suggests that visual similarity is
the main reason that forces this smooth temporal representa-
tion to evolve. This in turns echoes the smooth transition of
style in the history of art. This is consistent with Wölfflin se-
quencing hypothesis. The analysis also indicates that a small
number of factors encapsulate the visual characterization of
different styles in art history.

The networks are presented by raw colored images, and
therefore, they have the ability to learn whatever features
suitable to discriminate between styles, which might include
compositional features, contrast between light and dark,
color composition, color contrast, detailed brush strokes,
subject matter related concepts. In particular, networks pre-
trained on object categorization datasets might suggest po-
tential bias towards choosing subject-matter-related features
for classification. However, visualizing the learned represen-
tations reveals that the learned representations role out sub-
ject matter as a basis for discrimination. This is clear from
noticing the loop closure between Renaissance style, which
is dominated with religious subject matter, and modern 20th
century styles, such as Abstract, Pop art, and others. In con-
trast, this loop closure suggests that the basis of discrimina-
tion is related to concepts related to the form as suggested
by Wölfflin.

Overall the results highlight the potential role that AI
can play in the domain of art history to discover patterns
and trends. The study also highlights the importance of re-
visiting the formal methods in art history pioneered by art
historians such as Wölfflin using tools from computer vision
and machine learning.
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Figure 1: Modes of variations of the activation subspace showing smooth temporal transition and correlation with Wölfflin’s
concepts. (A) First and second modes of variations of the AlexNet+2 model with paintings color-coded by date of creation.
The first mode (the horizontal axis) seems to correlate with figurative art, which was dominant till Impressionism, vs. non-
figurative, distorted figures, and abstract art that dominates 20th century styles. Another interpretation for this dimension is
that it reflects Wölfflin’s concept of plane (to the right) vs. recession (to the left). This axis correlates the most with Wölfflin’s
concept of plane vs. recession with -0.50 PCC. To a lesser degree, this horizontal axis correlates with closed vs. open (0.24 PCC)
and linear vs. painterly (-0.23 PCC). This quantitative correlation can be clearly noticed by looking at the sampled paintings
shown. The vertical axis correlates with the linear (towards the bottom) vs. painterly (towards the bottom) concept (0.36 PCC).
(B) The angular coordinate exhibits strong correlation with time (PCC of 0.69). (C) The forth and fifth modes of variations
show separation between Renaissance and Baroque as it correlates with Wölfflin’s concepts distinguishing these styles. (D)
Correlation of the first 5 modes of variations with Wölfflin’s concepts. (E) The cumulative retained variance of the first 10
modes of variations of different models.
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Figure 2: The representation could discover distinctive artists for each style. (A)The first three modes of variations of the
VGGNet activations. Distinctive artists representing each style are identified by the representation and pulled away from the
cloud at the center. We can see the Northern Renaissance in the yellow ellipse with the majority of the paintings sticking out
being by Van Eyck and Dürer. The Baroque in the black ellipse is represented by Rubens, Rembrandt, and Velazquez. The
orange ellipse is Impressionism and at its base are Pissarro, Caillebotte, and Manet as the least painterly of the type, ending
with Monet and Renoir as most painterly on the end of the spike. The two red circles are Post-Impressionism, and in particular
one is dominated by Van Gogh, and the other by Cézanne who forms the base for the spike of Cubism in the light blue ellipse.
This spike is dominated by Picasso, Braque, and Gris; and goes out to the most abstract Cubist works. Most interestingly the
representation separates Rousseau, as marked in the green ellipse, which is mainly dominated by his work. (B-E) Factorization
of the activation space using Independent Component Analysis into 7 maximally independent axes, which show alignment with
styles (more details in Fig S4, S5). (F-H) The top three modes of variations in the VGG network activation of 62K works of art
from the Wikiart collection (projected pairwise as dimensions 1-2, 2-3, 3-1 from left to right).
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Figure 3: Interesting connections discovered in the activation manifold. (A) Example of activation manifold of AlexNet+2.
Paintings color coded by date on the surface of the activation manifold showing smooth transition over time. (B) Transitions
between art movements and important connections. (C) Accentuated version of the manifold highlighting five major styles: Re-
naissance, Baroque, Impressionism, Cubism, and abstract. (D) Cézanne’s bridge: we can see branching at Post-Impressionism
where Cézanne’s work clearly separates from the other Post-Impressionist and Expressionist works towards the top. This branch
continues to evolve till it connects to early Cubist works by Picasso and Braque, as well as abstracts works by Kandinsky. All
thumbnails without labels in this plot are by Cézanne. (E) The connection between Renaissance and modern styles is marked
by the outliers in the temporal progress patterns by certain works by El-Greco, Dürer, Raphael, Mantegna, and Michelangelo.
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