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Abstract

Pay-per-click advertising includes various formats (e.g.,
search, contextual, and social) with a total investment of more
than 140 billion USD per year. An advertising campaign
is composed of some subcampaigns—each with a different
ad—and a cumulative daily budget. The allocation of the ads
is ruled exploiting auction mechanisms. In this paper, we pro-
pose, for the first time to the best of our knowledge, an al-
gorithm for the online joint bid/budget optimization of pay-
per-click multi-channel advertising campaigns. We formulate
the optimization problem as a combinatorial bandit prob-
lem, in which we use Gaussian Processes to estimate stochas-
tic functions, Bayesian bandit techniques to address the ex-
ploration/exploitation problem, and a dynamic programming
technique to solve a variation of the Multiple-Choice Knap-
sack problem. We experimentally evaluate our algorithm both
in simulation—using a synthetic setting generated a Yahoo!
dataset—and in a real-world application for two months.

Introduction

Online advertising has been given wide attention from the
scientific world as well as from industry. in 2016 more than
72 billion USD has been spent in search advertising (IAB
2016), which represents about 50% of the total market. The
development of automatic techniques is crucial both for the
publishers and the advertisers, and artificial intelligence can
play a prominent role in this context. In this paper, we focus
on pay-per-click advertising—including different formats,
e.g., search, contextual, and social—in which an advertiser
pays only once a user has clicked her ad.

An advertising campaign is characterized by a set
of subcampaigns—each with a potentially different pair
ad/targeting—and by a cumulative daily budget. Remark-
ably, a campaign may include subcampaigns on different
channels, e.g., Google, Bing, Facebook. In pay-per-click ad-
vertising, to get an ad impressed, the advertisers take part
in an auction, specifying a bid and a daily budget for each
subcampaign (Qin, Chen, and Liu 2015). The advertisers’
goal is to select these variables to maximize the expected
revenue they get from the advertising campaign. The Gen-
eralized Second Price auction (GSP) is used for search ad-
vertising (King, Atkins, and Schwarz 2007). This auction
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is not truthful—i.e., the best bid for an advertiser may be
different from the actual value per click—, and learning al-
gorithms are commonly used to learn the optimal bids. The
Vicrey-Clarke-Groves mechanism (VCG) is instead used for
contextual and social advertising (Varian and Harris 2014;
Gatti et al. 2015). This auction is truthful only in the unreal-
istic case in which the daily budget is unlimited.1 Thus, each
advertiser needs to find the best bid and budget values in an
online fashion, and this problem is currently open in the lit-
erature. In the present paper, we provide a novel algorithm,
based on combinatorial bandit techniques (Chen, Wang, and
Yuan 2013), capable of automating this task.

Related works. Only a few works in the algorithmic eco-
nomic literature tackle the campaign advertising problem
by combining learning and optimization techniques. More
specifically, Zhang et al. (2012) study a scenario similar to
the one we analyze in this paper. The authors take into ac-
count the problem of the joint bid/budget optimization of
subcampaigns in an offline fashion. However, this algorithm
suffers from some drawbacks. More precisely, the model
of each subcampaign requires a huge number of parame-
ters s.t. even achieving rough estimates requires a consid-
erable amount of data, usually available only after the sys-
tem has been running for several months. Furthermore, some
parameters (e.g., the position of the ad for each impression
and click) cannot be observed by an advertiser, not allow-
ing the employment of the model in practice. Finally, the
optimization problem formulated therein is nonlinear and
finding a good-quality approximate solution requires long
computational time. Thomaidou, Liakopoulos, and Vazir-
giannis (2014) separate the optimization of the bid from that
one of the budget, using a genetic algorithm to optimize the
budget and subsequently applying some bidding strategies.
Markakis and Telelis (2010) study the convergence of some
bidding strategies in a single-subcampaign scenario.

Online learning results are known only for the restricted
cases with a single subcampaign and a budget constraint
over all the length of the campaign without temporal dead-
lines.2 Ding et al. (2013) and Xia et al. (2015) work on a

1Notably, the value per click is unknown at the setup of the
campaign, not allowing an advertiser to bid truthfully.

2This last assumption rarely holds in real-world applications
where, instead, results are expected by a given deadline.
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finite number of bid values and exploit a multi-armed bandit
approach. Trovò et al. (2016) work on a continuous space of
bids and show that assuring worst-case guarantees leads to
the worsening of the average-case performance.

Less related works concern daily budget optimization (Xu
et al. 2015; Italia et al. 2017), bidding strategies in display
advertising (Wang, Zhang, and Yuan 2016; Weinan et al.
2016; Zhang, Yuan, and Wang 2014; Lee, Jalali, and Das-
dan 2013) and video advertising (Geyik et al. 2016). Finally,
some works deal with the attribution problem of the conver-
sions in display advertising (Geyik, A-Saxena, and Dasdan
2014; Kireyev, Pauwels, and Gupta 2016).

Original contributions. We formulate the optimization
problem as a combinatorial-bandit problem (Chen, Wang,
and Yuan 2013), where the different arms are the bid/budget
pairs. In the standard multi-armed bandit problem, we are
given a set of options called arms, at each turn we choose
a single arm, and we observe only its reward. Differently,
in a combinatorial-bandit problem we are given a set of su-
perarms, i.e., an element of the power set of the arms—here
corresponding to a combination of bid/budget pairs for each
subcampaign—, whose elements satisfy some set of com-
binatorial constraints—in our case, knapsack-like. At each
round, we simultaneously play of all the arms contained
in the selected superarm and, subsequently, observe their
rewards. We use Gaussian Process (GP) regression mod-
els (Rasmussen and Williams 2006) to estimate, for each
subcampaign, the expected daily number of clicks for each
bid/budget pair and the value per click. We estimate the
value per click of a subcampaign separately from the number
of clicks since, while the number of daily clicks and, thus, of
the observed samples is usually large allowing one to obtain
accurate estimates in short time, the acquisitions are usually
much more sporadic and the estimation of the value per click
may require a longer time. As a result, at the very beginning
of the learning phase our algorithm maximizes the number
of clicks, whereas, subsequently, the objective function is
gradually tuned by more accurate estimates of the values
per click of each subcampaign. This rationale is the same
one currently followed by human experts. We design two
Bayesian bandit techniques to balance exploration and ex-
ploitation in the learning process, that return samples of the
stochastic variables estimated by the GPs. Finally, we dis-
cretize the bid/budget space, and we formulate the optimiza-
tion problem as a special case of Multiple-Choice Knapsack
problem (Sinha and Zoltners 1979) in which we use the sam-
ples returned by the bandit algorithms, and we solve it in
polynomial time by dynamic programming in a fashion sim-
ilar to the approximation scheme for the knapsack problem.
The optimization is repeated every day.

We experimentally evaluate, using a realistic simulator
based on the Yahoo! Webscope A3 dataset, the convergence
of our algorithm to the optimal (clairvoyant) solution and
its regret as the size of the problem varies. Furthermore, we
evaluate our algorithm in a real-world campaign with sev-
eral subcampaigns in Google AdWords for two consecutive
months, obtaining the same number of acquisitions obtained
by human experts, but halving the cost per acquisition.

Problem Formulation

We are given an advertising campaign C = {C1, . . . , CN},
with N ∈ N, where Cj is the j-th subcampaign, a fi-
nite time horizon of T ∈ N days, and a spending plan
B = {y1, . . . , yT }, where yt ∈ R

+ is the cumulative budget
one is willing to spend at day t ∈ {1, . . . , T}.3,4 While the
proposed definition is general w.r.t. the channel we target, in
the specific case of search engines (where the subcampaigns
are commonly targeted to multiple keywords), we assume
that each subcampaign has been set s.t. its keywords behave
similarly. As a consequence, a single decision for each group
of keywords is required. For day t ∈ {1, . . . , T} and for ev-
ery subcampaign Cj , the advertiser needs to specify the bid
xj,t ∈ [xj,t, xj,t], where xj,t, xj,t ∈ R

+ are the minimum
and the maximum bid we can set, respectively, and the bud-
get yj,t ∈ [y

j,t
, yj,t], where y

j,t
, yj,t ∈ R

+ are the minimum
and the maximum budget we can set, respectively. The goal
is, for every day t ∈ {1, . . . , T}, to find the best values of
bids and budgets, maximizing the subcampaigns cumulative
expected revenue. These values can be found by solving the
following optimization problem:

max
xj,t,yj,t

N∑
j=1

vj nj(xj,t, yj,t) (1a)

s.t.
N∑
j=1

yj,t ≤ yt (1b)

xj,t ≤ xj,t ≤ xj,t ∀j (1c)

y
j,t

≤ yj,t ≤ yj,t ∀j (1d)

where nj(xj,t, yj,t) is the expected number of clicks given
the bid xj,t and the budget yj,t for subcampaign Cj and vj
is the value per click for the subcampaign Cj . Basically,
this is a special case of Multiple-Choice Knapsack prob-
lem (Kellerer, Pferschy, and Pisinger 2004) in which the ob-
jective function (1a)—corresponding to the value provided
by knapsack—is the weighted sum of the expected number
of clicks of all the subcampaigns, where the weights are the
subcampaigns’ value per click. Constraint (1b) is a budget
constraint, forcing one not to spend more than the budget
limit, while constraints (1c) and (1d) define the ranges of
the variables. Similarly to the knapsack problem, here we
have items–i.e., the subcampaigns—, each of which is char-
acterized by a value and requires a portion of the budget. The
differences are: the occupancy of an item is not a constant,
being controllable by the assigned budget; we can decide on
a further parameter, the bid, that does not have a correspond-
ing parameter in the knapsack problem; the value of each
item is not constant, but it depends on the decisions taken.

Since the function of the number of clicks nj(·, ·) and the
parameter specifying the value per click vj need to be es-

3We assume that campaign C and spending plan B are given.
4For the sake of presentation, from now on we set the day as

unitary temporal step of our algorithm. The use of shorter time
units can be used to tackle situations in which the user’s behaviour
is non-stationary over the day. The application of the proposed al-
gorithm to different time units is straightforward.
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timated online, not being a priori known, the optimization
problem can be naturally formulated in a sequential decision
learning fashion (Cesa-Bianchi and Lugosi 2006), or, more
precisely, as a combinatorial bandit problem (Chen, Wang,
and Yuan 2013).5 Here, we would like to gather as much in-
formation as possible about the stochastic functions during
the operational life of the system and, at the same time, we
do not want to lose too much revenue in doing so (a.k.a. ex-
ploration/exploitation dilemma). More precisely, the avail-
able options (a.k.a. arms) are all the values of bid xj,t and
budget yj,t satisfying the combinatorial constraints of the
optimization problem, while nj(·, ·) and vj are stochastic
functions defined on the feasible region of the variables that
we need to estimate during the time horizon T . A policy U
solving such a problem is an algorithm returning, for each
day t and subcampaign Cj , a bid/budget pair (x̂j,t, ŷj,t).
Given a policy U, we define the pseudo regret as:

RT (U) := T G∗ − E

[
T∑

t=1

N∑
j=1

vj nj(x̂j,t, ŷj,t)

]
,

where G∗ :=
∑N

j=1 vj nj(x
∗
j , y

∗
j ) is the expected value

provided by a clairvoyant algorithm, the set of bid/budget
pairs {(x∗

j , y
∗
j )}Nj=1 is the optimal clairvoyant solution to the

problem in Equations (1a)–(1d), and the expectation E[·] is
taken w.r.t. the stochasticity of the policy U. Our goal is the
design of algorithms minimizing the pseudo regret RT (U).

Proposed Method

Initially, we provide an overview of our algorithm named
AdComB—Advertising Combinatorial Bandit algorithm—,
and, subsequently, we describe in detail the phases compos-
ing the algorithm.

The Main Algorithm

Algorithm 1 reports the high-level pseudocode of our
method. For the sake of presentation, we distinguish three
phases that are repeated each day t (see Fig. 1). For each
subcampaign Cj , the parameters to the algorithm are: a fi-
nite set Xj of feasible bid values, a finite set Yj of feasible
budget values, a model M(0)

j capturing a prior knowledge
about the function nj(·, ·) and of the parameter vj , a spend-
ing plan B and a time horizon T .

In the first phase (Lines 4–8), named Estimation in
Fig. 1, the algorithm learns, from the observations of days
{1, . . . , t− 1}, the model Mj of the user behavior for each
subcampaign Cj . More precisely, the model Mj provides a
probability distribution over the number of clicks nj(x, y)
as the bid x and the budget y vary and over the value per
click vj . The first day the algorithm is executed, no obser-
vation is available, and thus the model Mj is based on the
prior M(0)

j (Line 5). Conversely, the subsequent days, for
each subcampaign Cj , the algorithm also gets the obser-
vations corresponding to day t − 1 (Line 7) including: the

5Another approach to solving the problem is to use a multistage
method, e.g., backward induction, but it would require a huge com-
putational effort that makes the problem intractable.

Algorithm 1 AdComB

1: Parameters: sets {Xj}N
j=1 of bid values, sets {Yj}N

j=1 of budget values, prior

model {M(0)
j }N

j=1, spending plan B, time horizon T

2: for t ∈ {1, . . . , T} do

3: for j ∈ {1, . . . N} do

4: if t = 1 then

5: Mj ← M(0)
j

6: else

7: Get (ñj,t−1, c̃j,t−1, r̃j,t−1, ṽj,t−1)

8: Mj ← Update (Mj , (x̂j,t−1, ŷj,t−1, ñj,t−1, c̃j,t−1,

r̃j,t−1, ṽj,t−1))

9: Xj,t ← Xj ∩ [xj,t, xj,t]

10: Yj,t ← Yj ∩ [y
j,t

, yj,t]

11: (nj(·, ·), vj) ← Sampling (Mj , Xj,t, Yj,t)

12: {(x̂j,t, ŷj,t)}j∈N ← Optimize ({nj(·, ·), vj , Xj,t, Yj,t}j∈N , yt)

13: Set ({(x̂j,t, ŷj,t)}j∈N )

Figure 1: The information flow in the AdComB algorithm
along the three phases.

actual number of clicks ñj,t−1, the actual total cost of the
subcampaign c̃j,t−1, the time when the daily budget yt fin-
ished r̃j,t−1, if so, and the actual value per click ṽj,t−1. Sub-
sequently, the model of each subcampaign Mj is updated
using those observations (Line 8).

In the second phase (Lines 9–11), named Bandit Choice
in Fig. 1, the algorithm chooses the values for the function
nj(·, ·) and the parameter vj using the model Mj just up-
dated. More precisely, for each subcampaign Cj , the algo-
rithm initially selects the bids Xj,t := Xj ∩ [xj,t, xj,t] and
budgets Yj,t := Yj ∩ [y

j,t
, yj,t] that are feasible according to

the given ranges (Lines 9–10). Subsequently, the algorithm
chooses, according to the probability distributions of Mj ,
the samples of the function nj(·, ·) for the feasible values of
bid and budget in Xj,t and Yj,t and for vj (Line 11).

In the third phase (Lines 12–13), named Optimization in
Fig. 1, the algorithm uses the values of nj(·, ·) and of vj as
parameters of the problem in Equations (1a)–(1d) and solves
this problem returning the bid/budget pairs to be set for the
current day t (Line 13) in each different channel (denoted by
Search, Social and Contextual in Fig. 1).6

In what follows, we provide a detailed description of the
model Mj and of the subroutines Update(·), Sampling(·),

6Notice that, since the bid and the budget can assume a finite
set of values, the problem in Equations (1a)–(1d) can be easily for-
mulated as a Mixed Integer Linear Program (see the Supplemental
Material for the mathematical programming formulation).
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and Optimize(·) used in Algorithm 1.

Model and Update Subroutine

As mentioned before, the goal of this subroutine is the
estimation of the functions nj(·, ·) and the parameter vj .
The crucial issue, in this case, concerns the employment
of a practical estimation model, providing a good tradeoff
between accuracy and time needed for the learning pro-
cess. For instance, let us observe that a straightforward ap-
proach employing independent estimates of nj(·, ·) for ev-
ery bid/budget pair (x, y) is not practical since it would re-
quire a huge amount of observations, and, thus, too many
days to have accurate estimates. Suppose, for instance, to
use 10 bid values and 10 budget values, with a total num-
ber of 100 bid/budget pairs. Such a discretization would
require a period of 100 days only to have a single obser-
vation per estimates and years to have accurate estimates,
thus making the algorithm useless in practice. Most of the
methods for combinatorial bandits available in the state of
the art (Chen, Wang, and Yuan 2013; Chen et al. 2016;
Gai, Krishnamachari, and Jain 2010; Ontañón 2017) suffers
from the same issue, not exploiting any correlation among
the random variables corresponding to the arms rewards.

To address this issue, we assume that the function nj(·, ·)
presents some regularities and, in particular, that the values
of the function at different points in the bid/budget space are
correlated. We capture this regularity resorting to GPs (Ras-
mussen and Williams 2006). These models, developed in the
statistical learning field, express the correlation of the nearby
points in the input space exploiting a kernel function. More-
over, they provide a probability distribution over the output
space—in our case the number of clicks—for each point of
the input space—in our case the space of bid and budget—,
thus giving information both on the expected values of the
quantities to estimate as well as their uncertainty.

In particular, we propose two approaches for nj(·, ·). A
straightforward approach, which will be used as a baseline
in our experimental activity, employs a single GP defined on
a 2-dimension input space (details are provided in the Sup-
plemental Material). Even if this method provides a flexible
way of modeling the advertising phenomenon, it requires,
due to the curse of dimensionality, a long initial phase before
being effective. This issue is addressed by our second ap-
proach which exploits an assumption on the structure of the
problem. More precisely, the dependency of nj(x, y) from
bid x and budget y is modeled by two 1-dimensional GPs
combined in a nonlinear fashion. Formally, we assume:

nj(x, y) := nsat
j (x) min

{
1,

y

csatj (x)

}
, (2)

where the two GPs employed for each subcampaign Cj are:
– the maximum number of clicks nsat

j : Xj → R
+ that can

be obtained with a given bid x without any budget constraint
(or equivalently if we let y → +∞);
– the maximum cost incurred csatj : Xj → R

+ with a given
bid x without any budget constraint, as above;
where the bid space is defined as Xj := ∪T

t=1[xj,t, xj,t]. The
rationale behind this decoupled model is that, given a bid

x, the number of clicks increases linearly in the budget y
where the coefficient is the average cost per click given x

(i.e.,
nsat
j (x)

csatj (x) ), until the maximum number of obtainable clicks

is achieved. Notice that the values of nsat
j (x) and csatj (x) de-

pend on the average position in which the ad is displayed
when bid x is used and on the daily number of auctions. The
larger x the larger nsat

j (x) and csatj (x).
Now we focus on the modeling of the maximum number

of clicks nsat
j (·) with a GP regression model. The application

of such techniques to estimate the maximum cost csatj (·) is
analogous. We model nsat

j (·) in a subcampaign Cj with a GP
over Xj , i.e., we use a collection of random variables s.t. any
finite subset has a joint Gaussian distribution. Following the
definition provided in (Rasmussen and Williams 2006), a GP
is completely specified by its mean m : Xj → R and covari-
ance k : Xj × Xj → R functions. Hence, we denote the GP
that models the maximum number of clicks in Cj as follows:

nsat
j (x) := GP (m(x), k(x, ·)) , ∀x ∈ Xj .

If we have a priori information about the process, we can
use it to design a function m(x) over the input space Xj

which specifies the initial mean value, e.g., if we have in-
formation about the maximum number of clicks we might
reach θ for any bid, one might consider a linearly increasing
function over the bid space as m(x) = θ

maxt xj,t
x. If no a

priori information is available, we set m(x) = 0, ∀x ∈ Xj .
At the beginning of the optimization procedure (t = 1),

we have the same predictive distribution at each point of the
input space, i.e., nsat

j (x) ∼ N (m(x), k(x, x)), where we
denote with N (μ, σ2) the Gaussian distribution with mean
μ and variance σ2. For each day t we obtain a value for the
maximum number of clicks by relying on:

ñsat
j,t := d(r̃j,t, ñj,t),

where d(·, ·) is a function specifying the distribution of the
clicks over the day. The function d(·, ·) can be estimated
from historical data coming from past advertising campaigns
of products belonging to the same category (e.g., toys, in-
surances, beauty products). The vector of the bid set so far
x̂j,t−1 := (x̂j,1, . . . , x̂j,t−1)

T and the vector of maximum
number of clicks ñsat

j,t−1 :=
(
ñsat
j,1, . . . , ñ

sat
j,t−1

)T
are used by

the algorithm to refine the initial prior model M(0)
j . From

the definition of GP, its restriction over a finite number of
points is a multivariate Gaussian random variable, which can
be used, for every x ∈ Xj , to predict the expected value
μj,t−1(x) and variance σ2

j,t−1(x) of the maximum number
of clicks in the following way:

μj,t−1(x) = m(x) +K(x, x̂j,t−1)Φ
−1

(
ñsat

j,t−1−
(m(x̂j,1), . . . ,m(x̂j,t−1))

T
)
,

σ2
j,t−1(x) = k(x, x)−K(x, x̂j,t−1) Φ

−1 K(x, x̂j,t−1)
T ,

where we define Φ := K(x̂j,t−1, x̂j,t−1) + σ2
nI , I is the

identity matrix of order t − 1, and the (i, h)-element of the
matrix K(x,x′) is the value of the kernel computed over
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the i-th element of the generic vector x and the h-th ele-
ment of the generic vector x′. Hence, the maximum num-
ber of clicks for the bid x is distributed as the Gaussian
N (μj,t−1(x), σ

2
j,t−1(x)).

Regarding the value per click vj , at day t we estimate it by
exploiting the data ṽj,h recorded during the days h < t. Re-
sorting to the Central Limit theorem, we have that the mean
value per click vj is asymptotically Gaussian distributed,
thus, at each day t, it is sufficient to estimate its mean νj,t
and variance φ2

j,t as follows:

νj,t−1 :=

∑t−1
h=1 ṽj,h
t− 1

, φ2
j,t−1 :=

∑t−1
h=1 (ṽj,h − νj,t−1)

2

(t− 1)(t− 2)
.

Overall, the model Mj corresponding to a subcampaign
Cj at a day t consists of the following vectors: the values per
click ṽj,t−1 := (ṽj,1, . . . , ṽj,t−1)

T , the selected bids x̂j,t−1,
the maximum number of clicks nsat

j,t−1, and the maximum
costs csatj,t−1 (defined similarly to nsat

j,t−1). Therefore, the Up-
date subroutine of Algorithm 1 includes the incoming data
(ñj,t−1, c̃j,t−1, r̃j,t−1, ṽj,t−1), properly transformed, in the
aforementioned vectors.7

Sampling Subroutine

The models Mj we estimate for each subcampaign pro-
vide a probability distribution over the function nj(·, ·) and
of the values vj and, therefore, over the possible instances
of the optimization problem in Equations (1a)–(1d). The
Sampling subroutine generates, from Mj , a single instance
of the optimization problem, assigning a value to nj(x, y)
for every x ∈ Xj , y ∈ Yj and a value to vj . In the
present paper, we propose two novel Bayesian approaches,
namely AdComB-TS and AdComB-BUCB, taking inspira-
tion from the Thompson Sampling (TS) algorithm (Thomp-
son 1933) and the BayesUCB algorithm (Kaufmann, Cappé,
and Garivier 2012), respectively. We resort to the Bayesian
approach since, in most of the bandit scenarios, it leads to
better performance than that one of their frequentist coun-
terparts, see, e.g., (Chapelle and Li 2011; Granmo 2010;
May et al. 2012; Paladino et al. 2017).

The AdComB-TS algorithm generates the values for
nsat
j (x) and csatj (x) by drawing samples from the posterior

distributions provided by the GPs. More formally, at a given
day t for each bid in x ∈ Xj,t, we draw a sample for nsat

j (x)

and a sample for csatj (x) as follows:

nsat
j (x) ∼ N (μj,t−1(x), σ

2
j,t−1(x)),

csatj (x) ∼ N (ηj,t−1(x), s
2
j,t−1(x)),

where ηj,t−1(x) and s2j,t−1(x) are the mean and the variance
for bid x, respectively, estimated by the GP modeling csatj (x)

(we recall that the definitions of μj,t−1(x) and σ2
j,t−1(x) are

7The computation cost of the proposed solution can be dramat-
ically reduced by using an alternative, but much more involved, so-
lution where the inverse of the Gram matrix K(x̂j,t−1, x̂j,t−1)

−1

is stored and updated iteratively at each day; see (Bishop 2006).

provided in the previous section). Similarly, for the value per
click we draw a new sample:

v̂j ∼ N (νj,t−1, φ
2
j,t−1).

Conversely, the AdComB-BUCB algorithm generates
samples for nsat

j (x) and csatj (x) exploiting different time-
varying quantiles of the posterior distributions. More pre-
cisely, we use a high quantile (of order 1 − 1

t ) for nsat
j (x)

and vj and a low quantile (of order 1
t ) for csatj (x). This as-

sures us to generate optimistic bounds, that are necessary
for the convergence of the algorithm to the optimal solution.
Let us denote with q(μ, σ2, p) the quantile of order p of a
Gaussian distribution with mean μ and variance σ2. At day
t, for each bid x ∈ Xj,t, we generate samples for nsat

j (x)

and csatj (x) as:

nsat
j (x) = q

(
μj,t−1(x), σ

2
j,t−1(x), 1−

1

t

)
,

csatj (x) = q

(
ηj,t−1(x), s

2
j,t−1(x),

1

t

)
,

assuring that nsat
j (x) is a high-probability upper bound

for the maximum number of clicks and csatj (x) is a high-
probability lower bound for the maximum costs. Similarly,
for the value per click vj we assign:

v̂j = q

(
νj,t−1, φ

2
j,t−1, 1−

1

t

)
.

Finally, given the values for nsat
j (x) and csatj (x) gener-

ated by one of the two aforementioned methods, we compute
nj(x, y) as prescribed by Equation (2) for each x ∈ Xj,t and
for each y ∈ Yj,t.

Optimize Subroutine

Finally, we need to decide a single bid/budget pair to set
at day t for each subcampaign Cj . We resort to a modified
version of the algorithm in (Kellerer, Pferschy, and Pisinger
2004) used for the solution of the knapsack problem. For the
sake of simplicity, let us assume we set an evenly spaced
discretization Y of the daily cumulative budget yt and that
the feasible values for the budget are a subset of such a dis-
cretization, i.e., Yj,t ⊆ Y, ∀j, t. At first, for each value of
budget y ∈ Yj,t we define zj(y) ∈ Xj,t as the bid maximiz-
ing the number of clicks, formally:

zj(y) := arg max
x∈Xj,t

nj(x, y).

The value zj(y) is easily found by enumeration. Then, for
each value of budget y ∈ Y we define wj(y) as the value we
expect to receive by setting the budget of subcampaign Cj

equal to y and the bid equal to zj(y), formally:

wj(y) :=

{
v̂j nj(zj(y), y) y

j,t
≤ y ≤ yj,t

0 y < y
j,t

∨ y > yj,t
.

This allows one to discard x from the set of the variables
of the optimization problem defined in Equations (1a)–(1d),
letting variables y the only variables to deal with.
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Finally, the optimization problem is solved in dynamic
programming fashion. We use a matrix M(j, y) with j ∈
{1, . . . , N} and y ∈ Y . We fill iteratively the matrix as fol-
lows. Each row is initialized as M(j, y) = 0 for every j and
y ∈ Y . For j = 1, we set M(1, y) = w1(y) for every y ∈ Y ,
corresponding to the best budget assignment for every value
of y if the subcampaign Cj were the only subcampaign in
the problem. For j > 1, we set for every y ∈ Y :

M(j, y) = max
y′∈Y,y′≤y

{
M(j − 1, y′) + wj(y − y′)

}
.

That is, the value in each cell M(j, y) is found by scan-
ning all the elements M(j − 1, y′) for y′ ≤ y, taking the
corresponding value, adding the value given by assigning a
budget of y − y′ to subcampaign Cj and, finally, taking the
maximum among all these combinations. At the end of the
recursion, the optimal value of the optimization problem can
be found in the cell corresponding to maxy∈Y M(N, y). To
find the optimal assignment of the budget, it is sufficient to
also store the partial assignments of the budget correspond-
ing to the optimal value. The complexity of the aforemen-
tioned algorithm is O(NH2), i.e., it is linear in the number
of subcampaigns N and quadratic in the number of different
values of the budget H := |Y |, where | · | is the cardinal-
ity operator. (Let us observe that, although the complexity
is polynomial in H , it is pseudopolynomial in yj,t.) When
H is huge, the algorithm could require a long time. In that
case, it is sufficient to reduce H by rounding the values of
the budget as in the FPTAS of the knapsack problem. This
produces a (1− ε)-approximation of the optimal solution.

Experimental Evaluation

We experimentally evaluate our algorithm both in a synthetic
setting, necessary to evaluate the convergence and the regret
of our algorithm, and in a real-world setting, necessary to as-
sess its effectiveness when compared with the performance
of human experts.

Evaluation in the Synthetic Setting

The synthetic setting we use has been generated according to
data of the Yahoo! Webscope A3 dataset using the simulator
developed by Farina and Gatti (2017).

Experiment 1. We consider N = 4 subcampaigns, each
with a variable number of daily auctions drawn from �z

with z ∼ N (1000, 10). Each auction presents 5 slots and
10 advertisers. Each subcampaign is associated with a dif-
ferent truncated Gaussian distribution that is used at every
day t to draw the bid of each ad, while, in the same way,
the ads’ click probability is drawn from a Beta distribution;
see (Farina and Gatti 2017) for details. We set a constant cu-
mulative budget per day yt = 100 over a time horizon of
T = 100 days, with limits y

j,t
= 0, yj,t = 100 for every

t, j, and we set bid limits to xj,t = 0 and xj,t = 1 for every
t, j. Furthermore, we use an evenly spaced discretization of
|Xj | = 5 bids and |Yj | = 10 budgets over the aforemen-
tioned intervals. The values per click of each subcampaign
are constant—thus letting the clicks to be the only source of
randomness—and drawn uniformly from [0, 1]. We assume a

uniform distribution of the clicks over the day, thus the func-
tion d(·, ·) has the following expression (r̃j,h is expressed in
hours):

d(r̃j,h, ñj,h) :=
24

r̃j,h
ñj,h.

We compare the AdComB-TS and AdComB-BUCB al-
gorithms with:8

• AdComB-2D-TS, a version of AdComB using a single
GP over the two dimensional bid/budget space to estimate
the number of clicks (see the Supplemental Material);

• AdComB-Mean, a version of AdComB selecting at each
day the average values μj,t−1(x) and ηj,t−1(x) for bid x
and νj,t−1 to be used in the optimization procedure.

For the GPs used in the algorithms, we adopt a squared ex-
ponential kernel of the form:

k(z, z′) := σ2
f exp

{
− (z − z′)2

l

}
,

where σf , l ∈ R
+ are kernel parameters, whose values are

chosen as prescribed by the GP literature, see (Rasmussen
and Williams 2006) for details.

In addition to the pseudo regret Rt(U), we also evaluate
the instantaneous reward which is defined as:

Pt(U) :=
N∑
j=1

vjnj(x̂j,t, ŷj,t).

We average the results over 100 independent runs.
In Fig. 2a, we report Pt(U) of the 4 algorithms, while, in

Fig. 2b, we report their average Rt(U). By inspecting the
instantaneous reward, we can see that all the algorithms but
AdComB-Mean present a slightly varying reward even at
the end of the of the time horizon since they incorporate
the variance of the GP as information to select the budget
over time. This variance is larger at the beginning of the
process, thus incentivising exploration, and it fades as the
number of observations increases, allowing the algorithm to
reach the optimum asymptotically. Moving to Fig. 2b, we
observe that the 2 Bayesian algorithms, namely AdComB-
TS and AdComB-BUCB, present essentially the same per-
formance, providing the best regret for every t ≤ T . For
t ≤ 20 the regret of AdComB-Mean is essentially the same
one of the 2 Bayesian algorithms. Instead, for larger values
of t its relative performance worsens reaching, at t = 100,
a regret about 35% larger than the one of the AdComB-
BUCB algorithm. This is because the exploration performed
by AdComB-Mean is not sufficient. As a result, in all the
runs, AdComB-Mean does not change the policy for, ap-
proximately, t ≥ 40 and, in some of the 100 independent
runs, it gets stuck in a suboptimal solution, as we can ob-
serve in Fig. 2a. Conversely, the 2 Bayesian algorithms,

8The comparison with the algorithm by Chen, Wang, and
Yuan (2013)—in a version accounting for Gaussian distributions—
is unfair. Indeed, this algorithm requires 50 days to have a single
sample per random variable, and, for all t ≤ T , it purely explores
the space of arms without any form of exploitation.
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Figure 2: Results for the synthetic setting: instantaneous reward of Experiment 1 (a), pseudo regret over time for Experiment
1 (b), pseudo regret at the end of the time horizon for Experiment 2 (c) and Experiment 3 (d). The optimum value of the
instantaneous reward G∗ is represented with a dashed line in (a).

thanks to a wider exploration, converge to the optimal solu-
tion asymptotically in all the runs (the phenomenon is more
evident on a longer time horizon, see the Supplemental Ma-
terial). Finally, we observe that AdComB-2D-TS suffers
from a larger regret than that one of the other 3 algorithms—
more than 100% compared with the regret of AdComB-TS
and AdComB-BUCB at t = 100—and this is mainly accu-
mulated over the first half of the time horizon.

Experiment 2. The experimental setting is the same used
above, except that we use |Xj | ∈ {5, 10, 20}, s.t. the set
of bids we used Xj with |Xj | = 20 includes Xj with
|Xj | = 10 that, in its turn, includes Xj with |Xj | = 5.
In Fig. 2c we report the average RT (U) of the 4 algorithms.
Even if increasing the number of bid values may allow one
to increase the value of the optimal solution, we observe
that the regret slightly increases as |Xj | increases for the
AdComB-TS and AdComB-2D-TS algorithms. This is be-
cause the algorithms pays a larger exploration cost. Remark-
ably, the extra cost from |Xj | = 10 to |Xj | = 20 is small.
This result shows that the performance of the algorithms is
robust to an increase of the number of possible bids.

Experiment 3. The experimental setting is the same used
in the Experiment 1, except that N ∈ {3, 4, 5, 6}. In Fig. 2d,
we report the average regret RT (U) of the 4 algorithms. All
the algorithms (except AdComB-2D-TS) do not suffer from
a significant increase in the regret as the number of the sub-
campaigns increases, showing that they scale well as the
number of subcampaigns increases.

Evaluation in a Real-world Setting

We advertised a campaign for a loan product of a large Ital-
ian finance company with the AdComB-TS algorithm (the
names of the product and the company, and other details
omitted below are not provided due to reasons of indus-
trial secrecy). The advertising campaign was composed of
N = 13 subcampaigns. The campaign has been advertised
for T = 120 days (4 months) in 2017 during which no
further advertising campaigns (e.g., video, radio, television)
were conducted to avoid mutual effects between the cam-
paigns. The 4 months during which the experiments have
been conducted were chosen in such a way, according to past
observations, the click behaviour of the users was as homo-

geneous over time as possible. During the first 2 months, the
bid/budget optimization has been performed by human ex-
perts, leading to an average of 350 acquisitions per month
with an average cost per acquisition of about 83 e. After the
first 2 months, the optimization has been performed by the
AdComB-TS algorithm in a completely automated fashion.
The goal of the company was to reduce the cost per acquisi-
tion, given that the cost of 104 e was considered excessively
large, keeping the same number of acquisitions per month
obtained during the first 2 months. We used a discretization
of 5 e for the budget values and 0.10 e for the bid values.
The algorithm, implemented in Python 2.7.12 and executed
on Ubuntu 16.04.1 LTS with an Intel(R) Xeon(R) CPU E5-
2620 v3 2.40GHz, was used at the midnight of each day to
decide the bid/budget pairs for the next day. The maximum
computation time of the algorithm during the 2 months was
less than 1 minute. During the 2 months AdComB-TS was
executed, it obtained 353 conversions with an average cost
per acquisition of about 56 e. More precisely, in the first
month the algorithm was used, the cost per acquisition was
about 62 e, while, in the second one, about 50 e. Thus, the
average reduction of the cost per acquisition during the first
month of execution of the algorithm has been about 25%,
while during the second one about 40%.

Conclusions and Future Works

In the current paper, we present AdComB, an algorithm ca-
pable of deciding automatically the values of the bid and
the budget to set in an advertising campaign to maximize
in online fashion the value of the campaign given a spend-
ing plan. The algorithm exploits Gaussian Processes to es-
timate the users’ model, combinatorial bandit techniques to
address the exploration/exploitation dilemma, and optimiza-
tion techniques to solve a knapsack-like problem. We pro-
pose two flavours of the algorithm, namely AdComB-TS
and AdComB-BUCB, differing for the criterion used for the
bandit choice. Experiments on both a realistic synthetic set-
ting and real-world setting show that our algorithms tackle
the problem properly, outperforming other naive algorithms
based on existing solutions and the human expert.

As future work, we plan to study the theoretical properties
of the pseudo regret of our algorithm, as well as the study of
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techniques to provide a proper setup of the subcampaigns.
While in the present work we assume that the environment,
including the users and the other advertisers, is stationary
over time, we will investigate non-stationary environments,
e.g., including in the model the option that there exists peri-
odicity in the user behaviour, as well as some sudden change
due the modification of the competitors marketing policy.
Moreover, another interesting line of research is to design
methods to set up the subcampaigns and possibly modify
their targeting over time, basing on their performance.
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