
Modeling Temporal Tonal Relations in Polyphonic Music
through Deep Networks with a Novel Image-Based Representation

Ching-Hua Chuan1, 2

1 University of North Florida
2 University of Miami
c.chuan@miami.edu

Dorien Herremans3, 4

3 Singapore University of Technology and Design
4 Institute of High Performance Computing, A*STAR, Singapore

dorien herremans@sutd.edu.sg

Abstract

We propose an end-to-end approach for modeling polyphonic
music with a novel graphical representation, based on music
theory, in a deep neural network. Despite the success of deep
learning in various applications, it remains a challenge to in-
corporate existing domain knowledge in a network without
affecting its training routines. In this paper we present a novel
approach for predictive music modeling and music generation
that incorporates domain knowledge in its representation. In
this work, music is transformed into a 2D representation, in-
spired by tonnetz from music theory, which graphically en-
codes musical relationships between pitches. This represen-
tation is incorporated in a deep network structure consist-
ing of multilayered convolutional neural networks (CNN, for
learning an efficient abstract encoding of the representation)
and recurrent neural networks with long short-term memory
cells (LSTM, for capturing temporal dependencies in music
sequences). We empirically evaluate the nature and the effec-
tiveness of the network by using a dataset of classical mu-
sic from various composers. We investigate the effect of pa-
rameters including the number of convolution feature maps,
pooling strategies, and three configurations of the network:
LSTM without CNN, LSTM with CNN (pre-trained vs. not
pre-trained). Visualizations of the feature maps and filters in
the CNN are explored, and a comparison is made between
the proposed tonnetz-inspired representation and pianoroll,
a commonly used representation of music in computational
systems. Experimental results show that the tonnetz represen-
tation produces musical sequences that are more tonally sta-
ble and contain more repeated patterns than sequences gen-
erated by pianoroll-based models, a finding that is directly
useful for tackling current challenges in music and AI such
as smart music generation.

Introduction

Predictive models of music have been explored by re-
searchers since the very beginning of the field of computer
music (Brooks et al. 1957). Such models are useful for ap-
plications in music analysis (Qi, Paisley, and Carin 2007);
music cognition (Schellenberg 1996); improvement of tran-
scription systems (Sigtia, Benetos, and Dixon 2016); music
generation (Herremans et al. 2015); and others. Applications
such as the latter represent various fundamental challenges

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in artificial intelligence for music. In recent years, there has
been a growing interest in deep neural networks for model-
ing music due to their power to capture complex hidden re-
lationships. The launch of recent projects such as Magenta, a
deep learning and music project with a focus on music gen-
eration by the Google Brain team, testify to the importance
and recent popularity of music and AI. With this project we
aim to further advance the capability of deep networks to
model music by proposing a novel image based representa-
tion inspired by music theory.

Recent deep learning projects in the field of music include
Eck and Schmidhuber (2002), in which a recurrent neural
network (RNN) with LSTM cells is used to generate impro-
visations (first chord sequences, followed by the generation
of monophonic melodies) for 12-bar blues. They represent
music as notes whose pitches fall in a range of 25 possi-
ble pitches (C3 to C5) and that occur at fixed time intervals.
Therefore, the network has 25 outputs that are each con-
sidered independently. A decision threshold of 0.5 is used
to select each note as a statistically independent events in a
chord. More recently, a pianoroll representation of 88 keys
has been used to train a RNN by Boulanger-Lewandowski,
Bengio, and Vincent (2012). The authors integrate the notion
of chords by using restricted Boltzmann machines on top of
an RNN to model the conditioned distribution of simultane-
ously played notes in the next time slice, given the previous
time slice. In Huang, Duvenaud, and Gajos (2016), a chord
sequence is modelled as a string of symbols. Chord em-
beddings are learned from a corpus using Word2vec based
on the skip-gram model (Mikolov et al. 2013), to describe
a chord according to its sequential context. A Word2vec
approach is also used in Herremans and Chuan (2017) to
model and generate polyphonic music. For a more complete
overview of music generation systems, the reader is referred
to Herremans, Chuan, and Chew (2017). While music can
typically be represented in either audio or symbolic format,
the focus of this paper is on the latter.

The widely spread adoption of deep learning in areas such
as image recognition is due to the high accuracy of models
given the availability of abundant data, and its end-to-end
solution to eliminate the need of hand-crafted features. Mu-
sic, however, is a domain where well-annotated datasets are
relatively scarce, but which has a long history of theoretical
deliberation. It is therefore important to explore how such

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

2159



theoretical knowledge can be used to further improve deep
models. Music theory goes beyond classification problems,
and involves tasks such as analyzing a composition by study-
ing the complex tonal system (for Western music) and its hi-
erarchical structure (Kirlin and Jensen 2015). In this work,
we aim to integrate knowledge from music theory in the in-
put representation of a neural network, such that it can more
easily learn specific musical features.

In this project, we propose an architecture that combines
the temporal abilities of LSTM with a CNN autoencoder to
model polyphonic music. We leverage the power of CNNs,
by introducing a 2D representation, inspired by tonnetz, a
representation used in music theory, to represent time slices
in polyphonic music. To the best of our knowledge, this
tonnetz-based representation has never been used in any
existing deep learning approach for music. We use multi-
layered CNNs as an autoencoder in order to capture mu-
sically meaningful relationships between pitches in tonal
space. The autoencoder takes as input polyphonic music that
has been converted into a sequence of tonnetz matrices, and
which serve as an efficient abstract encoding. The encoded
tonnetz sequence is then fed into an RNN with LSTM cells
to capture temporal dependencies. This will allow us to pre-
dict the next musical time slice.

To examine the nature and effectiveness of the proposed
architecture, several experiments were conducted using the
MuseData dataset (Boulanger-Lewandowski, Bengio, and
Vincent 2012) to extensively study the proposed tonnetz-
based deep network. Results in terms of sigmoid cross
entropy between the original tonnetz matrix and its en-
coded/decoded version are presented for different pooling
strategies and different configurations of the network. Visu-
alizations of the feature maps and filters of the convolution
layer are also presented. Finally, the results of the predic-
tive modeling using the proposed tonnetz representation are
compared with the outputs of another pianoroll representa-
tion, and the generated music is evaluated.

In the next sections, we describe the proposed tonnetz
matrix representation, followed by the architecture imple-
mented in this research. The results of experiments are ana-
lyzed in the Experiments and Results section.

Tonnetz matrix for polyphonic music
Tonnetz is a graphical representation used by music theo-
rists and musicologists in order to study tonality and tonal
spaces. It was first described by Euler in 1739 for illustrating
triadic structures (Euler 1926), and has evolved into multi-
ple variations, each representing more complex musical re-
lations including parsimonious voice-leading (Cohn 1997).
It also provides a theoretical foundation for many music in-
formation retrieval (MIR) applications such as chord recog-
nition (Harte, Sandler, and Gasser 2006) and structural visu-
alization (Bergstrom, Karahalios, and Hart 2007).

Figure 1 (a) illustrates a common form of tonnetz. Each
node in the tonnetz network represents one of the 12 pitch
classes. The nodes on the same horizontal line follow the
circle-of-fifth ordering: the adjacent right neighbor is the
perfect-fifth and the adjacent left is the perfect-fourth. Three
nodes connected as a triangle in the network form a triad,

and the two triangles connected in the vertical direction by
sharing a baseline are the parallel major and minor triads.
For example, the upside-down triangle filled with diagonal
lines in Figure 1 (a) is C major triad, and the solid triangle on
the top is C minor triad. Note that the size of the network can
be expanded boundlessly; therefore, a pitch class can appear
in multiple places throughout the network.

In this paper, we extended the above tonnetz represen-
tation into a 24-by-12 matrix as partially shown in Fig-
ure 1 (b). In this matrix, each node represents a pitch instead
of a pitch class so that the pitch register information is kept.
Similar to tonnetz, nodes on the same horizontal line show
the circle-of-fifth relation. The pitch register is determined
by the distance to the pitch in the center column highlighted
in the dashed box. For example, the register of the pitch G3
next to C4 in the second row is 3 instead of 4 because G3
is closer to C4 than G4 in terms of the number of half steps.
The pitches in a column of the matrix preserve the interval of
major third, which can be observed in the dashed box in Fig-
ure 1 (b) compared to the tilted dashed box in Figure 1 (a).
The number of rows in the tonnetz matrix can be determined
by the range of pitches of interest in a particular study. In this
paper, the matrix is designed with 24 rows covering pitches
from C0 to C#

8.

Figure 1: (a) tonnetz and (b) the extended tonnetz matrix
with pitch register

The proposed tonnetz matrix allows us to model multiple
pitches played simultaneously during a time slice in poly-
phonic music. In this paper, the entire composition is divided
into time slices of length 1 beat. The pitches played at each
beat are labeled as 1 in the tonnetz matrix and 0 for pitches
not played at that time. Before converting a composition to
a sequence of tonnetz matrices, we transposed it to either
C major or A minor, depending on the mode of its original
key signature. In this way, the harmonic role of a pitch (e.g.
tonic, dominant) is preserved and is represented in the same
location in the tonnetz matrix.

The next section describes how a deep network was con-
structed to model a sequence of tonnetz matrices.

2160



Figure 2: (a) Autoencoder using two layers of CNNs and (b) sequence modeling using autoencoder and LSTM networks.

Network structure

The system described in this paper implements a network
structure that is depicted in Figure 2 (b). It consists of
two main parts: a two-layered convolutional autoencoder
and a three-layered LSTM. The first part of the network
structure, the two-layered convolutional neural network, is
pre-trained as an autoencoder, as shown in Figure 2 (a).
This allows the network to learn an efficient abstract rep-
resentation for encoding tonnetz matrices. The encoded
outputs are then fed into the LSTM network structure, a
type of neural network often used in sequence modeling
and prediction tasks (Graves, Mohamed, and Hinton 2013;
Sutskever, Vinyals, and Le 2014; Vinyals et al. 2015).

The network architecture was inspired by recent work
on piano music transcription (Sigtia, Benetos, and Dixon
2016) and video sequence prediction (Finn, Goodfellow, and
Levine 2016). In the next subsections, we will first discuss
the convolutional autoencoder, followed by an in-depth de-
scription of the LSTM network.

Figure 3: An illustration of the first layer CNN in the autoen-
coder.

Convolutional autoencoder

An autoencoder is a popular technique that takes advantage
of unsupervised learning to build an efficient representation
of the input. It has been used in various applications includ-
ing information retrieval (Salakhutdinov and Hinton 2009)

and text generation (Li, Luong, and Jurafsky 2015). Uses
of autoencoders include feature detection and dimension re-
duction, but it has recently also been used as part of genera-
tive models (Kingma and Welling 2013).

The main idea of an autoencoder is to learn a model that
first encodes the input into an abstract representation such
that this abstract representation can then be decoded and re-
stored back to the original input as close as possible (Good-
fellow, Bengio, and Courville 2016). In this paper, the input
consists of a tonnetz matrix X, as shown in Figure 2 (a), and
the loss function is defined as the sigmoid cross entropy be-
tween X and the encoded/decoded version X’.

The autoencoder consists of two convolutional layers
(LeCun 1989) for encoding and one fully-connected layer
for decoding. Each encoding layer has two components: a
convolution layer and a pooling layer. In a convolution layer,
each neuron is connected to a local receptive field (kernel)
with size of 3-by-3 in the tonnetz matrix, as shown in the
dashed box on the input tonnetz matrix in Figure 3 (a). This
size is chosen based on the number of pitches in a triad. The
stride, the distance between two consecutive receptive fields,
is set to 1 in both vertical and horizontal directions. A non-
linear activation function (rectified linear unit) is added to
the convolution layer in order to generate feature maps as
output, see Figure 3 (b). A pooling layer, immediately placed
after the convolution layer, produces a condensed version of
the feature maps as shown in Figure 3 (c).

Given a tonnetz matrix X and a kernel K with a size of m-
by-n, m = n = 3, the value in the cell (i, j) of the convolution
layer C in Figure 3 (b) is calculated as follows:

C(i, j) =
∑

m

∑

n

X(i+m, j + n)×K(m,n) (1)

In this paper, we tested two pooling strategies, including
max pooling and average pooling. We also tested the effect
of the number of feature maps in each convolution layer.
Besides these testing parameters, others are pre-determined
as follows: the size of the pooling window is set to 2-by-2 in

2161



the first layer, and to 2-by-1 in the second layer. The stride
of the pooling window is set in a similar fashion. Given a 24-
by-12 tonnetz matrix, such settings result in 12-by-6 feature
maps after the first layer, and 6-by-6 after the second layer.

To examine the effect of the autoencoder in the architec-
ture, we tested three configurations: no autoencoder (LSTM
only); training the entire network together (autoencoder +
LSTM); and pre-training the autoencoder and then freez-
ing the weights of the autoencoder when training the LSTM.
The experiment results are described in the Experiments and
Results section. The next section discusses how LSTMs are
used for modeling temporal relations in musical sequences.

Predicting music sequences with LSTMs

In this paper, polyphonic compositions are segmented into
sequences of n tonnetz matrices using overlapped sliding
windows. The proposed predictive modeling system outputs
Xn’ aiming to predict the tonnetz matrix Xn given the pre-
ceding sequence {X1, ..., Xn-1}, as shown in Figure 2 (b).

A recurrent neural network approach is implemented
to capture the temporal nature of musical sequences.
RNNs (Rumelhart, Hinton, and Williams 1988) are able to
capture temporal information by defining a recurrence rela-
tion over the time steps k:

Sk = f(Sk−1 ×Wr +Xk ×Wx), (2)

whereby Sk is the state at time k, Xk is the input at time k,
and Wr and Wx are weight parameters. The state Sk of the
network changes over time due to this recurrence relation
and receives feedback with a delay of one time step, which
makes it, in essence, a state model with a feedback loop (see
Figure 4). The unfolded network can be seen as an (n + 1)
layer neural network with shared weights Wr and Wx.

Figure 4: Recurrent neural network unfolding, illustrated
based on (Goodfellow, Bengio, and Courville 2016).

Standard recurrent neural networks, however, are no-
toriously hard to train using back propagation due to
the vanishing gradient problem when modeling long se-
quences (Rumelhart, Hinton, and Williams 1988). In this
well-known problem, the gradient grows or decays expo-
nentially as it is propagated through the network (Bengio,
Simard, and Frasconi 1994). Approaches that aim to avoid
this problem use better optimization algorithms with higher-
order information (Martens and Sutskever 2011), however,

this requires a significant increase in computing power. We
therefore opted to use LSTM cells, which offer a way around
this as their architecture explicitly avoids the vanishing gra-
dient problem while preserving the training algorithm.

LSTM is a type of recurrent neural network developed by
(Hochreiter and Schmidhuber 1997). It is particularly strong
at modeling temporal sequences and their long-range depen-
dencies, even more so than conventional RNNs (Sak, Senior,
and Beaufays 2014). They have been successfully used in
applications such as speech recognition (Graves, Mohamed,
and Hinton 2013); sequence to sequence generation: text
translation (Sutskever, Vinyals, and Le 2014); image cap-
tion generation (Vinyals et al. 2015); hand writing genera-
tion (Graves 2013), Image generation (Gregor et al. 2015);
and video to text transcription (Venugopalan et al. 2015).

The vanishing gradient problem is directly avoided by
LSTM cells, by implementing a unit known as “constant
error carousel” (CEC) with a weight set to 1.0. This CEC,
together with input and output gates, control the error flow
and enforces the gradient to be constant. This basic LSTM
cell was later expanded to include strategies such as for-
get gates (Gers and Schmidhuber 2001), peepholes (Gers,
Schraudolph, and Schmidhuber 2002), clipping and projec-
tion (Sak, Senior, and Beaufays 2014). For a full mathe-
matical description of the inner workings of LSTM cells,
the reader is referred to (Hochreiter and Schmidhuber 1997;
Graves and Schmidhuber 2005).

The LSTM network implemented in this research uses
standard LSTM cells and consists of three hidden layers.
The loss function is calculated with a sigmoid of the cross
entropy between the predicted next tonnetz and the actual
next tonnetz. In the next section, we describe a number of
experiments that test the effectiveness and efficiency of the
proposed architecture, together with their results.

Experiments and Results

The MuseData dataset published by Boulanger-
Lewandowski, Bengio, and Vincent (2012), a collection of
musical pieces in MIDI format, was used to evaluate our
proposed architecture in the experiments described below.
This dataset is already divided into training (524 pieces),
validation (135 pieces), and test (124 pieces) sets with com-
positions by various composers including Bach, Beethoven,
Haydn, and Mozart. Each composition is represented as a
sequence of sets of pitches played at each beat.

First, the training set was used to train the network in the
experiment. The effectiveness and efficiency of the tonnetz-
based autoencoder was evaluated through the validation and
test sets, followed by a visualization of the feature maps of
certain chords and filters of the trained model. Finally, the
proposed tonnetz-based representation was compared with a
model that implements pianoroll using the test set.

Tonnetz-based autoencoder

Figure 5 shows the loss function, evaluated using the val-
idation set, during the training of the autoencoder for two
different pooling strategies. Table 1 shows the different pa-
rameter settings that are evaluated for the convolution layers.

2162



As expected, increasing the number of feature maps results
in lower average loss. However, these losses converge as the
number of training epochs increases. When comparing the
pooling strategies, max pooling generally outperforms aver-
age pooling. Based on these experimental results, we chose
the following parameters to avoid overfitting: (20, 10) for the
numbers of feature maps in layers 1 and 2, with 10 epochs.

No. of maps/Test no. 1 2 3 4 5

Convolution layer 1 40 20 10 10 5
Convolution layer 2 20 10 10 5 5

Table 1: Different values tested for the number of feature
maps in the convolution layers of the autoencoder.

To study the effectiveness of the tonnetz-based autoen-
coder, three configurations were tested of which the results
are shown in Figure 6. The x-axis shows the number of train-
ing batches, each of which consists of 500 instances. The
y-axis shows the cross entropy loss on the test set using the
model that trained on the training set with specific training
epochs. As shown in Figure 6, the system with pre-trained
autoencoder converges much quicker than the other two con-
figurations. The observed benefit of quick convergence from
the pre-trained tonnetz-based autoencoder is especially de-
sirable when training on a much larger dataset.

Figure 5: Evolution of loss on the validation set during
the training of the tonnetz-based autoencoder with different
pooling strategies.

Figure 6: Comparisons between the three settings of the sys-
tem: LSTM only (no autoencoder), autoencoder (no pre-
training) and LSTM (train together), and pre-trained autoen-
coder and LSTM (train separately) on the test set.

Visualizing feature maps and filters in autoencoder

To gain insight in the workings of the autoencoder, Figure 7
visualizes the first 5 (out of 10) outputs from the second con-
volution layer of the autoencoder for the triads C major, G
major, C diminished, and G diminished. Grey scale is used
to visualize the values, ranging from black (0) to white (1).
The figure reveals some relationships between the first two
chords (major triads) and the latter two chords (diminished
triads), both a fifth apart. When examining feature maps 2, 3,
and 4 for the diminished chords, a clear shift of 1 unit down
can be noticed between Cdim and Gdim, indicating that a
transposition of a fifth is captured by a downward shift in
layer 2. A similar relationship can be observed between the
major triads of C and G, for instance, as indicated in map 2.

Note that the precise semantic meaning of such feature
maps is difficult to pinpoint and may not exist. However,
similar patterns observed among chords sharing the same
quality show that the tonnetz-based autoencoder is capable
of capturing chordal nature in music.

Figure 7: First 5 feature maps from the second convolution
layer of the autoencoder for the chords C (row 1), G (row 2),
Cdim (row 3), and Gdim (row 4).

Compared to feature maps, the filters of the first layer of
the autoencoder are typically easier to interpret. Figure 8
shows these filters (the first 10 out of 20, due to space con-
straints) for a model trained on the same dataset as above.
These filters clearly reflect specific musical properties. For
instance, horizontal highlighted lines (e.g. Filter 3, 6, 7 and
9) show steps in the circle of fifths. When two positions are
highlighted right above each other, such as in Filter 3 and 4

2163



this indicates a third relationship. This confirms that using
a tonnetz-representation facilitates the model to learn musi-
cally meaningful features.

Figure 8: First layer filters in the autoencoder. The figure
shows the first 10 out of 20 filters.

Tonnetz versus Pianoroll representations

In order to thoroughly evaluate the validity of the tonnetz
representation, an experiment was set up to compare the ton-
netz approach with a commonly used representation, namely
pianoroll (Boulanger-Lewandowski, Bengio, and Vincent
2012; Sigtia, Benetos, and Dixon 2016). The pianoroll rep-
resentation describes music as a sequence of vectors, each of
length 88, which uses binary values to indicate if each pitch
on a 88-key piano is played at a particular time slice.

In order to properly evaluate the effect of the input repre-
sentation, we use the same network structure for both ton-
netz and pianoroll representations, with the exception that
we use a one-dimensional CNN for pianoroll instead of a
two-dimensional CNN. Two types of experiments are con-
ducted in this section: a first one evaluating predictive mod-
eling (predicting the next frame given a historical context)
and secondly, music generation (generating a sequence of
notes given a seed segment).

Predictive modeling In the first experiment on predictive
modeling, the next tonnetz is predicted based on a given his-
torical context (previous slices) for each tonnetz in the test
set. Generic evaluation metrics such as cross entropy, preci-
sion, and recall did not indicate significant differences in the
predictive results between the two representations. However,
when the predictions of two models are compared using
music-specific metrics (i.e., musical tension), a significant
difference is found. The tension model developed by (Her-
remans and Chew 2016) was used to capture three elements
of tonal tension: cloud diameter (CD), a measure for dis-
sonance; cloud momentum (CM), which indicates changes
in tonality; and tensile strain (TS), the tonal distance to the
global key of the piece.

To focus on the difference between tonnetz and pianoroll,
we only examine the predictive results where the num-
ber of pitches that are different between tonnetz and pi-
anoroll results is greater than the number of pitches they
have in common. This reduces the number of predictions
to one-third of the test set. The boxplots in Figure 9 visu-
alize the three aspects of tonal tension for the predictions
of both the pianoroll and the tonnetz model. In the case

Figure 9: Boxplots for three tension characteristics of the
pianoroll and tonnetz-based models. For each of these char-
acteristics, pianoroll values are significantly higher than ton-
netz (p < 0.001).

of a tonnetz-based representation, the predicted next slices
generally have lower tension values, especially in the case
of Cloud diameter (dissonance) and Tensile strain (distance
from the key). This indicates that the tonnetz model leads to
a more stable tonal predictions.

Generating new pieces In the second experiment the fo-
cus lies on evaluating newly generated musical pieces. A to-
tal of 248 new pieces (124 for each approach) were gener-
ated by seeding 16 beats from the original composition to the
model. A sliding window approach is used to continuously
generate notes by using the generated notes as the historical
context for the future. The new pieces were evaluated using
a collection of musical attributes: compression ratio, tonal
tension, and interval frequencies.

Firstly, the compression ratio of the generated midi files
was calculated using COSIATEC, a compression algorithm
that has previously been used for discovering themes and
sections (Meredith 2015) and constraining patterns in mu-
sic generation (Herremans and Chew 2017). Given the cur-
rent challenge in the field of music generation of generating
pieces with long-term structure and repeated patterns (Her-
remans, Chuan, and Chew 2017), the compression ratio can
give us insight in the ability of the LSTM to generate re-
peated patterns. The results in Table 2 indicate that the gen-
erated pieces with the tonnetz representation have a signifi-
cantly higher compression ratio. This indicates the presence
of a larger structure and more repetition.

Pianoroll Tonnetz p-value

Compression ratio 2.232 2.266 0.0307
Tension: CD 0.950 0.804 < 0.001
Tension: CM 0.491 0.396 < 0.001
Tension: TS 0.615 0.514 < 0.001

Table 2: Comparison of musical characteristics of generated
sequences based on pianoroll and tonnetz representation. p-
values of a paired t-test are displayed in the last column.

Similar to the predictive results, the tonal tension for the
generated pieces with tonnetz-representation is consistently

2164



(a) Chromatic movement (b) Stepwise motion (c) Thirds (d) Perfect fourths

(e) Perfect fifths (f) Sixths (g) Sevenths (h) Octaves

Figure 10: Frequency of melodic intervals with the number of songs on the y-axis and the frequency on the x-axis. Red is
tonnetz, blue is pianoroll representation.

lower. This is also reflected by the frequencies of musical
intervals extracted with jSymbolic2 (McKay, Tenaglia, and
Fujinaga 2016), as depicted in Figure 10. Most notably, re-
sults from the tonnetz-model seem to include more intervals
such as octaves and perfect fourths, and less stepwise mo-
tion, sixths and sevenths. It is not a given that tonal stabil-
ity and low tension is something that is desired in all musi-
cal pieces, as this is strongly dependant on the composer’s
wishes and the style of the piece. However, this may be an
important consideration to be taken into account when se-
lecting to work with either tonnetz or pianoroll models.

The code implemented in this paper is made available on-
line1. The reader is invited to listen to audio files of the gen-
erated pieces available online at the Computer-Generated
Music Repository2.

Conclusions

In this paper, a predictive deep network with a music-theory
inspired representation is proposed for modeling polyphonic
music. In the presented approach, music is first converted
into a sequence of tonnetz matrices, which serves as input
for an autoencoder. This autoencoder, which consists of mul-
tilayered CNNs, captures the relationship between pitches in
tonal space. The output of the autoencoder is fed to a recur-
rent neural network with LSTM cells in order to model the
temporal dependencies in the sequence. The nature of the
proposed tonnetz-based autoencoder was studied in a num-
ber of experiments using the MuseData dataset. We found
that, on average, a max pooling strategy is most effective and
a pre-trained tonnetz-based autoencoder helps the LSTM to
converge quicker. In addition to these results, a visualiza-
tion of feature maps and filters in the trained autoencoder
show they reflect musical properties such as intervals. Fi-
nally, predictive results for the tonnetz-model was compared
with a pianoroll approach. This showed that sequences gen-

1http://sites.google.com/view/chinghuachuan/
2http://dorienherremans.com/cogemur

erated based on tonnetz were generally more tonally sta-
ble and contained less tension. They also had a significantly
higher compression ratio, which indicates that they contain
more repeated patterns and structure. In sum, by integrat-
ing a tonnetz representation, which embeds domain specific
knowledge, in an LSTM, which is able to model temporal
dependencies, we were able to develop a stronger model of
music. This will be useful for tackling remaining challenges
in the field of AI and music.

In future research, it would be interesting to test the pro-
posed model on larger datasets of different music styles and
genres. The ability of the model to fully capture musical
sequences may also be further improved by experimenting
with incorporating expanded LSTM cells into the model.

References

Bengio, Y.; Simard, P.; and Frasconi, P. 1994. Learning
long-term dependencies with gradient descent is difficult.
IEEE transactions on neural networks 5(2):157–166.
Bergstrom, T.; Karahalios, K.; and Hart, J. C. 2007. Iso-
chords: visualizing structure in music. In Proc. of Graphics
Interface 2007, 297–304. ACM.
Boulanger-Lewandowski, N.; Bengio, Y.; and Vincent, P.
2012. Modeling temporal dependencies in high-dimensional
sequences: Application to polyphonic music generation and
transcription. In Proc. of the 29th Int. Conf. on Machine
Learning, 1159–1166. ICML.
Brooks, F. P.; Hopkins, A.; Neumann, P. G.; and Wright, W.
1957. An experiment in musical composition. IRE Transac-
tions on Electronic Computers (3):175–182.
Cohn, R. 1997. Neo-riemannian operations, parsimonious
trichords, and their” tonnetz” representations. Journal of
Music Theory 41(1):1–66.
Eck, D., and Schmidhuber, J. 2002. Finding temporal struc-
ture in music: Blues improvisation with lstm recurrent net-
works. In Proc. of the 12th IEEE Workshop on Neural Net-
works for Signal Processing, 747–756.

2165



Euler, L. 1926. Tentamen novae theoriae musicae. leonhardi
euleri opera omniae.
Finn, C.; Goodfellow, I.; and Levine, S. 2016. Unsupervised
learning for physical interaction through video prediction. In
Advances In Neural Information Processing Systems, 64–72.
Gers, F. A., and Schmidhuber, E. 2001. Lstm re-
current networks learn simple context-free and context-
sensitive languages. IEEE Transactions on Neural Networks
12(6):1333–1340.
Gers, F. A.; Schraudolph, N. N.; and Schmidhuber, J. 2002.
Learning precise timing with lstm recurrent networks. Jour-
nal of machine learning research 3(Aug):115–143.
Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. MIT Press.
Graves, A., and Schmidhuber, J. 2005. Framewise phoneme
classification with bidirectional lstm and other neural net-
work architectures. Neural Networks 18(5):602–610.
Graves, A.; Mohamed, A.-r.; and Hinton, G. 2013. Speech
recognition with deep recurrent neural networks. In Acous-
tics, speech and signal processing (icassp), 2013 ieee inter-
national conference on, 6645–6649. IEEE.
Graves, A. 2013. Generating sequences with recurrent neu-
ral networks. arXiv preprint arXiv:1308.0850.
Gregor, K.; Danihelka, I.; Graves, A.; Rezende, D.; and
Wierstra, D. 2015. Draw: A recurrent neural network for
image generation. In Proceedings of the 32nd International
Conference on Machine Learning (ICML-15), 1462–1471.
Harte, C.; Sandler, M.; and Gasser, M. 2006. Detecting
harmonic change in musical audio. In Proc. of the 1st ACM
workshop on Audio and music computing multimedia, 21–
26. ACM.
Herremans, D., and Chew, E. 2016. Tension ribbons: Quan-
tifying and visualising tonal tension. In Second Interna-
tional Conference on Technologies for Music Notation and
Representation (TENOR), volume 2, 8–18.
Herremans, D., and Chew, E. 2017. Morpheus: generat-
ing structured music with constrained patterns and tension.
IEEE Transactions on Affective Computing PP:99.
Herremans, D., and Chuan, C.-H. 2017. Modeling musical
context with word2vec. In Proc. of the first Int. Workshop
On Deep Learning and Music, volume 1, 11–18.
Herremans, D.; Weisser, S.; Sörensen, K.; and Conklin, D.
2015. Generating structured music for bagana using qual-
ity metrics based on markov models. Expert Systems with
Applications 42(21):7424–7435.
Herremans, D.; Chuan, C.-H.; and Chew, E. 2017. A func-
tional taxonomy of music generation systems. ACM Com-
puting Surveys 50:69:1–30.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Huang, C.-Z. A.; Duvenaud, D.; and Gajos, K. Z. 2016.
Chordripple: Recommending chords to help novice com-
posers go beyond the ordinary. In Proc. of the 21st Int. Conf.
on Intelligent User Interfaces, 241–250. ACM.

Kingma, D. P., and Welling, M. 2013. Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.
Kirlin, P. B., and Jensen, D. D. 2015. Using supervised
learning to uncover deep musical structure. In Proceedings
of the 29th AAAI Conf. on Artificial Intelligence, 1770–1776.
LeCun, Y. 1989. Generalization and network design strate-
gies. Connectionism in perspective 143–155.
Li, J.; Luong, M.-T.; and Jurafsky, D. 2015. A hierarchical
neural autoencoder for paragraphs and documents. arXiv
preprint arXiv:1506.01057.
Martens, J., and Sutskever, I. 2011. Learning recurrent neu-
ral networks with hessian-free optimization. In Proceedings
of the 28th International Conference on Machine Learning
(ICML-11), 1033–1040.
McKay, C.; Tenaglia, T.; and Fujinaga, I. 2016. jSymbolic2:
Extracting features from symbolic music representations. In
Late-Breaking Demo Session of the 17th International Soci-
ety for Music Information Retrieval Conference.
Meredith, D. 2015. Music analysis and point-set compres-
sion. Journal of New Music Research 44(3):245–270.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
ficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.
Qi, Y.; Paisley, J. W.; and Carin, L. 2007. Music analysis
using hidden markov mixture models. IEEE Transactions
on Signal Processing 55(11):5209–5224.
Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1988.
Learning representations by back-propagating errors. Cog-
nitive modeling 5(3):1.
Sak, H.; Senior, A.; and Beaufays, F. 2014. Long short-term
memory recurrent neural network architectures for large
scale acoustic modeling. In Fifteenth Annual Conference
of the International Speech Communication Association.
Salakhutdinov, R., and Hinton, G. 2009. Semantic hashing.
Int. J. of Approx. Reas. 50(7):969–978.
Schellenberg, E. G. 1996. Expectancy in melody: Tests of
the implication-realization model. Cognition 58(1):75–125.
Sigtia, S.; Benetos, E.; and Dixon, S. 2016. An end-to-
end neural network for polyphonic piano music transcrip-
tion. IEEE/ACM Transactions on Audio, Speech and Lan-
guage Processing (TASLP) 24(5):927–939.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In Advances in
neural information processing systems, 3104–3112.
Venugopalan, S.; Rohrbach, M.; Donahue, J.; Mooney, R.;
Darrell, T.; and Saenko, K. 2015. Sequence to sequence-
video to text. In Proceedings of the IEEE International Con-
ference on Computer Vision, 4534–4542.
Vinyals, O.; Toshev, A.; Bengio, S.; and Erhan, D. 2015.
Show and tell: A neural image caption generator. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 3156–3164.

2166


