
Collaborative Filtering with
User-Item Co-Autoregressive Models

Chao Du,† Chongxuan Li,† Yin Zheng,‡ Jun Zhu,∗† Bo Zhang†
†Dept. of Comp. Sci. & Tech., State Key Lab of Intell. Tech. & Sys., TNList Lab,

†Center for Bio-Inspired Computing Research, Tsinghua University, Beijing, 100084, China
‡Tencent AI Lab, Shenzhen, Guangdong, China

Abstract

Deep neural networks have shown promise in collaborative
filtering (CF). However, existing neural approaches are ei-
ther user-based or item-based, which cannot leverage all the
underlying information explicitly. We propose CF-UIcA, a
neural co-autoregressive model for CF tasks, which exploits
the structural correlation in the domains of both users and
items. The co-autoregression allows extra desired properties to
be incorporated for different tasks. Furthermore, we develop
an efficient stochastic learning algorithm to handle large scale
datasets. We evaluate CF-UIcA on two popular benchmarks:
MovieLens 1M and Netflix, and achieve state-of-the-art per-
formance in both rating prediction and top-N recommendation
tasks, which demonstrates the effectiveness of CF-UIcA.

1 Introduction

With the fast development of electronic commerce, so-
cial networks and music/movie content providers, recom-
mendation systems have attracted extensive research atten-
tion (Burke 2002; Schafer et al. 2007). As one of the most
popular methods, collaborative filtering (CF) (Schafer et
al. 2007; Billsus and Pazzani 1998; Resnick et al. 1994;
Salakhutdinov, Mnih, and Hinton 2007) predicts users’ pref-
erences for items based on their previous behaviors (rat-
ing/clicking/purchasing etc.) in a recommendation system.
CF enjoys the benefit of content-independence of the items
being recommended. Thus, it does not need expert knowl-
edge about the items when compared with content-based
methods (Van den Oord, Dieleman, and Schrauwen 2013;
Gopalan, Charlin, and Blei 2014) and could possibly provide
cross-domain recommendations.

The basic assumption behind CF is that there exist correla-
tions between the observed user behaviors, and these correla-
tions can be generalized to their future behaviors. Basically,
the correlations can be categorized as User-User Correlations
(UUCs)—the correlations between different users’ behaviors
on a same item, and Item-Item Correlations (IICs)—the cor-
relations between a user’s behaviors on different items. These
two types of underlying correlations usually exist crisscross-
ing in the partially observed user behaviors, making CF a
difficult task.

∗corresponding author.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Extensive work has studied how to effectively exploit the
underlying correlations to make accurate predictions. Early
approaches (Resnick et al. 1994; Sarwar et al. 2001) consider
UUCs or IICs by computing the similarities between users
or items. As one of the most popular classes of CF meth-
ods, matrix factorization (MF) (Billsus and Pazzani 1998;
Koren, Bell, and Volinsky 2009; Salakhutdinov and Mnih
2007) assumes that the partially observed matrix (of rat-
ings) is low-rank and embeds both users and items into a
shared latent space. MF methods consider both UUCs and
IICs implicitly as a prediction is simply the inner product
of the latent vectors of the corresponding user and item. Re-
cently, deep learning methods have achieved promising re-
sults in various tasks (Bahdanau, Cho, and Bengio 2014;
Mnih et al. 2015; Silver et al. 2016) due to their ability to
learn a rich set of abstract representations. Inspired by these
advances, neural networks based CF methods (Salakhutdinov,
Mnih, and Hinton 2007; Sedhain et al. 2015; Wu et al. 2016;
Zheng et al. 2016b), which employ highly flexible transfor-
mations to model a user’s behavior profile (all behaviors)
with a compact representation, are widely studied as alterna-
tives to MF. These methods essentially consider all UUCs
explicitly as they take inputs of users’ all observed behaviors.
(See more details in Sec. 2.)

Though previous neural networks based methods are
promising, one common drawback of these methods lies
in that they cannot exploit both UUCs and IICs together,
making them further improvable. To this end, we propose a
novel neural autoregressive model for CF, named User-Item
co-Autoregressive model (CF-UIcA), which considers the
autoregression in the domains of both users and items, so
as to model both UUCs and IICs together. The introduced
co-autoregression naturally provides a principled way to se-
lect the UUCs and IICs to be generalized that are helpful for
prediction. This allows us to incorporate extra desired prop-
erties into the model for different tasks, which is not studied
in previous work. We further develop a stochastic learning al-
gorithm for CF-UIcA to make it applicable for large datasets.
We demonstrate our method on two real benchmarks: Movie-
Lens 1M and Netflix, achieving state-of-the-art results in both
rating prediction and top-N recommendation tasks, which is
rarely accomplished in previous work. In addition, the visual-
ization demonstrates that CF-UIcA learns semantic patterns
without extra supervision.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

2175

?

(a)

?

(b)

?

(c)

?

(d)

Figure 1: Illustration of predictions in a toy recommendation system with 5 users and 6 items (best viewed in color). Each square
in green/yellow/gray corresponds to a positive/negative/unobserved behavior, respectively. The behavior (whose associating
user and item are colored in deep blue) being predicted is marked with a question mark. (a) Predict with a single User-User
Correlation: the behavior is predicted according to the behavior of another user (labeled as light blue); (b) Predict with a single
Item-Item Correlation; (c) Predict with multiple User-User Correlations, and (d) Predict with multiple Item-Item Correlations.

2 Related Work

Collaborative filtering methods make predictions based on
user behaviors, which could reveal certain patterns for gener-
alization. These phenomena involve two types of information:
User-User Correlations (UUCs) and Item-Item Correlations
(IICs). As shown in Fig. 1a, UUC depicts that a user’s behav-
ior is usually related to the one of some other users on the
same item, especially when they have similar habits/tastes.
Similarly, IIC depicts that a user’s behavior on an item is
related to his/her behaviors on other items, especially when
these items are similar in nature, as shown in Fig. 1b. Pre-
dictions are then possible to be made by integrating these
correlations. Fig. 1c and Fig. 1d show all the UUCs and IICs
of the unknown preference marked by the question mark. In-
tuitively, integrating multiple UUCs and IICs can potentially
lead to a more precise prediction.

Existing CF methods either implicitly or explicitly exploit
these correlations. Early methods model the correlations via
some similarity functions on the raw preferences, such as
k-NN collaborative filtering (kNN-CF) (Resnick et al. 1994;
Sarwar et al. 2001). These methods make predictions with
the top k UUCs or IICs explicitly. Matrix factorization (MF)
methods characterize both users and items by vectors in a low-
dimensional latent space. The predictions are modeled with
the inner products of the latent vectors of the corresponding
users and items. Representative works include SVD-based
methods (Billsus and Pazzani 1998; Sarwar et al. 2000) and
the probabilistic MF (PMF) (Salakhutdinov and Mnih 2007;
2008). Recent approaches improve MF by loosing the con-
strains of linearity and low-rank assumption. Bias MF (Koren,
Bell, and Volinsky 2009) introduces bias terms associated
with users and items. Lee et al. (2013) propose Local Low-
Rank Matrix Approximation (LLORMA) by assuming the
observed rating matrix is a weighted sum of low-rank matri-
ces. NNMF (Dziugaite and Roy 2015) and NeuMF (He et al.
2017) replace the inner product operations in MF with neu-
ral networks. Since MF methods make predictions with the
learned latent vectors of the users and the items, the UUCs
and IICs are not modeled explicitly.

With the success in many tasks (Krizhevsky, Sutskever,
and Hinton 2012; Graves, Mohamed, and Hinton 2013;

Bahdanau, Cho, and Bengio 2014; Mnih et al. 2015; Silver et
al. 2016), deep learning has been integrated into CF methods
with great success. Salakhutdinov, Mnih, and Hinton (2007)
propose RBM-CF, a CF methods based on Restricted Boltz-
mann Machines, which has shown its power in Netflix prize
challenge (Bennett and Lanning 2007). Sedhain et al. (2015)
propose AutoRec, a discriminative model based on auto-
encoders. A similar model known as CDAE is concurrently
proposed by Wu et al. (2016). Recently, Zheng et al. (2016b)
propose CF-NADE, a tractable model based on Neural Au-
toregressive Distribution Estimators (NADE) (Larochelle and
Murray 2011), and achieve the state-of-the-art results on sev-
eral CF benchmarks. These methods share two aspects: 1)
different models are built for different users by sharing pa-
rameters; and 2) predictions are made for a user according
to his/her behavior profile. Note that as the role of users and
items are exchangeable, these methods usually have a user-
based and an item-based variants. As a result, these methods
make predictions with either the UUCs or the IICs explicitly.

Our CF-UIcA differs from existing CF methods in that it
can capture both UUCs and IICs explicitly and simultane-
ously. Similar as in CF-NADE, we adopt neural autoregres-
sive architectures to model the probabilities of the behaviors.
The crucial difference is that CF-NADE models the rating
vectors of each user, making the users independent from each
other, while CF-UIcA models the behaviors across all users
and items in order to consider UUCs and IICs jointly. More-
over, we analyze the significance of the co-autoregression in
a novel perspective and demonstrate its effectiveness, which
is another step beyond CF-NADE.

Hybrid recommendation (Burke 2002) is a class of meth-
ods focusing on combining different techniques at a high
level, e.g., combining CF-based methods and content-based
methods together. Different with the existing hybrid recom-
mendation methods, our model focuses on utilizing both
user-based and item-based information. Wang, De Vries, and
Reinders (2006) share similar motivation with ours. However,
their method is memory-based and unifies user-based and
item-based models by similarity. While our method is model-
based and combines user-based and item-based information
by autoregressive neural networks.

2176

Figure 2: An illustration of the conditional model. The yellow, green and gray entries are interpreted same as in Fig. 1. Suppose
Rot is the current behavior being modeled. The black striped lines mark the entries of Ro>t

. The blue dashed boxes line out the
UUCs and IICs for Rot . The cuboids represent the columns of WU ,WI ,VU ,VI , with the color corresponding to the behaviors.
The hidden representations hU and hI are computed by summing over the corresponding columns (with the uncorresponding
columns marked in lighter colors) of UUCs and IICs. The activations sU and sI are computed by multiplying the hidden
representations and the corresponding columns of VU and VI . We omit the bias terms for clarity.

3 Method

We now present CF-UIcA which models both UUCs and IICs
with co-autoregressvie architectures.

Let N and M denote the number of users and items, re-
spectively. We define the behavior matrix R ∈ R

N×M from
user behaviors by assigning entries of R with different labels
for different behaviors: For explicit feedback, e.g. K-star
scale ratings, we define Ri,j = k for the behavior “user i
rates item j with k stars”; For implicit feedback, e.g. clicks,
we define Ri,j = 1 for the behavior “user i clicks item
j”. And we define Ri,j = 0 for unobserved entries. Let
D = {Rid,jd}Dd=1 be all the observed behaviors, which form
the training set. The goal of CF is then to predict an unknown
behavior Ri∗,j∗ �∈ D based on the observed behaviors D.

3.1 The Model

Autoregressive models (Frey 1998; Larochelle and Murray
2011; Lauly et al. 2017) offer a natural way to introduce
interdependencies, which is desired for CF tasks, as analyzed
in Sec. 2. We start with a very generic autoregressive assump-
tion to model the probability of the behavior matrix:

p(R) =

N×M∏
t=1

p(Rot |Ro<t), (1)

where o is a permutation of all 〈user, item〉 pairs that serves
as an ordering of all the entries in the behavior matrix R, and
Ro<t

denotes the first t−1 entries of R indexed by o. For
example, ot=(i′, j′) indicates that the behavior Ri′,j′ is at
the t-th position in o, i.e., Rot =Ri′,j′ . Let oit= i′ and ojt =j′
denote the first and second dimension of ot, which index the
user and the item, respectively.

Basically, there are (N ×M)! possible orderings of all the
entries of R. For now we assume that o is fixed. (We will
discuss the orderings latter.) If we consider o as the ordering
of the timestamps of the behaviors observed by the system,
then the conditional in Eqn. (1) means that the model predicts
behavior Rot at time t depends on all the observed behaviors
before t.

The Conditional Model According to Sec. 2, both UUCs
and IICs are informative for prediction. We therefore define
a conditional model that exploits both UUCs and IICs:

p(Rot |Ro<t) = p(Rot |RUUC
ot , RIIC

ot), (2)

where we have defined RUUC
ot = {Rot′ : t

′ < t, ojt′ = ojt}
as the behaviors on item ojt in Ro<t , which form all the UUCs
of Rot (by time t). RIIC

ot is defined symmetrically.
Inspired by NADE (Larochelle and Murray 2011) and

CF-NADE (Zheng et al. 2016b), we model the conditional
in Eqn. (2) with neural networks due to the rich expressive
ability. Specifically, CF-UIcA models the UUCs and IICs of
Rot with hidden representations respectively:

hU (RUUC
ot) = f

(∑
t′<t:o

j

t′=o
j
t
WU

:,oi
t′ ,Ro

t′
+ cU

)
, (3)

hI(RIIC
ot) = f

(∑
t′<t:oi

t′=oit
WI

:,o
j

t′ ,Ro
t′

+ cI
)
, (4)

where f(·) is a nonlinear function, such as tanh(x) =
exp(x)−exp(−x)
exp(x)+exp(−x) , WU ∈ R

HU×N×K and WI ∈ R
HI×M×K

are 3-order tensors, cU ∈ R
HU and cI ∈ R

HI are the bias
terms. HU and HI are the dimensions of the hidden represen-
tations for UUCs and IICs, respectively. The column WI

:,j,k

denotes how much “behaving k on item j” contributes to the
hidden representations of the IICs while the column WU

:,i,k

denotes the contribution of “user i behaves k” to the hidden
representation of the UUCs.

CF-UIcA explains the hidden representations of the UUCs
and the IICs by computing the activations:

sUoit,k
(hU (RUUC

ot)) = VU
:,oit,k

�hU (RUUC
ot) + bUoit,k

, (5)

sI
o
j
t ,k

(hI(RIIC
ot)) = VI

:,o
j
t ,k

�hI(RIIC
ot) + bI

o
j
t ,k

, (6)

where VU ∈ R
HU×N×K and VI ∈ R

HI×M×K are 3-order
tensors, bU ∈ R

N×K and bI ∈ R
M×K are the bias terms.

The column VI
:,j,k is the coefficients that determine how the

hidden representation of the IICs affects the activation sIj,k
for “behaving k on item j”. Higher activation sIj,k indicates

2177

that the considered IICs suggest higher probability that the
user will carry out a behavior k on item j. The activation sUi,k
is interpreted similarly.

Finally, to combine the activations of UUCs and IICs of
Rot and produce a probability distribution, we define the final
conditional model as a softmax function of the summation of
the two activations:

p(Rot = k|Ro<t) =
exp

(
sU
oit,k

+ sI
o
j
t ,k

)
∑K

k′=1 exp

(
sU
oit,k

′ + sI
o
j
t ,k

′

) . (7)

Fig. 2 illustrates the conditional model.

Orderings in Different Tasks We now discuss the effect
of different orderings on the model and show what kinds of
orderings are considered for two major CF tasks detailedly.

In fact, the ordering o decides the conditional model for
each observed behavior Ri′,j′ . Specifically, according to our
model (See Eqns. (2) to (4)), the contributions of UUCs
and IICs to a given behavior Ri′,j′ , i.e. RUUC

i′,j′ and RIIC
i′,j′ ,

depend on where the ordering o places Ri′,j′ and what o
places before Ri′,j′ . In general, different orderings result in
different conditional models or dependency relations (see
Fig. 3 for an illustration) and any possible conditional models
can be induced by some specific orderings. Such a property
leaves us freedom to control what kind of dependencies we
would like the model to exploit in different tasks, as shown
below.

CF methods are usually evaluated on rating prediction
tasks (Zheng et al. 2016b; Sedhain et al. 2015), or more gen-
erally, matrix completion tasks, by predicting randomly miss-
ing ratings/values. For matrix completion tasks, taking all
UUCs and IICs into consideration leads the model to exploit
the underlying correlations to a maximum extent. Therefore,
we should consider all possible conditional models for each
behavior, i.e., all orderings, in such tasks. The objective could
then be defined as the expected (over all orderings) negative
log-likelihood (NLL) of the training set:

L(θ) = E
o∈SD

− log p(D|θ, o)

= − E
o∈SD

∑
D
d=1 log p(Rod |Ro<d ,θ, o), (8)

where θ denotes all the model parameters and SD is the set
of all the permutations of D1. Note that taking the expectation
over all orderings is equivalent to integrating them out. Thus
the training procedure does not depend on any particular
ordering and no manually chosen ordering is needed.

Recent works (Rendle et al. 2009; He et al. 2017) also
evaluate CF on top-N recommendation tasks, aiming to sug-
gest a short list of future preferences for each user, which is
closer to the goal of real-world recommendation systems. In
these tasks, not all IICs are useful. For example, people who
have just watched Harry Potter 1 (HP1) are very likely to
be interested in Harry Potter 2 (HP2), however those who
have just watched HP2 are less likely to have interest in HP1,
as he/she may have known some spoiler about HP1. To this

1Given the training set D, the first D elements of o will be
automatically restricted to D. As we only evaluate the likelihood of
the training set D, the number of equivalence orderings are D!.

1

6

8

7

5

2

9

4

3

(a)

3

8

2

4

9

6

1

5

7

(b)

7

1

9

8

3

4

2

6

5

(c)

Figure 3: An illustration of how the orderings decide the
conditional models. Colors are interpreted same as in Fig. 2.
(a) - (c) show 3 conditional models for the central (gray)
behavior in an example behavior matrix under 3 different
orderings. The numbers 1 - 9 indicate the indices of the
corresponding behaviors in the orderings. The arrows indicate
the dependencies involved in the conditional models.

end, we should expect the model to capture the chronolog-
ical IICs, which only include the dependencies from later
behaviors to previous behaviors of each user, and all UUCs
in the meanwhile. Then, an appropriate objective should be
the expected NLL of the training set over all orderings that
do not break the chronological order of each user’s behaviors.
Note that this can be implemented equivalently by re-defining
RIIC

i′,j′ = {Ri′,j′′ : T (Ri′,j′′) < T (Ri′,j′)}, where T (·) is
the timestamp when the system observes the behavior, and
using Eqn. (8) as the objective2. Hence we still need not to
choose any ordering manually.

The above examples show that extra desired properties can
be incorporated into CF-UIcA for different tasks by consider-
ing different orderings in the objective, which indeed benefits
from the co-autoregressive assumption.

3.2 Learning

The remaining challenge is to optimize the objective in
Eqn. (8). A common strategy to deal with complicate integra-
tions or large-scale datasets is to adopt stochastic optimiza-
tion approaches, e.g. stochastic gradient descent (SGD) (Bot-
tou 2010; Kingma and Ba 2014), which require an unbiased
estimator of the objective or its gradient. SGD and its vari-
ants have been widely adopted in various areas due to its
efficiency, including many CF methods (Sedhain et al. 2015;
Zheng et al. 2016b). However, unlike in the most ex-
isting neural networks based methods (Wu et al. 2016;
Zheng et al. 2016b), the users are not modeled indepen-
dently in CF-UIcA, resulting the objective cannot be esti-
mated stochastically by simply sub-sampling the users. To
tackle this challenge, we derive an unbiased estimator of
Eqn. (8) below, which completes the proposed method.

By exchanging the order of the expectation and the sum-
mation in Eqn. (8) and doing some simple math, we get:

L(θ)=−
∑

(i′,j′)∈D
E
d

E
o∈SD|od=(i′,j′)

log p(Ri′,j′ |Ro<d ,θ,o). (9)

According to the definition of the conditional model from
Eqns. (3) to (7), the log-probability of Ri′,j′ in Eqn. (9) de-
pends on at most Ri′,¬j′ = Ri′,:\{Ri′,j′} (behaviors of user

2In this case RIIC
i′,j′ is deterministic and only RUUC

i′,j′ depends on
the ordering o.

2178

i′ except Ri′,j′) and R¬i′,j′ = R:,j′\{Ri′,j′} (behaviors
on item j′ except Ri′,j′). Specifically, given od = (i′, j′),
the log-probability of Ri′,j′ depends on exactly the set
RIIC

i′,j′ = Ri′,¬j′∩Ro<d
and the set RUUC

i′,j′ = R¬i′,j′∩Ro<d
.

As we treat the ordering o as a random variable uniformly
distributed over SD, RIIC

i′,j′ and RUUC
i′,j′ are also random.

Moreover, since RIIC
i′,j′ ∩ RUUC

i′,j′ = ∅, they are indepen-
dent given their sizes m = |RIIC

i′,j′ | and n = |RUUC
i′,j′ |, i.e.,

RIIC
i′,j′ |m ⊥ RUUC

i′,j′ |n. By expanding the second expectation
in Eqn. (9) based on the above analysis, we have:

L(θ) =−
N∑

i′=1

M∑
j′=1

E
d

E
m,n|d

E
RIIC

i′,j′ |m
E

RUUC
i′,j′ |n

log p(Ri′,j′ |RUUC
i′,j′ , RIIC

i′,j′ ,θ)I[(i′,j′)∈D],

(10)

where m, n, RIIC
i′,j′ |m and RUUC

i′,j′ |n are all random and are
decided by the random ordering o. Note the summation over
D is replaced by an equivalent representation using an indi-
cator function I[(i′,j′)∈D]. Given RUUC

i′,j′ and RIIC
i′,j′ , the log-

probability term and the indicator term can be computed
easily. From now we omit these two terms for simplicity.

According to symmetry, it is easy to know that RIIC
i′,j′ |m

and RUUC
i′,j′ |n are uniformly distributed over all subsets of

size m of R¬i′,j′ ∩ D and subsets of size n of Ri′,¬j′ ∩ D,
respectively. However, these distributions have different sup-
ports since the numbers of the observed behaviors for users
(items) are different, which makes the sampling unparalleliz-
able. Note that the process of drawing o from SD can be
equivalently simulated by first randomly drawing σ from
SN×M , which can be viewed as an ordering of all the entries
of R, and then dropping the unobserved entries R\D. The
resulted ordering on D is still uniformly distributed over SD.
Then Eqn. (10) can be written equivalently as:

L(θ) = −
N∑

i′=1

M∑
j′=1

E
r

E
y,z|r

E
M⊆[M]\{j′}|y

E
N⊆[N]\{i′}|z

, (11)

where r is the index of Ri′,j′ in σ, y and z are the number of
entries in Ri′,¬j′ ∩ Rσ<r and R¬i′,j′ ∩ Rσ<r , respectively.
M is a subset of size y of [M]\{j′} and N is a subset of
size z of [N]\{i′}, where [N] denotes {1, · · · , N}. RUUC

i′,j′

and RIIC
i′,j′ are therefore RN ,j′ ∩ D, Ri′,M ∩ D.

Finally, with some simple math we obtain:

L(θ)=−NM E
r

E
y,z|r

E
M⊆[M]|y

E
N⊆[N]|z

E
i′∈[N]\N

E
j′∈[M]\M

. (12)

In Eqn. (12), y and z can be computed after sampling r and
σ. M and N are sampled by uniformly choosing y and z
elements in [M] and [N] without replacement, respectively.
The last two expectations can be estimated unbiasedly by
sampling BU elements from [N]\N and BI elements from
[M]\M, respectively, where BU and BI can be viewed as
the minibatch sizes of users and items. Finally, we get an
unbiased estimation of the objective L(θ), which can be then
adopted in SGD algorithms.

Note that though the training objective involves expecta-
tions over multiple orderings (which help exploit the desired
UUCs and IICs during training), the prediction procedure is

0 250 500 750 100012501500
0.82

0.83

0.84

hidden units

Te
st

 R
M

S
E CF−NADE

CF−UIcA

Figure 4: The performance on MovieLens 1M of CF-UIcA
and CF-NADE w.r.t. the number of hidden units.

10000 15000 20000
0.799

0.8

0.801

0.802

clusters

Te
st

 R
M

S
E

Figure 5: The performance on Netflix of CF-UIcA w.r.t. the
number clusters of users.

simple and deterministic. For an unknown behavior Ri∗,j∗ ,
the prediction is evaluated with R̂i∗,j∗ = Ep(Ri∗,j∗=k|D)[k]

with RUUC
i∗,j∗ = R¬i∗,j∗∩D and RIIC

i∗,j∗ = Ri∗,¬j∗∩D, where
we have assumed Ri∗,j∗ = RoD+1

and Ro<D+1
= D.

4 Experiments

We now present a series of experimental results of the pro-
posed CF-UIcA to demonstrate its effectiveness. We com-
pare CF-UIcA with other popular CF methods on two major
kinds of CF tasks: rating prediction and top-N recommenda-
tion. The experiments are conducted on two representative
datasets: MovieLens 1M (Harper and Konstan 2016) and Net-
flix (Bennett and Lanning 2007). MovieLens 1M consists of
1, 000, 209 ratings of 3, 952 movies (items) rated by 6, 040
users. Netflix consists of 100, 480, 507 ratings of 17, 770
movies rated by 480, 189 users. The ratings in both datasets
are 1-5 stars scale, i.e., K = 5. For all experiments, we use
Adam (Kingma and Ba 2014) to optimize the objectives with
an initial learning rate 0.001. During training, we anneal the
learning rate by factor 0.25 until no significant improvement
can be observed on validation set. Note that in Eqn. (12) the
sizes of [N]\N and [M]\M, i.e. N − z and M − y, vary
from 1 to N−1 and to M−1, respectively. As a consequence,
the minibatch sizes of users/items should be set dynamically.
Nevertheless, we choose fixed minibatch sizes of users/items
BU/BI , which only take effect when M − y > BI or
N−z > BU . We adopt weight decay on model parameters to
prevent the model from overfitting. Other hyper parameters
and detailed experimental settings will be specified latter for
each task. The codes and more detailed settings can be found
at https://github.com/thu-ml/CF-UIcA.

4.1 Rating Prediction

We use the same experimental settings with LLORMA (Lee
et al. 2013), AutoRec (Sedhain et al. 2015) and CF-
NADE (Zheng et al. 2016b). We randomly select 90% of
the ratings in each of the datasets as the training set, leaving
the remaining 10% of the ratings as the test set. Among the

2179

Table 1: Test RMSE on MovieLens 1M and Netflix. All the
baseline results are taken from Zheng et al. (2016b).

Method MovieLens 1M Netflix
PMF 0.883 -
U-RBM 0.881 0.845
U-AutoRec 0.874 -
LLORMA-Global 0.865 0.874
I-RBM 0.854 -
BiasMF 0.845 0.844
U-CF-NADE-S (2 layers) 0.845 0.803
NNMF 0.843 -
LLORMA-Local 0.833 0.834
I-AutoRec 0.831 0.823
I-CF-NADE-S (2 layers) 0.829 -

CF-UIcA (HU=HI=500) 0.823 0.799

ratings in the training set, 5% are hold out for validation. We
compare the predictive performance with other state-of-the-
art methods in terms of the common used Root Mean Squared
Error (RMSE) = (

∑
(i,j)∈Dtest(R̂i,j − Ri,j)

2/Dtest)
1/2,

where Dtest is the test set of Dtest unknown ratings, Ri,j is
the true rating and R̂i,j is the prediction. The reported results
are averaged over 10 random splits, with standard deviations
less than 0.0002.

MovieLens 1M For experiments on MovieLens 1M, we
set BU/BI to 1, 000/1, 000 and the weight decay to 0.0001.

Since CF-UIcA has a connection with CF-NADE (Zheng
et al. 2016b) as mentioned in Sec. 2, we first present a compar-
ison between CF-UIcA and CF-NADE in Fig. 4. CF-NADE
models each user with a latent representation, similar with
our hidden representation of UUCs or IICs. For fairness, we
compare the two methods with the same number of hidden
units, where in our CF-UIcA the number of hidden units is
HU+HI . Note that in CF-UIcA HU is not necessarily equal
to HI , we nevertheless choose HU=HI for simplicity. We
report the item-based CF-NADE results under best setting as
described in (Zheng et al. 2016b).

From Fig. 4 we observe that for small number of hid-
den units, e.g. 250, our method gives a worse result than
CF-NADE. This is attributed to that the hidden dimensions
allocated to the hidden representation of UUCs and IICs are
too small (HU=HI=125) to capture the underlying infor-
mation. As the number of hidden units increases, we observe
CF-UIcA outperforms CF-NADE since CF-UIcA can capture
both UUCs and IICs while the item-based CF-NADE can
only capture UUCs. One thing worth mentioning is that the
total number of parameters in CF-UIcA is only around 83%
of the number of parameters in CF-NADE for MovieLens
1M when the number of hidden units are same, which implies
that CF-UIcA can capture more information than CF-NADE
with fewer parameters.

Table 1 (middle column) compares the performance of
CF-UIcA with state-of-the-art methods on MovieLens 1M.
The hidden dimensions of CF-UIcA are HU = HI = 500.
Our method achieves an RMSE of 0.823, outperforming all
the existing strong baselines. Note that as RMSE scores have

Table 2: Test HR@10 and NDCG@10 of various methods
on MovieLens 1M. The results of baseline methods (except
CDAE) are kindly provided by He et al. (2017).

Method HR@10 NDCG@10
ItemPop 0.454 0.254
ItemKNN 0.623 0.359
BPR (Rendle et al. 2009) 0.690 0.419
eALS (He et al. 2016) 0.704 0.433
NeuMF 0.730 0.447
CDAE 0.726 0.448

CF-UIcA (Uniform) 0.692 0.406
CF-UIcA (Inverse) 0.616 0.353
CF-UIcA 0.736 0.492

been highly optimized in previous work, our 0.006 RMSE
improvement w.r.t. CF-NADE is quite significant, compared
to the 0.002 by which CF-NADE improves over AutoRec
and 0.002 by which AutoRec improves over LLORMA.

Netflix The Netflix dataset is much bigger than MovieLens
1M, especially the number of users. We opt to cluster all the
480, 189 users into 10K, 15K and 20K groups, respectively,
and make the users in same clusters sharing their correspond-
ing columns in WU and VU . To cluster the users, we first run
matrix factorization (Juan et al. 2016) with rank 100 on the
training set. (Predicting the test set with the learned vectors
by MF gives an RMSE of 0.865.) Then the clustering process
is simply done by running a K-means clustering algorithm
on the latent vectors of users learned by MF. For CF-UIcA,
the weight decay is set to 5 × 10−6 as the dataset is suffi-
ciently large. The minibacth sizes of users and items are set
to BU = 4, 000 and BI = 1, 000. The hidden dimensions
are HU = HI = 500.

Fig. 5 shows the performance of CF-UIcA with different
number of clusters. We observe that the performance im-
proves as the number of clusters increases, which can be
attributed to that using more clusters empowers the model
to capture more variety among users. Another observation is
that the performance can be potentially improved by further
increasing the number of clusters. We do not increase the
number of clusters due to the limitation of GPU memory.

Table 1 (right column) summarizes our best result and
other state-of-the-art results. Symbol “-” indicates that the
authors didn’t report the result, probably due to the lack
of scalability3. Our method with 20, 000 clusters of users
achieves a state-of-the-art RMSE of 0.799, which, together
with the results on MovieLens 1M, proves that our CF-UIcA
has the ability to predict users’ ratings precisely.

4.2 Top-N Recommendation

In most real scenarios, the goal of recommendation systems is
to suggest a top-N ranked list of items that are supposed to be
appealing for each user. Moreover, implicit feedback (Zheng
et al. 2016a) has attracted increasing interests because it is

3We confirmed with the authors of (Zheng et al. 2016b) that
I-CF-NADE is not scalable to Netflix. For AutoRec, the authors
reported that I-AutoRec is their best model.

2180

Figure 6: t-SNE embedding of the learned vectors for Movie-
Lens 1M.

usually collected automatically and is thus much more easier
to obtain. We follow the experimental settings of NeuMF (He
et al. 2017) to test the recommendation quality of CF-UIcA
with implicit feedback. We transform MovieLens 1M into
implicit data by marking all ratings as 1 indicating that the
user has rated the item. We adopt the leave-one-out (Rendle
et al. 2009; He et al. 2017) evaluation: The latest rated item
of each user is held out as the test set; The second latest rated
item of each user is choosen as the validation set and the
remaining data are used as the training set. At test time, we
adopt the common strategy (Koren 2008; Elkahky, Song, and
He 2015) that randomly samples 100 items that are not rated
by the user, and ask the algorithm to rank the test item among
the 100 sampled items. We evaluate the quality of the ranked
list for the user by computing the Hit Ratio (HR) and the
Normalized Discounted Cumulative Gain (NDCG) (He et al.
2015). Specifically,

HR=
#hits

#users
, NDCG=

1

#users

#hits∑
i=1

1

log2(pi+1)
, (13)

where #hits is the number of users whose test item appears
in the recommended list and pi is the position of the test item
in the list for the i-th hit. For both metrics, the ranked list is
truncated at 10.

Since the model is always asked to make predictions of lat-
est behaviors based on former behaviors, we train the model
under the expectation over orderings that maintain the chrono-
logical order of each user’s behaviors, as anylized in Sec. 3.1.
An important difficulty of CF with implicit feedback is that
only positive signals are observed. To handle the absence
of negative signals, we follow the common strategy (Pan et
al. 2008; He et al. 2017) that randomly samples negative
instances from unobserved entries dynamically during the
training procedure.

The minibatch sizes of users and items are set to 200. The
hidden dimensions are HU = HI = 256 and the weight
decay is 1 × 10−5. the results are averaged over 5 runs
with different random seeds, with standard deviations less
than 0.0005. Table 2 compares the results in HR@10 and
NDCG@10 with state-of-the-art methods for top-N recom-
mendation with implicit feedback on MovieLens 1M. The
baseline results are provided by He et al. (2017), except
the result of CDAE (Wu et al. 2016), which is evaluated
with our implementation. We can see that CF-UIcA achieves
the best performance under both measures. Importantly, our
method gives an NDCG@10 0.492, which outperforms the
state-of-the-art method NeuMF by a large margin 0.045 (rela-
tive improvement 10.1%). To demonstrate the significance of

Table 3: Average running time for each minibatch of CF-
UIcA on different datasets.

Dataset BU/BI HU/HI Time
ML 1M 1, 000/1, 000 500/500 0.77s
Netflix 4, 000/1, 000 500/500 3.4s

Table 4: Average test time of different methods and tasks on
MovieLens 1M.

Method Task Test Time
CF-NADE Rating Prediction 0.68s
CF-UIcA Rating Prediction 0.80s
CF-UIcA Top-N Recommendation 0.73s

the co-autoregression, we train another two CF-UIcA models
under the expectation over: (Uniform Case) all possible order-
ings, which cover all UUCs and IICs; and (Inverse Case) all
orderings that reverse the chronological order of each user’s
behaviors. The results are shown in Table 2. We can observe
that the orderings significantly affect the performance. Com-
pared to the result (NDCG@10 0.406) of Ignore case where
all UUCs and IICs are captured, our best result brings a 0.09
improvment, demonstrating the effectiveness of the orderings
and the power of the co-autoregression.

4.3 Visualization

In MovieLens 1M, each movie is marked with one or more
genres. There are totally 18 different genres including Action,
Children’s, Drama, etc. We visualize the learned weight ma-
trices VI in Sec. 4.1. Specifically, once the model is learned,
VI

:,j,: can be viewed as HI ×K dimensional vectors associ-
ated with item j. We apply t-SNE (Maaten and Hinton 2008)
to embed these vectors into a 2-dimensional plane. Fig. 6
shows the t-SNE embedding of two most exclusive genres:
Children’s and Documentary. We can observe the learned
vectors are distributed semantically in the gross.

4.4 Running Time and Memory

We analyze the running time and memory cost of the pro-
posed method. All the experiments are conducted on a single
Nvidia TITAN X GPU with Theano (Theano Development
Team 2016) codes. As explained in Sec. 4, the minibatch
sizes of users and items are not deterministic during training
and thus there is no standard way to train CF-UIcA epoch by
epoch. We report the average training time for each minibatch
in Table 3. As for testing time, we compare CF-UIcA with
other state-of-the-art methods in Table 4.

The running memory cost of CF-UIcA is mainly for saving
the 3-dimensional weight tensors. Specifically, the memory
complexity of CF-UIcA is O((NHU + MHI)K). In our
experiments we always let HU = HI = H , resulting the
memory cost is proportional to (N +M)HK.

5 Conclusion

We propose CF-UIcA, a neural co-autoregressive model for
collaborative filtering, with a scalable stochastic learning al-
gorithm. CF-UIcA performs autoregression in both users and

2181

items domains, making it able to capture both correlations
between users and items explicitly and simultaneously. Exper-
iments show that our method achieves state-of-the-art results,
and is able to learn semantic information by visualization,
verifying that the autoregression provides a principled way
to incorporate the correlations.

Acknowledgments

This work is supported by the National NSF of China (Nos.
61620106010, 61621136008, 61332007), the MIIT Grant
of Int. Man. Comp. Stan (No. 2016ZXFB00001) and the
NVIDIA NVAIL Program.

References
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural machine
translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473.
Bennett, J., and Lanning, S. 2007. The netflix prize. In Proceedings
of KDD cup and workshop, volume 2007, 35.
Billsus, D., and Pazzani, M. J. 1998. Learning collaborative infor-
mation filters. In ICML, volume 98, 46–54.
Bottou, L. 2010. Large-scale machine learning with stochastic
gradient descent. In Proceedings of COMPSTAT’2010. Springer.
177–186.
Burke, R. 2002. Hybrid recommender systems: Survey and experi-
ments. User modeling and user-adapted interaction 12(4):331–370.
Dziugaite, G. K., and Roy, D. M. 2015. Neural network matrix
factorization. arXiv preprint arXiv:1511.06443.
Elkahky, A. M.; Song, Y.; and He, X. 2015. A multi-view deep learn-
ing approach for cross domain user modeling in recommendation
systems. In WWW, 278–288.
Frey, B. J. 1998. Graphical models for machine learning and digital
communication.
Gopalan, P. K.; Charlin, L.; and Blei, D. 2014. Content-based
recommendations with poisson factorization. In NIPS.
Graves, A.; Mohamed, A.-r.; and Hinton, G. 2013. Speech recogni-
tion with deep recurrent neural networks. In ICASSP.
Harper, F. M., and Konstan, J. A. 2016. The movielens datasets:
History and context. ACM Transactions on Interactive Intelligent
Systems (TiiS) 5(4):19.
He, X.; Chen, T.; Kan, M.-Y.; and Chen, X. 2015. Trirank: Review-
aware explainable recommendation by modeling aspects. In CIKM.
He, X.; Zhang, H.; Kan, M.-Y.; and Chua, T.-S. 2016. Fast matrix
factorization for online recommendation with implicit feedback. In
SIGIR, 549–558.
He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; and Chua, T.-S. 2017.
Neural collaborative filtering. In WWW.
Juan, Y.-C.; Chin, W.-S.; Zhuang, Y.; Yuan, B.-W.; Yang, M.-Y.;
and Lin, C.-J. 2016. Libmf: A matrix-factorization library for
recommender systems. https://www.csie.ntu.edu.tw/∼cjlin/libmf/.
Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix factorization
techniques for recommender systems. Computer (8):30–37.
Koren, Y. 2008. Factorization meets the neighborhood: a multi-
faceted collaborative filtering model. In SIGKDD.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet
classification with deep convolutional neural networks. In NIPS.

Larochelle, H., and Murray, I. 2011. The neural autoregressive
distribution estimator. In AISTATS.
Lauly, S.; Zheng, Y.; Allauzen, A.; and Larochelle, H. 2017. Docu-
ment neural autoregressive distribution estimation. JMLR 18(113):1–
24.
Lee, J.; Kim, S.; Lebanon, G.; and Singer, Y. 2013. Local low-rank
matrix approximation. In ICML, 82–90.
Maaten, L. v. d., and Hinton, G. 2008. Visualizing data using t-sne.
JMLR 9:2579–2605.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.;
Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.;
Ostrovski, G.; et al. 2015. Human-level control through deep
reinforcement learning. Nature 518(7540):529–533.
Pan, R.; Zhou, Y.; Cao, B.; Liu, N. N.; Lukose, R.; Scholz, M.; and
Yang, Q. 2008. One-class collaborative filtering. In ICDM.
Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-Thieme, L.
2009. Bpr: Bayesian personalized ranking from implicit feedback.
In UAI, 452–461.
Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P.; and Riedl, J.
1994. Grouplens: an open architecture for collaborative filtering of
netnews. In Proceedings of the 1994 ACM conference on Computer
supported cooperative work, 175–186. ACM.
Salakhutdinov, R., and Mnih, A. 2007. Probabilistic matrix factor-
ization. In NIPS.
Salakhutdinov, R., and Mnih, A. 2008. Bayesian probabilistic
matrix factorization using markov chain monte carlo. In ICML.
Salakhutdinov, R.; Mnih, A.; and Hinton, G. 2007. Restricted
boltzmann machines for collaborative filtering. In ICML.
Sarwar, B.; Karypis, G.; Konstan, J.; and Riedl, J. 2000. Application
of dimensionality reduction in recommender system – a case study.
In ACM WEBKDD WORKSHOP.
Sarwar, B.; Karypis, G.; Konstan, J.; and Riedl, J. 2001. Item-based
collaborative filtering recommendation algorithms. In WWW.
Schafer, J. B.; Frankowski, D.; Herlocker, J.; and Sen, S. 2007.
Collaborative filtering recommender systems. In The adaptive web.
Springer. 291–324.
Sedhain, S.; Menon, A. K.; Sanner, S.; and Xie, L. 2015. Autorec:
Autoencoders meet collaborative filtering. In WWW.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; Van
Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershel-
vam, V.; Lanctot, M.; et al. 2016. Mastering the game of go with
deep neural networks and tree search. Nature 529(7587):484–489.
Theano Development Team. 2016. Theano: A Python framework
for fast computation of mathematical expressions. arXiv preprint
arXiv:1605.02688.
Van den Oord, A.; Dieleman, S.; and Schrauwen, B. 2013. Deep
content-based music recommendation. In NIPS.
Wang, J.; De Vries, A. P.; and Reinders, M. J. 2006. Unifying
user-based and item-based collaborative filtering approaches by
similarity fusion. In SIGIR, 501–508.
Wu, Y.; DuBois, C.; Zheng, A. X.; and Ester, M. 2016. Collaborative
denoising auto-encoders for top-n recommender systems. In WSDM,
153–162.
Zheng, Y.; Liu, C.; Tang, B.; and Zhou, H. 2016a. Neural autore-
gressive collaborative filtering for implicit feedback. In Proceedings
of the 1st Workshop on Deep Learning for Recommender Systems,
2–6. ACM.
Zheng, Y.; Tang, B.; Ding, W.; and Zhou, H. 2016b. A neural
autoregressive approach to collaborative filtering. In ICML.

2182

