
Distance-Sware DAG Embedding for
Proximity Search on Heterogeneous Graphs

Zemin Liu,1 Vincent W. Zheng,2 Zhou Zhao,1 Fanwei Zhu,3∗
Kevin Chen-Chuan Chang,4 Minghui Wu,3 Jing Ying1

1 Zhejiang University, China; 2 Advanced Digital Sciences Center, Singapore;
3 Zhejiang University City College, China; 4 University of Illinois at Urbana-Champaign, USA

{liuzemin,zhaozhou}@zju.edu.cn, wenchenzheng@gmail.com, kcchang@illinois.edu, {zhufw,mhwu,yingj}@zucc.edu.cn

Abstract

Proximity search on heterogeneous graphs aims to measure
the proximity between two nodes on a graph w.r.t. some se-
mantic relation for ranking. Pioneer work often tries to mea-
sure such proximity by paths connecting the two nodes. How-
ever, paths as linear sequences have limited expressiveness
for the complex network connections. In this paper, we ex-
plore a more expressive DAG (directed acyclic graph) data
structure for modeling the connections between two nodes.
Particularly, we are interested in learning a representation
for the DAGs to encode the proximity between two nodes.
We face two challenges to use DAGs, including how to ef-
ficiently generate DAGs and how to effectively learn DAG
embedding for proximity search. We find distance-awareness
as important for proximity search and the key to solve the
above challenges. Thus we develop a novel Distance-aware
DAG Embedding (D2AGE) model. We evaluate D2AGE on
three benchmark data sets with six semantic relations, and we
show that D2AGE outperforms the state-of-the-art baselines.
We release the code on https://github.com/shuaiOKshuai.

Introduction

Semantic proximity search is an important task on heteroge-
neous networks (Sun et al. 2011; Fang et al. 2016). Given
a node in the network as the query, it ranks other nodes ac-
cording to some semantic relation. For example, in Fig. 1(a),
we can take a user (e.g., Alice) as a query, and ask “who are
her schoolmates?” As the answer, we shall rank Bob higher
than the other users since he and Alice both attend UCLA.
Such semantic proximity search empowers many applica-
tions such as link prediction, circle suggestion and so on.
Pioneer work often tries to measure the semantic proxim-

ity by paths connecting two nodes (Jeh and Widom 2003;
Backstrom and Leskovec 2011; Shi et al. 2017). Take mea-
suring the schoolmate proximity between Alice and Chris
in Fig. 1(a) as an example. A popular approach is to prede-
fine the relation with some meta-path patterns (e.g., “user-
college-user”), and then count the number of meta-path in-
stances between Alice and Chris (Sun et al. 2011). To avoid
engineering such meta-path patterns, recent work adopts a

∗Corresponding author : Fanwei Zhu
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Alice
(user)

Emily
(user)

UCLA
(college)

L.A.
(location)

Google
(employer)

Bob
(user)

Frances
(user)

Chris
(user)

Facebook
(employer)

Donna
(user)

Apple
(employer)

Glen
(user)

UIUC
(college)

(a) Input heterogeneous graph.

Alice Bob UCLA Alice Bob Chris

Alice Frances L.A. Apple Donna Chris Bob

Alice Frances L.A. Apple Bob Chris

(b) Sampled paths.

Bob

UCLA

Apple L.A. Donna

Alice Chris

Frances

(c) DG with cycles.

Bob

UCLA

Apple L.A. Donna

Alice Chris

Frances

(d) DAG without cycles.

Figure 1: Proximity embedding with different structures.

representation learning approach to first sample paths be-
tween Alice and Chris, and then embed them as a low-
dimensional vector for further computing the proximity (Liu
et al. 2017). Despite the success of these prior methods,
paths are simply linear sequences, thus having limited ex-
pressiveness for the complex network connections.
In this paper, we exploit DAGs (directed acyclic graphs)

to model the connecting structure between two nodes, and
aim to embed the DAGs as a low-dimensional representation
for enabling proximity estimation. Next we motivate why we
choose DAGs. Let us start with discussing the implications
of using paths in Fig. 1(b). On the one hand, the paths are
directional. This coincides with the intuition of modeling
proximity from one node to another. Thus we are looking
for a directional structure to model the proximity. On the
other hand, the paths are limited in expressiveness. Model-
ing each path independently and aggregating them later does
not fundamentally address this limitation. Thus we are also
looking for a richer structure than paths. In all, we arrive at
the choice of using DGs (directed graphs) to model the con-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

2355

nections from one node to another. However, DGs can have
cycles, which are not ideal for the proximity search task.
For example, consider an example DG between Alice and
Chris in Fig. 1(c). In practice, Alice can get to know Chris
through she knowing a schoolmate Bob and Bob knowing
Chris personally. Having an extra cycle among Alice, Bob
and UCLA can make the distance between Alice and Chris
becomes longer, thus weaker to explain their relation. Be-
sides, cycles are not preferred for inference by probabilistic
graphical models (Koller and Friedman 2009), thus not suit-
able for our representation learning as well.
It is not trivial to consider DAGs for proximity search.

Firstly, we have to consider the distance awareness in DAG
embedding. There are a handful of RNNs (recurrent neu-
ral network) that try to model DAGs for different appli-
cations; e.g., (Shuai et al. 2016; Bianchini et al. 2005) for
scene labeling, (Baldi and Pollastri 2003) for protein struc-
ture prediction, and (Zhu, Sobhani, and Guo 2016) for se-
mantic compositionality. These models are not designed for
proximity search, thus all overlooking the distance aware-
ness in DAG embedding. Specifically, for a DAG, when
combining the outputs of the predecessor nodes as the input
of the successor, different predecessors should have varying
contributions for a target relation due to their varying dis-
tances from the start node. For example, consider a DAG
in Fig. 1(d). Chris’ predecessors are Bob and Donna. The
distance from the start node Alice to Bob is much shorter
than that to Donna. Thus the connection between Alice and
Bob is stronger than that between Alice and Donna. When
combining the embedding of Bob and Donna as the inputs
for Chris, we have to discriminate them by their own dis-
tance from the start node. Note that such distance-awareness
can happen at any node in the DAG with multiple predeces-
sors. Secondly, we have to consider the efficiency in online
generating DAGs. A straightforward approach to generate a
DAG from a start node q to an end node v on a graph is to
use BFS (Breadth First Search), starting from the start node
q. However, running BFS on the whole graph is expensive,
taking anO(|V |+|E|) complexity with V andE as the node
set and edge set respectively. It is costing in the online stage
for new query nodes to compute their DAGs.
We propose a novel D2AGE (Distance-aware DAG Em-

bedding) model to address the challenges for proximity em-
bedding. To address the first challenge of distance-aware
DAG embedding, our insight is to introduce a recursive dis-
tance discount mechanismwhen embedding the DAGs. That
is, for each node v in a DAG, we assign different weights
to its different predecessors w.r.t. their distances from the
start node. Generally, the further v is from the start node, the
weaker their connection is. Thus for each node, we design
the weights, such that the longer a distance is, the smaller
its weight is. To address the second challenge of DAG gen-
eration, our insight is two-fold. On the one hand, sampling
paths is much more efficient, and can be done offline. On
the other hand, they can be easily assembled into more com-
plex structures such as DGs. As we can control the number
of paths to assemble for two nodes and the length of these
paths, we guarantee the induced DGs to have a constant
graph size. Thus running BFS on such a small DGs to gen-

erate DAGs is easy. Based on the above insights, in D2AGE,
we first sample paths as an approximation for the whole
graph, then feed them to a distance-aware DAG generation
mechanism to output DAGs and node distances. Secondly,
we develop a D2AG-LSTM (Distance-aware DAG-LSTM)
model to recursively apply the distance discounts from mul-
tiple predecessors in DAG embedding. Thirdly, given the
training supervision, we devise an end-to-end solution.
We summarize our contributions as follows. Firstly, we

exploit a rich structure of DAGs for proximity embedding,
and take the task-specific distance awareness requirement
into consideration. Secondly, we propose a novel D2AGE
model, which uses a distance-aware DAG generation mech-
anism to efficiently generate DAGs with distances, and a re-
cursive distance discount mechanism to effectively enable
D2AG-LSTM. Finally, we conduct extensive experiments
on six semantic relations from three benchmark datasets, and
show our method outperforms the state-of-the-art baselines.

Related Work
Earlier work for proximity search, such as SimRank (Jeh and
Widom 2002) and Personalized Pagerank (Jeh and Widom
2003), only considers homogeneous graph, and does not
differentiate semantic relations. Some recent studies han-
dle heterogeneity. Supervised Random Walk (SRW) (Back-
strom and Leskovec 2011) assigns different edge weights
to bias the random walk for different relations. Meta-path
Proximity (MPP) (Sun et al. 2011) uses predefined path pat-
terns to indicate a relation and counts the number of path
instances to measure the proximity. Meta-graph Proximity
(MGP) (Fang et al. 2016; Jiang et al. 2017; Zhao et al. 2017),
as a richer structure, upgrades the path patterns to frequent
subgraph patterns. Recent work uses graph embedding to do
link prediction and proximity search; e.g., Deepwork (Per-
ozzi, Al-Rfou, and Skiena 2014), LINE (Tang et al. 2015),
node2vec (Grover and Leskovec 2016), and more (Zheng et
al. 2016; Nie, Zhu, and Li 2017; Nikolentzos, Meladianos,
and Vazirgiannis 2017). They usually learn an embedding
for each node based on the network structure (Cai, Zheng,
and Chang 2017). Such node embedding can be aggregated
for proximity score estimation. ProxEmbed (Liu et al. 2017)
considers node embedding as an indirect way to learn the
proximity embedding. Instead, it expresses the connections
between two nodes as a set of sampled paths, and encodes
them into a vector by LSTM (Hochreiter and Schmidhuber
1997). Compared with the above methods, our D2AGE is
first of all a representation learning method, which is differ-
ent from MPP and MGP. Besides, we exploit DAG, which
has a richer structure than paths used in MPP and Prox-
Embed. Although MGP also considers a richer structure of
meta-graphs, they rely on subgraph pattern mining, which
is generally NP-hard (Ullmann 1976). Thus MGP models
have to deal with only small-size meta-graphs, which limit
their performance. Though metapath2vec (Dong, Chawla,
and Swami 2017) suggests to sample useful paths by meta-
paths, these meta-paths need to be predefined, and the sam-
pled structures are still paths.
Multiple types of data structures have been explored in

the recent neural network models. Tree-structured RNN are

2356

considered in natural language processing, such as DT-RNN
(Socher et al. 2014), tree-LSTM (Tai, Socher, and Manning
2015) and RNNG (Dyer et al. 2016). There are a handful
of RNNs designed for DAGs in various applications, such
as (Shuai et al. 2016; Bianchini et al. 2005) in image mod-
elling, (Baldi and Pollastri 2003) in protein structure pre-
diction. Then, to model semantic compositionality in NLP,
DAG-LSTM (Zhu, Sobhani, and Guo 2016) is introduced.
Compared with the above methods, we have two major dif-
ferences: 1) we consider DAG embedding, in contrast with
the tree embedding (tree is a special kind of DAG). 2) we
consider DAG embedding for a different application on se-
mantic proximity search, which has to enforce the distance
awareness in modeling. It is hard to apply the existing DAG-
RNNs, which often customize themselves for certain appli-
cations and do not consider distance awareness, to our task.

Problem Formulation

As our task is proximity search on a heterogeneous graph,
we first provide a definition for heterogeneous graph:
Definition 1 G = (V,E, S, τ) is a heterogeneous graph,
where V is the set of nodes, E is the set of edges between
nodes, S is the set of node types, and τ : V → S is the map
from a node to a type.
For example, in Fig.1(a), we have S = {“user”, “college”,
“location”, “employer”}, and τ (Alice) = “user”, τ (UCLA)
= “college”, τ (L.A.) = “location”, τ (Apple) = “employer”.
As input, we are given a heterogeneous graph G and a

set of training tuples T = {(qi, ai, bi)|i = 1, ...,m} for a
certain relation. Here, qi is a query node, and it is closer
to candidate node ai than bi. As output, we get a proximity
embedding vector for each (qi, ai) and (qi, bi). Formally, we
denote the proximity embedding between a query node q and
a target node v as f(q, v) ∈ Rd, where d is the dimension
of embedding. For symmetric relation we have f(q, v) =
f(v, q), while for asymmetric f(q, v) �= f(v, q). Then we
estimate a proximity score for each f(q, v) as:

π(q, v) = θT f(q, v). (1)

where θ ∈ Rd is a parameter vector. Finally, for a training
tuple (qi, ai, bi), we can evaluate its ranking loss by their
corresponding proximity score π(qi, ai) and π(qi, bi).

D2AGE as an End-to-End Solution

Our training objective is to learn both the parameter θ and
a proximity embedding model to embed each (qi, ai) and
(qi, bi) in T as f(qi, ai) and f(qi, bi), such that the ranking
loss on π(qi, ai) and π(qi, bi) is minimized. Specifically, we
define the ranking loss for each training tuple (qi, ai, bi) as:

�(qi, ai, bi) = − log σμ(π(qi, ai)− π(qi, bi)), (2)

where σμ(x) = 1/(1+e−μx) is a sigmoid function, and μ is
a trade-off parameter. Guided by this ranking loss, we pro-
vide supervision for the proximity embedding, thus having
an end-to-end solution for the ultimate semantic proximity
search task. The main technical challenges of this work are
about how to learn a proximity embedding for the connect-
ing structure of each (q, v) as f(q, v). As motivated earlier,

we plan to represent the connecting structure of (q, v) with a
set of DAGs, and then use a distance-aware DAG embedding
model to map these DAGs together into f(q, v). To achieve
this, we need to answer two questions: 1) how to generate
DAG, in an efficient manner for a pair of nodes? 2) how to
embed DAGs, in an effective manner with distance aware-
ness? In the next two sections, we answer them one by one.

Distance-aware DAG Generation
In semantic proximity search, we often need to online esti-
mate proximity scores for some query nodes with their can-
didates. Running BFS over the whole graph G to get DAGs
for two nodes is computationally prohibitive. We have to
come up with some efficient realization to pre-index the net-
work structure and online quickly assemble our structure in-
dices to generate the connections between two nodes. In this
paper, we exploit the idea of sampling paths as the structure
index and online assembling them into DAGs.
Path Sampling. To index the network structure of G, we
use random walks to sample paths on G. For each node, we
sample t paths, each of length �. In total, we have |V |t paths
about the graph, and we denote them asP . Given the training
tuples T = {(qi, ai, bi)|i = 1, ...,m}, for each query node
q ∈ {q1, q2, ..., qm} and a corresponding candidate node
v ∈ {a1, ..., am, b1, ..., bm}, we truncate the paths from P
to extract all the sub-paths that start from q and end at v, or
start from v and end at q. For symmetric relations, we denote
both the sub-paths from q to v and the sub-paths from v to
q as P(q, v). For asymmetric relations, we denote only the
sub-paths from q to v as P(q, v).
Path Assembling. Given a pair (q, v) and its sampled paths
P(q, v), we assemble the paths inP(q, v) to generate DAGs.
We denote the generated DAGs from q to v as D(q, v). Note
that a trivial assembling of paths result in DGs with possible
cycles. For example, the DG in Fig. 1(c) is the assembling
result of the paths in Fig. 1(b). Thus we have to come up
with an approach to assemble paths, while avoiding cycles.
Our intuition is to order the nodes in the paths with different
integer IDs, such that only a node with smaller ID can have
a directional link to another node with larger ID. As a result,
the directed graphs are guaranteed to be cycle-free. Besides,
since distance awareness is important for DAG embedding
later, we also want to estimate the “distance” from the start
node q to each other node in the DAG. Although it is possible
to compute such distances on a DAG after constructing it,
we choose to take a BFS-like graph traversal approach to
construct a DAG and estimate the distances simultaneously.
Next we use a running example to explain in details how

we construct a DAG and estimate the distances from a start
node to a candidate node on a DAG. In Fig. 2(a), we con-
sider constructing a DAG with start node a to end node e.
Thanks to the path sampling earlier, we have extracted the
sub-paths P(a, e) = {p1, p2, p3}. We will start with a, and
try to add in its neighbors with directed edges, while avoid-
ing cycles. When a’s neighbors are added in, we will con-
tinue to iteratively add their neighbors as well to grow the
DAG. To record the neighbors of each node, we compile an
adjacency list for each node v as v.adj. For example, since
we observe a → d and a → b sequentially in p1 and p2, we

2357

P(a, e) =

a d e

a b d e

a d b c e

E(a, e) =

a

d

b

c

d b

e b

d c

e

a
b c

e
d

(0,0)

(1,1)

a
b c

e
d

(0,0)

(1,1)

(2,1)

a
b c

e
d

(0,0)

(1,1)

(2,1)

(3,2)

a
b c

e
d

(0,0)

(1,1)

(2,1)

(3,2)
a

b c

e
d

(0,0)

(1,1)

(2,1)

(3,2)

a
b c

e
d

(0,0)

a
b c

e
d

(0,0)

(1,1)

(2,1)

(3,2)

(4,2)

a
b c

e
d

(0,0)

(1,1)

(2,1)

(3,2)

(4,2)

(a) (b)

(1) (2) (3) (4)

(5) (6) (7) (8)

aQ: dQ: dQ: b bQ: e

bQ: eQ: Q: e Q:e c

p1:

p2:

p3:

Figure 2: A running example for DAG generation.

add d and bwith the same order to a.adj. We keep all the ad-
jacency lists to E(a, e). To avoid cycles, we assign each node
v with an integer ID v.id ≥ 0. To record the distance from
v to q, we also assign an integer distance score v.dist ≥ 0.
Initally, we set all the nodes v in P(a, e) with v.id = −1
and v.dist = −1. Finally, to iteratively add nodes and their
directed neighbors for expanding the DAG, we maintain a
queue Q, which is initialized as ∅.
In Fig. 2(b-1), we first Enqueue(Q, a), and start from

a with a.id = 0 and a.dist = 0, denoted as (0, 0). In
Fig. 2(b-2), we try to add a’s neighbors one by one, by first
Enqueue(Q, d). Since d has never been visited in this DAG
and so far only a is in this DAG, we assign a new ID to
d, with d.id = 1. To avoid cycles, we require that an edge
can be added, if it is from a smaller-ID node to a larger-ID
node. As d.id > a.id, we add a → d to D(a, e). Thus, we
update d.dist = 1. According to a.adj, a’s next neighbor
is b, thus in Fig. 2(b-3) we Enqueue(Q, b). Similarly, since
b is never visited, we set b.id = 2, add a → b to D(a, e)
and thus update b.dist = 1. Now we have visited all a’s
neighbors, thus we start to explore its neighbors’ neighbors.
We Dequeue(Q, d), and get d.adj. In Fig. 2(b-4), for d’s
first neighbor e, since is not visited yet, we Enqueue(Q, e),
then similarly set e.id = 3, add d → e to D(a, e) and
update e.dist = 2 (i.e., two hops from a). In Fig. 2(b-5),
we consider d’s second neighbor b, which has been visited.
Since d.id < b.id, we can add d → b without causing a cy-
cle. Next, in Fig. 2(b-6), we Dequeue(Q, b), and get b.adj.
Since b’s first neighbor is d but d.id < b.id, adding an edge
b → d (shown as a red dot arrow) can cause a cycle. Thus we
add nothing in this step. Then we move on to visit b’s next
neighbor c in Fig. 2(b-7) and finally completing the DAG in
Fig. 2(b-8) after visiting all the possible nodes.
Remark: as we can see, the resulting directed graph in
Fig. 2(b-8) is cycle-free, thanks to the constraint of hav-
ing only directed edges from smaller-ID nodes to larger-ID
nodes. Besides, we note that, if the paths in P(a, e) are or-
dered differently, our solution will order the nodes, as well
as their adjacency lists, differently. Thus, we may have dif-
ferent DAGs. In practice it is not ideal to use one single DAG
to represent the connections between two nodes, thus we
recommend shuffling P(a, e) to generate multiple DAGs. In

Algorithm 1 Distance-aware DAG Generation
Require: graph G, start node q, end node v, paths P(q, v).
Ensure: a DAGD(q, v), {u.dist} for all u’s inD(q, v) to q.
1: D(q, v) = ∅; Q = ∅; latestID = 1;
2: q.id = 0; q.dist = 0; Enqueue(Q, q);
3: Shuffle(P(q, v));
4: for all path p ∈ P(q, v) do
5: for all directed edge a → b in p do
6: a.id = −1, b.id = −1, a.dist = −1, b.dist = −1;
7: Append(a.adj, b);
8: while Q �= ∅ do
9: curNode ← Dequeue(Q);
10: for all node a ∈ curNode.adj do
11: if a.id �= −1 then
12: if a = v or curNode.id < a.id then
13: Append(D(q, v), curNode → a);
14: else
15: a.id = latestID ++;
16: a.dist = curNode.dist+ 1;
17: Enqueue(Q, a);
18: Append(D(q, v), curNode → a);

our experiments, we shuffle |P(a, e)| × η times, and we find
0.05 ≤ η ≤ 0.2 works empirically well.
We formalize our above solution in Alg.1. In line 3, we

shuffle the paths in P(q, v). In lines 4–7, we initialize the
ID, distance and adjacency list for each node in P(q, v).
In lines 8-18, we maintain a queue to visit all the nodes
for DAG expansion. As illustrated ealier, we visit the nodes
sequentially, and add directed edges only from smaller-ID
nodes to larger-ID ones. For each (q, v) pair, Alg.1 takes a
BFS-like traversal approach, thus it only visits P(q, v) for a
constant number of times. Then the complexity of Alg.1 is
O(|P(q, v)|). In practice, we can control the size of P(q, v),
to quickly generate DAGs for (q, v).

Distance-aware DAG Embedding

After DAG generation, we obtain a set of DAGs to ex-
press the connections between two nodes. Next, we intro-
duce how to embed these DAGs into a proximity embed-

2358

a b c d e

xa xb xc xd xe

DAG-
LSTM

DAG-
LSTM

DAG-
LSTM

DAG-
LSTM

DAG-
LSTM

hf(a, e)

distance(a)

distance(b)

distance(c)

distance(d)

Nodes
embeddings
and distance

Distance aware
DAG-LSTM

Figure 3: D2AG-LSTM.

ding vector. Becaue the DAGs are directed, we are inspired
by the previous work (Sutskever, Vinyals, and Le 2014;
Shuai et al. 2016; Zhu, Sobhani, and Guo 2016) to con-
sider recursive and recurrent networks. Particularly, to avoid
the gradient vanishing problem, we exploit an LSTM (long-
short tem memory) architecture. We propose a novel D2AG-
LSTM (Distance-aware DAG-LSTM) model to recursively
apply distance discount when embedding each DAG.
D2AG-LSTM. We use an example DAG to illustrate how
we model D2AG-LSTM. As shown in Fig. 3, D2AG-LSTM
models two parts of information: 1) the topological structure
of each DAG with node distances to the start node a; 2) the
possible feature inputs xj ∈ Rn for each node j in the DAG.
For the topological structure and the node distances, they are
provided in Fig. 2(b-8). For the feature inputs xj of node j,
we concatenate the following information: 1) node type is
a |S|-dimensional vector, where only the dimension corre-
sponding to j’s type is one and the others are zero; 2) node
degree is a scalar, indicating j’s degree in G; 3) neighbor
type distribution is a |S|-dimensional vector, where each di-
mension is the number of j’s neighbors with the correspond-
ing type; 4) neighbor type entropy is a scalar, indicating the
entropy of the type distribution for j’s neighbors.
Similar to LSTM, each of our D2AG-LSTM unit also

has an input gate i, a forget gate f , an output gate o, a
memory cell C, and a hidden state h. Different from stan-
dard LSTM, D2AG-LSTM unit may have to update its gate
vectors and memory cell states from multiple predeces-
sor units, and also distributes its memory cell states and
hidden states to multiple successor units. Besides, differ-
ent from the other DAG-RNN models (Shuai et al. 2016;
Zhu, Sobhani, and Guo 2016), D2AG-LSTM unit has to take
node distance into account. Next, we detail the computation.
• Hidden state for input: node j takes the outputs of its
possibly multiple predecessors as input. For different pre-
decessors, we consider them as contributing differently, due
to their distance differences. Generally, the larger the dis-
tance from q to j is, the weaker the connection from q to j
is. Denote the predecessors for j as Rj . Thus, in Fig. 2(b-8),
Rb = {a, d}, and Re = {c, d}. To generate hRj as the input
for unit j, we aggregate all j’s predecessors’ hidden states
hk for k ∈ Rj by max pooling with a distance discount:

hRj = maxPool({hk · e−α×k.dist : k ∈ Rj}), (3)

where parameter α > 0 trades off the distance discounts.

• Input gate: DenoteWi ∈ Rd×n, Ui ∈ Rd×d and ri ∈ Rd

as parameters. D2AG-LSTM computes the input gate as

ij = σ(Wixj + UihRj
+ ri). (4)

• Forget gate: Denote Wf ∈ Rd×n, Uf ∈ Rd×d and rf ∈
Rd as parameters. D2AG-LSTM computes the forget gate
as

fj = σ(Wfxj + UfhRj
+ rf). (5)

• Cell state: The memory cell can take the memory from
multiple predecessors as input. Thus we also use distance
discount to differentiate each predecessor. We first compute
the cell candidate value C̃j ,

C̃j = tanh(Wcxj + UchRj + rc), (6)

where Wc ∈ Rd×n, Uc ∈ Rd×d and rc ∈ Rd are param-
eters. Then, we aggregate j’s predecessors’ cell states CRj

by max pooling with distance discount:

CRj
= maxPool({Ck · e−α×k.dist : k ∈ Rj}). (7)

Now we get j’s cell state Cj as

Cj = ij ∗ C̃j + fj ∗ CRj
. (8)

• Output gate and hidden state: DenoteWo ∈ Rd×n, Uo ∈
Rd×d and ro ∈ Rd as parameters. D2AG-LSTM computes
the output gate as

oj = σ(Woxj + UohRj + ro). (9)

Finally, the output vector hj is:

hj = oj ∗ tanh(Cj). (10)

After getting the cell state Cj and the hidden state hj , node
j will distribute them to its successors. In this way, the dis-
tance discount is recursively enforced in every step of ag-
gregation with multiple predecessors. Finally, we use the
end node’s hidden state as the embedding of a DAG; i.e.,
we use he as the DAG embedding in Fig. 3. As there can
be multiple DAGs between a node pair, we further aggre-
gate all the DAGs’ embedding. Denote Υ(q, v) as the set
of DAGs for (q, v), where for asymmetric relation we have
Υ(q, v) = D(q, v), and for symmetric relation we have
Υ(q, v) = D(q, v) ∪ D(v, q). Once again, since the same
end node may have different distances to the same start node
in different DAGs, we apply distance discount to combine
DAGs. Denote the end node distance in a DAGD ∈ Υ(q, v)
as v.dist(D).

f(q, v) = maxPool({hD · e−β×v.dist(D)

, D ∈ Υ(q, v)}),
(11)

where parameter β trades off the DAGs distance discount.
Denote the parameters in D2AG-LSTM as Θ =

{θ,Wi, Ui, ri, Wf , Uf , rf ,Wc, Uc, rc,Wo, Uo, ro}. Then
we can train D2AG-LSTM by minimizing:

L(Θ) =
∑m

i �(qi, ai, bi) + λΩ(Θ), (12)

where λ is a trade-off parameter, and Ω(·) is the regular-
ization function(e.g., the sum of the l2-norm). We summa-
rize D2AG-LSTM in Alg.2. Line 1 generates training tuple

2359

Algorithm 2 Distance-aware DAG Embedding
Require: graph G, training tuples T = {(qi, ai, bi)}, pre-

computed DAGs Υ, hyper-parameters {d, α, β, μ}.
Ensure: model parameters Θ.
1: B ← GenerateBatches(T);
2: for all batch b ∈ B do
3: Initialize loss for batch b as Lb = 0;
4: for all each (qi, ai, bi) ∈ b do
5: f(qi, ai) ← D2AG-LSTM(Υ, qi, ai, α, β);
6: f(qi, bi) ← D2AG-LSTM(Υ, qi, bi, α, β);
7: Lb = Lb + �(qi, ai, bi), based on Eq. 2;
8: Lb = Lb + λΩ(Θ);
9: Update Θ based on Lb by gradient descent.

Table 1: Data sets with symmetric / asymmetric proximities.
|V | |E| |C| #(queries)

LinkedIn 65,925 220,812 4 172 (school.), 173 (collea.)
Facebook 5,025 100,356 10 340 (family), 904 (class.)
DBLP 165,728 928,513 5 2,439 (advisor), 1,204 (advisee)

batches for model training. Lines 5–6 apply D2AG-LSTM to
learn the proximity embedding for each training pair (qi, ai)
and (qi, bi). Then, line 7 estimates the ranking loss. Line 9
applies gradient descent w.r.t. the batch ranking loss. Mean-
while, the complexity of learning one DAG with n nodes is
O(nk), where k is the average node degree in the DAG. This
is because for each node j in DAG, we consider embeddings
from its k predecessors to form its input.

Experiments

Datasets. We test our model by six semantic relations
from three real world datasets. The Linkedin dataset (Li,
Wang, and Chang 2014) contains two symmetric relations:
schoolmate and colleague; the Facebook dataset (Li, Wang,
and Chang 2014) contains two symmetric relations: class-
mate and family; and the DBLP dataset (Wang et al. 2010)
contains two asymmetric relations: advisor and advisee. The
statistics of the three datasets are summarized in Table.1.

Set up. Since we are using the public benchmark data sets,
we follow the same procedure with previous work (Fang et
al. 2016) to generate our training and test data. For each se-
mantic relation, a node q is used as a query node if there
exists at least another node v such that q and v belong to
the desired type of relation in our ground truth. We ran-
domly sample 20% of queries as the training set and 80%
as the test set. We repeat this procedure for five times and
report the average performance. For each query node qi, we
construct training tuples {(qi, ai, bi)} from the ground truth,
where qi and ai belong to the desired class of relation while
qi and bi do not. For testing, we construct an ideal ranking
for each test query qj , where the ground truth nodes of qj
ranked higher than the non-ground-truth nodes or the nodes
without labels. Next, we compare the ranking generated by
our model against the ideal ranking for evaluation. NDCG
(Järvelin and Kekäläinen 2002) and MAP are adopted to
evaluate the top 10 nodes in each ranking.

Table 2: Comparison with the baselines with 100 labels.

Methods
Symmetric Asymmetric

Linkedin Facebook DBLP
school. collea. class. family advisor advisee

N
D
C
G
@
1
0

SRW 0.515 0.502 0.389 0.389 0.689 0.402
DWR 0.518 0.506 0.689 0.575 - -
MPP 0.504 0.510 0.803 0.647 - -
MGP 0.568 0.546 0.843 0.732 - -

ProxEmbed 0.652 0.606 0.851 0.743 0.765 0.405
D2AGE-α 0.669 0.626 0.824 0.747 0.760 0.405
D2AGE-β 0.658 0.571 0.374 0.495 0.764 0.391
D2AGE-αβ 0.648 0.568 0.362 0.526 0.748 0.396
D2AGE 0.678 0.639 0.856 0.765 0.779 0.417

M
A
P
@
1
0

SRW 0.272 0.289 0.324 0.255 0.630 0.294
DWR 0.391 0.369 0.575 0.455 - -
MPP 0.260 0.305 0.681 0.543 - -
MGP 0.305 0.333 0.729 0.651 - -

ProxEmbed 0.541 0.492 0.801 0.678 0.690 0.283
D2AGE-α 0.556 0.512 0.760 0.683 0.664 0.273
D2AGE-β 0.542 0.443 0.256 0.381 0.666 0.263
D2AGE-αβ 0.536 0.435 0.246 0.454 0.647 0.268
D2AGE 0.587 0.528 0.808 0.713 0.703 0.290

Heterogeneity. We consider the heterogeneity of the
graph from two aspects. Firstly, we take the node features
into consideration for each node j to form the feature vec-
tor xj . Secondly, The types of nodes in some graphs may be
unbalanced, e.g., in Facebook, there are much more “users”,
but fewer “college”. To avoid the issue of type imbalance, we
follow (Liu et al. 2017) to take the nodes types into consider-
ation when sampling paths before generating DAGs. Specif-
ically, when sampling the next node for the current node v,
instead of randomly choosing one node from v’s neighbours,
we first sample a node type from the node type(s) of v’s
neighbours, and then sample a node of the specific type.

Parameters and environment. In this work, we adopt the
paths sampling method in (Liu et al. 2017). For fair com-
parison, we feed the same set of sampled paths to both our
baselines (i.e., DWR, ProxEmbd) and our own model. In the
experiments, we set λ = 0.0001, then we tune parameters
d, α, β, μ for different datasets. We run our experiments on
Linux machines with eight 2.27GHz Intel Xeon(R) CPUs
and 32GB memory. We use java-1.8 and Theano (Team
2016) for development.

Baselines. We compare D2ADE with the following start-
of-the-art semantic proximity search baselines.

• SRW: Supervised RandomWalk (Backstrom and Leskovec
2011) learns different edge weights to bias the random walk
routes, so that the ranking order can be consistent with the
ground truth.

• DWR: DeepWalk Ranking first learns the embedding for
each node using DeepWalk (Perozzi, Al-Rfou, and Skiena
2014). After that, the proximity embedding of a node pair
is derived by applying Hadamard product on their node em-
bedding. We then optimize the loss function in Eq.2.

• MPP: Meta-path Proximity (Sun et al. 2011) uses meta-
paths between nodes to do the semantic proximity search.
We generate the meta-paths following the method in (Fang
et al. 2016).

•MGP: Meta-graph Proximity (Fang et al. 2016) uses meta-
graphs between nodes for proximity search.

2360

0.20.40.60.8

linkein-schoolmate linkedin-colleague facebook-classmate facebook-family dblp-advisor dblp-advisee

0.3

0.5

0.7

0.9

8 16 32 64 128

N
D

C
G

d

0.3

0.5

0.7

0.9

0.001 0.01 0.1 1 10

N
D

C
G

0.3

0.5

0.7

0.9

0.001 0.01 0.1 1 10

N
D

C
G

0.3

0.5

0.7

0.9

0.001 0.01 0.1 1 10

N
D

C
G

0.2

0.4

0.6

0.8

8 16 32 64 128

M
A

P

d

0.2

0.4

0.6

0.8

0.001 0.01 0.1 1 10

M
A

P

0.2

0.4

0.6

0.8

0.001 0.01 0.1 1 10

M
A

P

0.2

0.4

0.6

0.8

0.001 0.01 0.1 1 10

M
A

P

0.2

0.4

0.6

0.8

10 100 1000

N
D

C
G

#(training tuples)

0.1

0.3

0.5

0.7

0.9

10 100 1000

M
A

P

#(trainig tuples)

Figure 4: Impact of parameters: number of training tuples, dimension d, discount α, discount β, loss parameter μ

• ProxEmbed: ProxEmbed (Liu et al. 2017) uses paths be-
tween two nodes for proximity embedding.
• D2AGE-α: D2AGE without parameter α. We remove dis-
tance pooling within a DAG. We use simple max-pooling
over the predecessors outputs.
• D2AGE-β: D2AGE without parameter β. We remove dis-
tance pooling among DAGs. We use simple max-pooling
over multiple DAGs.
• D2AGE-α-β: D2AGE without parameter α and β. We
completely remove the distance awareness.We use simple
max-pooling when combining predecessors and DAGs. It is
worth noting that, this baseline can be seen as basically ap-
plying DAG-LSTM (Zhu, Sobhani, and Guo 2016) with mi-
nor changes (e.g., using max pooling instead of sum pooling)
on our generated DAGs.

DWR, MPP and MGP are designed for symmetric prox-
imity relation, and thus are not applicable for asymmetric
proximity setting. We exclude them in asymmetric relation.
For the baselines’ parameters, we use the best parameter val-
ues reported by (Fang et al. 2016). Specifically, for SRW, we
set its regularization parameter λ = 10, random walk tele-
portation parameter α = 0.2, and loss parameter b = 0.1.
We set the dimension of DWR as 128.

Comparison with baselines. In Table 2, we report the re-
sults of our method and the baselines, when using 100 ran-
domly sampled training tuples for the training queries. As
shown in the table, our approach D2AGE generally outper-
forms all the baselines. Firstly, D2AGE is better than SRW
(except MAP for advisee), which uses the random walk to
bias the route. Besides, D2AGE is better than DWR, which
takes an indirect method, showing that the indirect methods
are less effective for proximity search. Secondly, D2AGE
is better than MPP and MGP, showing that feature learn-
ing is more effective than feature engineering in proximity
search. Thirdly, D2AGE is better than ProxEmbed, show-
ing that the complex structure DAG is more effective than
the simple paths in proximity search. DAGs are more in-
formative and expressive structures, and can describe more
complex betweenness relations. Fourthly, D2AGE-α’s per-
formance is comparable with ProxEmbed’s, while D2AGE’s
performance is significantly better than ProxEmbed’s. This

implies that the improvement comes from both rich structure
and distance-aware modelling, and not simply each factor
alone. DAG, as a richer structure than path, requires proper
modelling of its structure (i.e., distance awareness inside a
DAG) to be fully useful. Once modelled properly, DAG can
greatly improve the performance. D2AGE is also better than
D2AGE-β, showing that the distance discount β used when
combining the DAG embeddings to form the final embed-
ding for the betweenness relation is pretty necessary. And
D2AGE is better than D2AGE-α-β, showing the necessity
of the distance discount inside and between DAGs.

Parameter Sensitivity. We test the robustness of our
model by varying the number of training tuples. As shown
in Fig.4, the performance is greatly improved as the num-
ber of training tuples is increased from 10 to 100 and then
the performance improvements flattens when the number of
training tuples is further increased. We also test the parame-
ter sensitivity for our model by tuning the parameters d, α,
β and μ using 100 training tuples. As we can see, for num-
ber of dimension d, when d is too small it gets worse results.
For parameter α, α = 0.1 is almost the best. When α is too
small or too large, the result becomes worse. This means the
recursive distance discount within DAG is necessary, and α
should be in an appropriate range. For parameter β, it gets
the best results when β ∈ (0.1, 1.0). This shows the neces-
sity of distance discount for each DAG by their length when
combining them. Besides, for the loss function discount pa-
rameter μ, μ = 1.0 is mostly the best. This suggests having
a moderate discount on the ranking loss.

Conclusion

In this paper, we consider the problem of semantic prox-
imity search on heterogeneous graph. We propose a novel
distance-aware DAG embedding model D2AGE, to lever-
age more complex structure DAGs between two nodes to
describe their relation. In D2AGE, we first use a distance-
aware DAG generation approach to generate the the DAGs
between two nodes; then we use a recursive distance-aware
D2AG-LSTMmodel to embed these DAGs to a vector repre-
senting the relation. With such a proximity embedding vec-
tor, we train the parameters by the given supervision. We

2361

test D2AGE on six proximity relations from three real world
datasets, and it outperforms the baselines.
In the future, we will consider the proximity search for

weighted directed graph, with deeper network models.

Acknowledgements

We thank the support from: National Natural Sci-
ence Foundation of China (No. 61502418 and No.
61602405), Zhejiang Provincial Natural Science Founda-
tion (No. LQ14F020002), Zhejiang Science and Tech-
nology Plan Project (China, No. 2015C01027), Research
Grant for Human-centered Cyber-physical Systems Pro-
gramme at Advanced Digital Sciences Center from Singa-
pore A*STAR.

References

Backstrom, L., and Leskovec, J. 2011. Supervised random
walks: predicting and recommending links in social networks.
In WSDM, 635–644. ACM.
Baldi, P., and Pollastri, G. 2003. The principled design of large-
scale recursive neural network architectures–dag-rnns and the
protein structure prediction problem. JMLR 4:575–602.
Bianchini, M.; Maggini, M.; Sarti, L.; and Scarselli, F. 2005.
Recursive neural networks for processing graphs with labelled
edges: theory and applications. Neural Networks 18(8):1040–
1050.
Cai, H.; Zheng, V. W.; and Chang, K. C.-C. 2017. A compre-
hensive survey of graph embedding: Problems, techniques and
applications. arXiv preprint arXiv:1709.07604.
Dong, Y.; Chawla, N. V.; and Swami, A. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks.
In Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 135–144.
ACM.
Dyer, C.; Kuncoro, A.; Ballesteros, M.; and Smith, N. A. 2016.
Recurrent neural network grammars. In NAACL HLT, 199–209.
Fang, Y.; Lin, W.; Zheng, V. W.; Wu, M.; Chang, K. C.-C.; and
Li, X.-L. 2016. Semantic proximity search on graphs with
metagraph-based learning. In ICDE, 277–288. IEEE.
Grover, A., and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery and
data mining, 855–864. ACM.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Comput. 9(8):1735–1780.
Järvelin, K., and Kekäläinen, J. 2002. Cumulated gain-based
evaluation of ir techniques. ACM Transactions on Information
Systems (TOIS) 20(4):422–446.
Jeh, G., and Widom, J. 2002. Simrank: a measure of structural-
context similarity. In KDD, 538–543. ACM.
Jeh, G., and Widom, J. 2003. Scaling personalized web search.
In Proceedings of the 12th international conference on World
Wide Web, 271–279. ACM.
Jiang, H.; Song, Y.; Wang, C.; Zhang, M.; and Sun, Y. 2017.
Semi-supervised learning over heterogeneous information net-
works by ensemble of meta-graph guided random walks. In
IJCAI, 1944–1950.

Koller, D., and Friedman, N. 2009. Probabilistic Graphi-
cal Models: Principles and Techniques - Adaptive Computation
and Machine Learning. The MIT Press.
Li, R.; Wang, C.; and Chang, K. C.-C. 2014. User profiling
in an ego network: co-profiling attributes and relationships. In
WWW, 819–830. ACM.
Liu, Z.; Zheng, V. W.; Zhao, Z.; Zhu, F.; Chang, K. C.-C.; Wu,
M.; and Ying, J. 2017. Semantic proximity search on heteroge-
neous graph by proximity embedding. In AAAI, 154–160.
Nie, F.; Zhu, W.; and Li, X. 2017. Unsupervised large graph
embedding. In AAAI, 2422–2428.
Nikolentzos, G.; Meladianos, P.; and Vazirgiannis, M. 2017.
Matching node embeddings for graph similarity. In AAAI,
2429–2435.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk: On-
line learning of social representations. In KDD, 701–710.
Shi, Y.; Chan, P.; Zhuang, H.; Gui, H.; and Han, J. 2017. Prep:
Path-based relevance from a probabilistic perspective in hetero-
geneous information networks. In KDD, 425–434.
Shuai, B.; Zuo, Z.; Wang, B.; and Wang, G. 2016. Dag-
recurrent neural networks for scene labeling. In CVPR, 3620–
3629.
Socher, R.; Karpathy, A.; Le, Q. V.; Manning, C. D.; and Ng,
A. Y. 2014. Grounded compositional semantics for finding and
describing images with sentences. TACL 2:207–218.
Sun, Y.; Han, J.; Yan, X.; Yu, P. S.; and Wu, T. 2011. Path-
sim: Meta path-based top-k similarity search in heterogeneous
information networks. Proceedings of the VLDB Endowment
4(11):992–1003.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
sequence learning with neural networks. In Advances in neural
information processing systems, 3104–3112.
Tai, K. S.; Socher, R.; and Manning, C. D. 2015. Improved
semantic representations from tree-structured long short-term
memory networks. In ACL, 1556–1566.
Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; and Mei, Q.
2015. Line: Large-scale information network embedding. In
WWW, 1067–1077.
Team, T. D. 2016. Theano: A Python framework for fast com-
putation of mathematical expressions. CoRR abs/1605.02688.
Ullmann, J. R. 1976. An algorithm for subgraph isomorphism.
Journal of the ACM (JACM) 23(1):31–42.
Wang, C.; Han, J.; Jia, Y.; Tang, J.; Zhang, D.; Yu, Y.; and Guo,
J. 2010. Mining advisor-advisee relationships from research
publication networks. In KDD, 203–212. ACM.
Zhao, H.; Yao, Q.; Li, J.; Song, Y.; and Lee, D. L. 2017. Meta-
graph based recommendation fusion over heterogeneous infor-
mation networks. In KDD, 635–644.
Zheng, V. W.; Cavallari, S.; Cai, H.; Chang, K. C.-C.; and Cam-
bria, E. 2016. From node embedding to community embedding.
arXiv preprint arXiv:1610.09950.
Zhu, X.-D.; Sobhani, P.; and Guo, H. 2016. Dag-structured
long short-termmemory for semantic compositionality. InHLT-
NAACL, 917–926.

2362

