
DeepRebirth: Accelerating Deep
Neural Network Execution on Mobile Devices

Dawei Li,1 Xiaolong Wang,1 Deguang Kong
1Samsung Research America, Mountain View, CA

{xiaolong.w, dawei.l}@samsung.com, {doogkong}@gmail.com

Abstract

Deploying deep neural networks on mobile devices is a chal-
lenging task. Current model compression methods such as
matrix decomposition effectively reduce the deployed model
size, but still cannot satisfy real-time processing requirement.
This paper first discovers that the major obstacle is the ex-
cessive execution time of non-tensor layers such as pooling
and normalization without tensor-like trainable parameters.
This motivates us to design a novel acceleration framework:
DeepRebirth through “slimming” existing consecutive and
parallel non-tensor and tensor layers. The layer slimming is
executed at different substructures: (a) streamline slimming
by merging the consecutive non-tensor and tensor layer verti-
cally; (b) branch slimming by merging non-tensor and tensor
branches horizontally. The proposed optimization operations
significantly accelerate the model execution and also greatly
reduce the run-time memory cost since the slimmed model
architecture contains less hidden layers. To maximally avoid
accuracy loss, the parameters in new generated layers are
learned with layer-wise fine-tuning based on both theoretical
analysis and empirical verification. As observed in the exper-
iment, DeepRebirth achieves more than 3x speed-up and 2.5x
run-time memory saving on GoogLeNet with only 0.4% drop
on top-5 accuracy in ImageNet. Furthermore, by combining
with other model compression techniques, DeepRebirth of-
fers an average of 106.3ms inference time on the CPU of
Samsung Galaxy S5 with 86.5% top-5 accuracy, 14% faster
than SqueezeNet which only has a top-5 accuracy of 80.5%.

Introduction

Recent years have witnessed the breakthrough of deep learn-
ing techniques for many computer vision tasks, e.g., im-
age classification (Krizhevsky, Sutskever, and Hinton 2012;
Szegedy et al. 2014), object detection and tracking (Ren et
al. 2015; Yu et al. 2016; Du et al. 2017), video understand-
ing (Donahue et al. 2015; Li et al. 2017), content genera-
tion (Goodfellow et al. 2014; Zhang, Song, and Qi 2017),
disease diagnosis (Shen, Wu, and Suk ; Zhang et al. 2017)
and privacy image analytics (Tran, Kong, and Liu 2016).
More and more mobile applications adopt deep learning
techniques to provide accurate, intelligent and effective ser-
vices. However, the execution speed of deep learning models

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An illustration of proposed DeepRebirth model ac-
celeration pipeline. DeepRebirth optimizes a trained deep
learning model (left) to an accelerated “slim” model (right).
Such optimization is achieved with two operations: Stream-
line Slimming which absorbs non-tensor layers (i.e., pool-
ing and normalization) to their bottom convolutional layer
(in light blue background) and Branch Slimming which ab-
sorbs non-tensor branches and convolutional branches with
small convolution filters (e.g., 1x1) to a convolutional branch
with large convolution filter (e.g., 5x5) (in light yellow back-
ground). We name new generated layers as slim layers.

on mobile devices becomes a bottleneck for deployment of
many applications due to limited computing resources.

In this paper, we focus on improving the execution effi-
ciency of deep learning models on mobile devices, which is a
highly intriguing feature. Here we define the execution effi-
ciency as the model inference speed, the energy cost and the
run-time memory consumption. In reality, it takes more than
651ms to recognize an image using GoogleNet on Samsung
S5 (Table 4) with 33.2 MB run-time memory and 984mJ en-
ergy costs (Table 5). The effective solution is expected to
provide minimum accuracy loss by leveraging widely used
deep neural network architectures (such as GoogLeNet and
ResNet) with support of deep model acceleration on differ-
ent types of layers.

Excessive execution time in Non-tensor layers

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

2322

(a) AlexNet (b) GoogLeNet (c) ResNet-50

Figure 2: Time Decomposition for each layer. Non-tensor layers (e.g., dropout, ReLU, LRN, softmax, pooling, etc) shown in
red color while tensor layers (e.g., convolution, inner-product) shown in black color.

Table 1: Compare DeepRebirth with Existing Acceleration
Methods on CPU of Samsung Galaxy S5 Mobile Device.

Parameter Compression1

(Kim et al. 2015)

SqueezeNet
(Iandola et al. 2016)

MobileNet2

(Howard et al. 2017)

DeepRebirth
(ours)

Accuracy 85.7% 80.3% 83.7% 86.5%
Execution Time 558.3 ms 122.7 ms 109.5 ms 106.3 ms

Energy Cost 902 mJ 288 mJ 243 mJ 226 mJ
Memory Cost 35.8 MB 36.5 MB 22.6 MB 14.8 MB

In this work, we find that non-tensor layers consume too
much time in model execution (shown in Fig. 2) where
tensor layer and non-tensor layer are defined based on
whether the layer contains tensor-type parameters. For ex-
ample, fully connected layers and convolutional layers are
tensor layers since they contain 2-d and 4-d tensor-type
weight parameters, respectively. Whereas pooling layer and
LRN layer are both non-tensor layers because they do not
contain any high-order tensor-type weight parameters. Mo-
tivated by this, this paper proposes DeepRebirth, a new deep
learning model acceleration framework that significantly re-
duces the execution time on non-tensor layers. In partic-
ular, we paid our efforts in two directions: (a) streamline
slimming; (b) branch slimming. In streamline slimming, the
new tensor layers are re-generated by substituting the orig-
inal non-tensor layers and their neighborhood tensor lay-
ers in the feed-forward model (shown in Figure 3), while
in branch slimming, the newly generated tensor layers are
created by fusing non-tensor branches with their parallel
tensor branches horizontally (shown in Figure 4, such as
the inception module in GoogLeNet (Szegedy et al. 2014)).
Overall, reducing the execution time on non-tensor lay-
ers can greatly reduce the model inference time given the
fact that tensor-layer has been able to get optimized to the
minimum as suggested by (Han, Mao, and Dally 2016;
Kim et al. 2015). Finally, we can combine both non-tensor
and tensor layer optimization and further reduce the latency
as well as the model size.

1The accuracy reported here is based on an compression rate
of roughly 50%. In the original paper, the authors reported a small
0.24% accuracy loss with compressed rate 31.9%. For our model at
the same 31.9% compression rate, we also only have a small 0.31%
accuracy loss.

Difference with existing works The central idea of Deep-
Rebirth is based on the acceleration of non-tensor layers be-
cause non-tensor layers are major obstacles for real-time
mobile CPU execution (§). Compared to existing works,
(Han, Mao, and Dally 2016; Kim et al. 2015; Yu et al.
2017) are designed to reduce the model size by approxi-
mating the tensor-type layers using methods like low rank
approximation and quantization. For non-tensor layers (e.g.,
normalization and pooling layers) which are generally de-
signed and used for speeding up the network training and ob-
taining better generalization performance, optimization for
faster execution has not been discussed so far. In this pa-
per, we emphasize and validate experimentally that the pro-
posed method is orthogonal to compression techniques on
tensor-type layers. Consequently, our method can be com-
bined with these techniques for further acceleration.

To summarize, we make the following contributions:

• DeepRebirth is the first work that identifies the exces-
sive execution time of non-tensor layers is the major obstacle
for real-time deep model processing on mobile devices.

• DeepRebirth is also the first work that focuses on opti-
mizing non-tensor layers and significantly accelerates a deep
learning model on mobile devices while reducing the re-
quired runtime-memory with less layers.

• DeepRebirth performs both streamline slimming and
branch slimming by merging non-tensor layers with its
neighboring tensor layers vertically and horizontally, where
the new generated tensor layer parameters are re-trained in
a principled way that achieves the same functionality as the
original layers.

• DeepRebirth obtained the state-of-the-art speeding up
on popular deep learning models with negligible accuracy
loss, which enables GoogLeNet to achieve 3x-5x speed-up
for processing a single image with only 0.4% drop on Top-
5 accuracy on ImageNet without any weights compression
method. DeepRebirth achieves around 106.3 ms for process-
ing a single image with Top-5 accuracy up to 86.5%.

2323

Table 2: Percentage of Forwarding Time on Non-tensor Lay-
ers

Network Intel x86 Arm Titan X

AlexNet 32.08% 25.08% 22.37%
GoogLeNet 62.03% 37.81% 26.14%
ResNet-50 55.66% 36.61% 47.87%

ResNet-152 49.77% N/A 44.49%
Average 49.89% 33.17% 35.22%

Non-tensor layer execution latency

To give a better understanding of the deep learning model
execution latency, we evaluate the execution time cost of
different types of layers within a given network structure on
several major processors (Intel x86 CPU, Arm CPU and Ti-
tan X GPU) using state-of-the-art network structures includ-
ing AlexNet (Figure 2a, (Krizhevsky, Sutskever, and Hinton
2012)), GoogLeNet(Figure 2b, (Szegedy et al. 2014)) and
ResNet(Figure 2c, (He et al. 2015)).

We define “percentage non-tensor layer latency” (denoted
as % Latency) as the time ratio spent on non-tensor layers
across the whole network, i.e.,

% Latency =
Time spent on Non-tensor layer

Time spent over the entire network
, (1)

where larger value indicates the larger execution time cost.
Observations and Insights The results are shown in Fig-

ure 2 and Table 2. We can see, for classical deep mod-
els (e.g., AlexNet), among these non-tensor layers, “LRN”
and “Pooling” layers are major obstacles that slow-down the
model execution. ResNet-50 has abandoned the “LRN” lay-
ers by introducing the batch normalization layer, but the
findings remain valid as it takes up more than 25% of the
time on ARM CPU and more than 40% on Intel x86 CPU
(in Caffe (Jia et al. 2014), it was decomposed into a “Batch-
Norm” layer followed by a “Scale” layer as shown in Figure
2c). The time fraction spent over such layers ranges from
22.37% to 62.03%. Among different types of processors,
non-tensor layers have the largest impact on Intel x86 CPUs,
and more specifically 62.03% of the computing time. On the
other hand, although non-tensor layers do not have as high
affect on the mainstream ARM CPUs, on average they still
cost about 1/3 of the computing time. Therefore, there is
a great potential to accelerate models by optimizing non-
tensor layers.

DeepRebirth

To reduce the inference time on non-tensor layers, we pro-
pose DeepRebirth to accelerate the model execution at both
streamline substructure and branching substructure. The
idea of our method is to merge these highly correlated layers
and substitute them as a new “slim” layer from the analysis
and modeling of the correlations of the current layer and pre-
ceding layers (or parallel layers). As in general deep learning

2We use the Caffe implementation of 0.5 MobileNet-224 which
has similar speed with our model.

models, the probability distribution of the dataset can be rep-
resented by these large redundant tensor layers. This process
is similar to viewing the Inception model as a logical cul-
mination as suggested by (Arora et al. 2013). DeepRebirth
covers two major components: (a) streamline slimming; (b)
branch slimming; which will be illustrated in the following.

Streamline Slimming

For deep network architecture with streamline layer connec-
tions, in order to accelerate the execution, we first identify
the layers which have large latency and redundancy. The
slimming design is motivated by the key observations:

• Non-tensor layers usually follow a tensor layer such as
convolution layer as shown in Figure 3.

• Several consecutive layers can be viewed as a black box
for non-linear transformations, and therefore this can be re-
placed by a new tensor-layer by parameter learning to simu-
late the functionality of original several layers (Figure 3).

Method The streamline slimming regenerates a new ten-
sor layer (i.e., slim layer) by merging non-tensor layers with
its bottom tensor units in the feed-forward structure. After
layer-wise regeneration, we retrain the deep neural network
model by fine-tuning the parameters of the new generated
layers. There are two types of streamline slimming in the
proposed scheme. The choice of operation depends on the
type of non-tensor layers.

• Pooling Layer: The pooling layer down-samples feature
maps learned from previous layers. Therefore, to absorb a
pooling layer to a convolution layer, we remove the pooling
layer and set the stride value of the new convolution layer as
the product of the stride values for both the original pooling
layer and the convolution layer. With a larger stride value
for the new slim layer, it further reduces the computation
required for executing the new model.

• Non-Pooling Layer: For non-pooling layers such as
LRN and batch normalization, we directly prune those lay-
ers from the original deep neural network.

Example Figure 3 illustrates how the streamline slim-
ming works. This is one representative part in GoogLeNet
where the convolution layer conv2/3 × 3 is followed by a
LRN layer conv2/norm2 and a pooling layer poo2/3×3 s2
(The ReLU layer with negligible latency is retained to keep
accuracy). Before processing, the 2 non-tensor layers with-
out a single learned parameter weight take even more time
than running the convolution layer. After slimming, we gen-
erate a new slim convolution layer conv2/3× 3 merge, the
time spent on the new layer is greatly reduced compare to
original layers.

Theoretical analysis Given the input image Xi, after sev-
eral tensor and non-tensor layers, we can get the output fea-
ture map Y i

CNN. More mathematically,

Xi fconv−−→ Y i
cv

fbn−−→ Y i
cv+bn

fsl−→ Y i
cv+bn+sl

fpooling−−−→ Y i
cv+bn+sl+pl

.−→ := Y i
CNN (2)

where fconv, fbn, fsl, and fpooling denote convolution layer,
batch normalization layer, scaling layer and pooling layer
respectively. There could be other types of layers in the

2324

Figure 3: Streamline Slimming: The GoogLeNet example
and the running time is measured using bvlc googlenet
model in Caffe on a Samsung Galaxy S5. Left panel: convo-
lution (in green), LRN (in red), pooling (in red). Right Panel:
single convolution layer. The three layers in the left panel
are merged and regenerated as a convolution layer (i.e., slim
layer) in the right panel.

pipeline such as LRN layer fLRN. The layer parameters are
represented by: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

fconv : Wconv,Bconv;

fbn : m, μ, σ2;

fsl : γ, β;

fpooling : p;

fLRN : κ, ρ α.

· · ·

(3)

where Wconv, Bconv represent convolution layer weight and
bias matrix respectively, μ, σ2 and m are mean, variance,
and sample number in mini-batch of normalization layer fbn,
γ and β are scaling weight and bias in scaling layer fsl re-
spectively, p represents the nearby p regions in pooling layer
fpooling, and κ, ρ and α are consecutive feature channel pa-
rameters and normalization parameters in LRN layer fLRN.

To achieve the desired functionality with acceleration, the
idea is to find a new mapping function

f̃(W̃, B̃) : Xi → Y i
CNN,

such that it can get the same feature map value Y i
CNN given

the same input feature map Xi for any image i. Note that
operations in Eq.(2) transform the feature maps using con-
volution operations before changing the distributions of ac-
tivations to avoid “Internal covariate shift” in batch normal-
ization (Ioffe and Szegedy 2015) at min-batch level, which
can be viewed as a new “scaling convolution” which trans-
forms the input features in the fully connected layers, and
therefore we build a single unique convolution operation that
replaces several non-tensor layers by setting the new opti-
mization goal, i.e.,

f̃(W̃, B̃) =: ˜fconv(˜Wconv, ˜Bconv); (4)

Clearly, the optimal solution is given by:

(W̃∗, B̃∗) = argminW,B

∑
i

‖Y i
CNN − f̃(W,B;Xi)‖2F . (5)

More formally, we have lemma 1.

Lemma 1. Given the input/output feature map pairs
(Xi, Y i) ∀i, operations on the convolution layers followed
by non-tensor layers (e.g., normalization layer in Eq. 3)
can be re-trained by learning the new convolution layer
f̃(W̃, B̃) via Eq.(5) using SGD.

The proof is obvious and therefore we skip it here. In par-
ticular, we have lemma 2.

Lemma 2. Let Wj , Bj , μj , σ2
j , γj and bj be the corre-

sponding j-th dimension in the reshaped weight vector or
bias vector in Eq.(3), and W̃j , B̃j be the learned new convo-
lution layer parameter in Eq.(5). Then, if Y i

CNN is obtained
after the three layers of fconv, fbn, fsl in the sequence order,
i.e., Y i

CNN := Y i
cv+bn+sl, we have closed form solution for the

parameters in the new convolution layer:

W̃j = ηjWj ,

B̃j = ηjBj + βj − ηj
μj

m
,

ηj =
γj√
σ2
j

m

.

(6)

Proof. Let Yj be the j-th dimension in feature map after

convolution operation in Eqs.(4, 5), i.e., Yj =
(
Y i

CNN

)
j

. On

one hand, based on the definition of convolution operations
(denoted as ∗), we have

Yj = (W̃ ∗X)j + B̃j . (7)

On the other hand, according to the definition of batch nor-
malization (Ioffe and Szegedy 2015) and scaling, we have

Yj = γj
(
fbn · fconv(X)

)
j
+ βj , � Scaling

= γj
(fconv(X)j − μj√

σ2
j

)
+ βj , � BN

= γj
((W ∗X)j +Bj − μj

m√
σ2
j

m

)
+ βj . � Convolution

(8)

Let ηj =
γj√
σ2
j

m

, then Eq.(8) is equivalent to:

Yj = ηj(W ∗X)j︸ ︷︷ ︸
weight

+
(
ηjBj − ηjμj

m
+ βj

)
︸ ︷︷ ︸

bias

.
(9)

Compared to Eq.(7), we have W̃j = ηjWj and B̃j = ηjBj+
βj − ηj

μj

m . This completes the proof.

2325

Figure 4: Branch Slimming: The GoogLeNet example and the running time is measured using bvlc googlenet model in Caffe on
a Samsung Galaxy S5. Left panel: four branches in parallel, convolution layer, convolution + convolution, convolution + con-
volution, convolution + pooling. Right panel: two branches in parallel, convolution + convolution, convolution + convolution.
Two branches are reduced.

Branch Slimming

Given the fact that non-tensor layers require more time on
computation, if we can learn new tensor layers by fusing
non-tensor layers with the tensor units at the same level, then
the the execution time will be decreased. Then we have the
deign of branch slimming.

Example One representative unit is the inception mod-
ule in GoogLeNet. For example, in Figure 4, layer “in-
ception 3a” of GoogLeNet has 4 branches: 3 convolution
branches take feature maps from the bottom layer at vari-
ous scales (1 × 1, 3 × 3 and 5 × 5) and one 3 × 3 pooling
branch (Szegedy et al. 2014). The output feature maps of
each branch are concatenated as input of the following layer.

Method For deep network architecture with parallel
branches, the output of each branch constitutes part of the
feature maps as the input for the next layer. We identify
non-tensor branches that have large latency (e.g., the pool-
ing branch in Figure 4). Similar to streamline slimming, if
we can use a faster tensor branch to simulate the function of
the non-tensor branch by relearning its parameters, we can
achieve clear speed-up.

To absorb a non-tensor branch into a tensor branch, we re-
create a new tensor layer (i.e., slim layer) by fusing the non-
tensor branch and a tensor unit with relatively small latency
to output the feature maps that were originally generated by
the non-tensor branch. If the non-tensor branch has a kernel
size larger than 1×1 (e.g., the 3×3 pooling branch in Figure
4), the picked tensor branch’s kernel size should be at least
the size of the non-tensor branch. As shown in Figure 4, we
re-learn a new tensor layer “inception 3a” by merging the
3 × 3 pooling branch with the 5 × 5 convolution branch at
the same level, and the number of feature maps obtained by
the 5× 5 convolution is increased from 32 to 64.

• Branch Reducing: Current deep neural networks usu-
ally include convolution branches with 1 × 1 convolution
layers (e.g., inception 3a/3x3 reduce in Figure 4) aiming to
reduce feature maps channels. This unit will be processed
by a following convolution layer with larger kernel size. For
greater speed-up, we further reduce the number of feature
maps generated by the 1 × 1 “reducer”. For layer incep-
tion 3a/3x3 reduce, we reduce the number of output feature
maps from 96 to 48.

• Tensor-Branch Slimming: A convolution branch with a
smaller kernel size can be absorbed to a convolution branch
with a larger kernel size. The method is similar to the slim-
ming of non-tensor branches. To keep other layers’ struc-
tures in network unchanged, we remove the small-kernel
convolution branch and increase the number of feature maps
generated by the large-kernel convolution layers. For exam-
ples, for layer inception 3a/3x3 reduce, we remove the 1×1
convolution branch and increase the number of feature maps
generated by the 3× 3 convolution from 128 to 196.

Slimming over tensor-branches should be careful. In
our work, we demonstrate that in GoogLeNet architecture,
the tensor-branch with smaller convolutional kernel can be
slimmed without affecting the performance, and thus we are
able to reduce 4 branches (3 tensor branches and 1 non-
tensor branch) into 2 tensor branches. However, when the
original architecture only has 2 tensor branches (e.g., in
ResNet), slimming any branch will affect the performance.

Branch convolutional layer slimming analysis Let YL
and YR be the feature map learned using convolution layers
respectively given model parameter weight and bias, i.e.,

{
Y i

L = WL ∗Xi +BL; 	 left branch
Y i

R = WR ∗Xi +BR; 	 right branch
(10)

2326

Let Y i
L be the concatenation of feature maps in left and

right branches. We wish to learn a new convolution function
f̂(WLR,BLR), such that

Y i
LR = [Y i

left;Y
i

right], Y i
LR = WLR ∗Xi +BLR, (11)

with Y L
i ∈ RM ′×N ′×K′

L and Y R
i ∈ RM ′×N ′×K′

R having
the same kernel size.

If WL and WR have the same kernel size, we can get

WLR = [Wleft;Wright], BLR = [Bleft;Bright]. (12)

by substituting Eq.(10) into Eq.(11). Otherwise, we need to
adjust YL and YR to the same size and learn the model pa-
rameters by minimizing:

(Ŵ∗LR, B̂∗LR) = argminŴ,B̂

∑
i

‖Y i
LR − (Ŵ ∗Xi

+ B̂)‖2F .

Adapting DeepRebirth to Overall Pipeline

DeepRebirth can be easily applied to a pre-trained deep
learning model as modern deep model architectures are
well-structured with repeating substructures such as the in-
ception module in GoogLeNet and the residual module in
ResNet. Generally, there are three golden rules we need to
follow: (1) identify the repeating substructures, (2) deter-
mine the input dimension and output dimension for each
substructure, and (3) apply either streamline slimming or
branch slimming based on the substructure type.

To reconcile the new learned layer with other parts of
model, one further step is to fine-tuning the model param-
eters3, as suggested in (Yosinski et al. 2014; Razavian et
al. 2014). In DeepRebirth, we leverage Xavier (Glorot and
Bengio 2010) initialization to initialize the parameters in
the new layer while keeping the weights of other layers un-
changed. In the optimization procedure, we set the learn-
ing rate of new layers 10 times over those in other layers
empirically. Generally, the proposed optimization scheme is
applied from the bottom layer to the top layer. Another alter-
native is to learn multiple slim layers at the same time (we
merge and fine-tune 3 sequential inception layers 4b-4d to-
gether for GoogLeNet) or merge layers in sequential orders
other than from bottom to top. We will explore this discus-
sion in our future work.

Evaluation

To evaluate the performance of DeepRebirth, we per-
formed the comprehensive evaluation on top of GoogLeNet,
AlexNet and ResNet. Our implementation is based on
Caffe (Jia et al. 2014) deep learning framework, and we
compile it using Android NDK for mobile evaluation. Open-
BLAS (Xianyi, Qian, and Chothia 2014) is used for efficient
linear algebra calculations.

3One exception is the BatchNorm layer which can be directly
merged to a preceding convolutional layer using Eq.(9)

Table 3: GoogLeNet Accuracy on Slimming Each Layer

Step Slim Layer(s) Top-1 Accuracy Top-5 Accuracy

0 N/A 68.72% 88.89%
1 conv1 68.65% 88.73%
2 conv2 68.66% 88.82%
3 inception 3a 68.35% 88.50%
4 inception 3b 68.21% 88.27%
5 inception 4a 68.34% 88.60%
6 inception 4b-4d 68.31% 88.61%
7 inception 4e 68.26% 88.43%
8 inception 5a 68.22% 88.41%
9 inception 5b 68.03% 88.43%

Tucker Decomposition ALL 66.71% 86.54%

GoogLeNet

We use Caffe’s GoogLeNet implementation (i.e.,
bvlc googlenet) with its pre-trained weights. Then we
apply the proposed DeepRebirth optimization scheme
to accelerate the running speed of GoogLeNet, which is
denoted as “GoogLeNet-Slim”. After non-tensor layer
optimization (streamline and branch slimming), we further
apply tucker decomposition approach (Kim et al. 2015) to
reduce the model size (i.e., the number of learned weights)
by 50%, represented as “GoogLeNet-Slim-Tucker”. In
addition, we directly employ tucker decomposition method
to compress original GoogLeNet. This is indicated as
“GoogLeNet-Tucker”. Thus, we have 4 variations of
GoogLeNet to compare, namely GoogLeNet, GoogLeNet-
Slim, GoogLeNet-Tucker and GoogLeNet-Slim-Tucker.
We also compare with SqueezeNet (Iandola et al. 2016),
a state-of-the-art compact neural network which includes
only 1.2M learnable parameters (vs. 5M for GoogLeNet).

Accuracy We evaluate the accuracy loss in contrast to
original ones after performing the accelerated models. The
accuracy changing along with the optimization steps con-
ducted on ImageNet ILSVRC-2012 validation dataset are
listed in Table 3. During the whole optimization procedure
of model training, we set the base learning rate for the re-
generated layer as 0.01 (the rest layers are 0.001). We apply
stochastic gradient descent training method (Bottou 2012)
to learn the parameters with a batch size of 32. During our
training phase, we set 40,000 as the step size together with
0.1 for gamma value and 0.9 for momentum parameter. At
each step, the model generally converges at around 90,000
iterations (2 epochs).

The result indicates that DeepRebirth has almost negligi-
ble impact on the model accuracy, and the accuracy even
increases at certain step (e.g., step 5). This indicates that
“the new-born” layers perfectly simulate the functionality
of previous non-tensor layers before optimization. By ap-
plying tucker decomposition method on the slim model to
reduce the weights by half (GoogLeNet-Slim-Tucker), we
observe that there is a larger drop on accuracy (around 2%).
However, directly applying tucker decomposition method
(GoogLeNet-Tucker) to reduce the GoogLeNet weights to a
half drops the top-5 accuracy to 85.7%. These results imply
that our method performs reasonable well even after stream-
line and branch slimming.

Speed-Up To evaluate and compare the latency of differ-

2327

Table 4: Layer breakdown of GoogLeNet forwarding time
cost

Layer GoogLeNet
GoogLeNet

-Tucker
GoogLeNet
-Slim (ours)

GoogLeNet
-Slim-Tucker (ours)

conv1 94.92 ms 87.85 ms 8.424 ms 6.038 ms
conv2 153.8 ms 179.4 ms 16.62 ms 9.259 ms

inception 3a 55.23 ms 85.62 ms 21.17 ms 9.459 ms
inception 3b 98.41 ms 66.51 ms 25.94 ms 11.74 ms
inception 4a 30.53 ms 36.91 ms 16.80 ms 8.966 ms
inception 4b 32.60 ms 41.82 ms 20.29 ms 11.65 ms
inception 4c 46.96 ms 30.46 ms 18.71 ms 9.102 ms
inception 4d 36.88 ms 21.05 ms 24.67 ms 10.05 ms
inception 4e 48.24 ms 32.19 ms 28.08 ms 14.08 ms
inception 5a 24.64 ms 14.43 ms 10.69 ms 5.36 ms
inception 5b 24.92 ms 15.87 ms 14.58 ms 6.65 ms

loss3 3.014 ms 2.81 ms 2.97 ms 2.902 ms
Total 651.4 ms 614.9 ms (1.06x) 210.6 ms (3.09x) 106.3 ms (6.13x)

Table 5: Execution time using different methods (including
SqueezeNet) on different processors

Device GoogLeNet
GoogLeNet

-Tucker
GoogLeNet

-Slim
GoogLeNet

-Slim-Tucker
SqueezeNet

Moto E 1168.8 ms 897.9 ms 406.7 ms 213.3 ms 291.4 ms
Samsung Galaxy S5 651.4 ms 614.9 ms 210.6 ms 106.3 ms 136.3 ms
Samsung Galaxy S6 424.7 ms 342.5 ms 107.7 ms 65.34 ms 75.34 ms
Macbook Pro (CPU) 91.77 ms 78.22 ms 23.69 ms 15.18 ms 17.63 ms

Titan X 10.17 ms 10.74 ms 6.57 ms 7.68 ms 3.29 ms

ent optimization approaches, we evaluate the layer-wise run-
ning speed on a Samsung Galaxy S5 smartphone with Caffe.
Each test run includes 50 subtests with a random input and
we report the best test run in terms of forwarding time. Dur-
ing the whole experiment, we turn on the airplane mode and
close all other apps. As demonstrated in Table 4, we observe
that GoogLeNet-Slim is 3x faster than GoogLeNet. In addi-
tion, as pointed (Kim et al. 2015), the original GoogLeNet
model has too many small layers and this results in perfor-
mance fluctuation. In the worst scenario, GoogLeNet takes
around 950 ms for a single forwarding while with reduced
number of layers, GoogLeNet-Slim takes only up to 250
ms, which is almost 4x speed-up. The Tucker Decompo-
sition method further reduces the computation for around
50% at the cost of around 2% accuracy loss. On the other
hand, directly applying tucker decomposition on tensor lay-
ers doesn’t show any significant acceleration.

We evaluate the speed-up on other popular processors be-
sides Galaxy S5, including (1) Moto E: a low-end mobile
ARM CPU, (2) Samsung Galaxy S6: a high-end mobile
ARM CPU, (3) Macbook Pro: an Intel x86 CPU, and (4)
Titan X: a powerful server GPU. We demonstrate the ex-
perimental results in Table 5 and observe significant speed-
up on various types of CPUs. Even on the low-end mo-
bile CPU (i.e., Moto E), around 200 ms model forward-
ing time is achieved by combining tensor weights compres-
sion method. Finally, comparing the proposed approach with
SqueezeNet (Iandola et al. 2016), we are very excited to see
that our optimization approach can obtain faster speed on all
mobile devices with much higher accuracy (the Top-5 accu-
racy for SqueezeNet is 80%) as listed in Table 5.

Energy, Storage and Runtime-Memory Cost We mea-
sure the energy cost of each compared model using Pow-
erTutor Android app on Samsung Galaxy S5 (similar re-

Table 6: Storage, Energy and Runtime-Memory Comparison

Model Energy Storage Memory
Max Batch Size

on Titan X

GoogLeNet 984 mJ 26.72 MB 33.2 MB 350
GoogLeNet-Tucker 902 mJ 14.38 MB 35.8 MB 323
GoogLeNet-Slim 447 mJ (2.2x) 23.77 MB 13.2 MB 882 (2.52x)

GoogLeNet-Slim-Tucker 226 mJ (4.4x) 11.99 MB 14.8 MB 785 (2.24x)
SqueezeNet 288 mJ 4.72 MB 36.5 MB 321

sults are obtained on other mobile devices). The origi-
nal GoogLeNet consumes almost 1 Joule per image while
GoogLeNet-Slim consumes only 447 mJ. Applying tucker
decomposition further reduces the energy cost to only 1/4
at 226 mJ. When deploying to the mobile devices, we re-
move the loss1 and loss2 branches from the trained models
so that the storage cost of each model is reduced by 24.33
MB. GoogLeNet-Slim which achieves significant speed-up
does not save much storage cost compared to the original
GoogLeNet model. However, for modern mobile devices,
storage is not a scarce resource (e.g., Samsung Galaxy S5
has 16 GB or 32 GB storage), so a 20 MB deep learning
model is “affordable” on mobile devices. Meanwhile, we
can always perform the tensor weights compression method
to further reduce the storage cost.

Another benefit of layer slimming is run-time memory
saving. The generated GoogLeNet-Slim model reduces the
number of layers and consumes only 13.2 MB to process one
image. This feature is also very useful for the cloud based
deep learning service which can process a much larger batch
at one run. As shown in table 6, one Titan X GPU can run
a batch size of 882 with the GoogLeNet-Slim model while
the original GoogLeNet can only allow a batch size of 350.
On the other hand, SqueezeNet though has much less trained
parameters, it has much larger run-time memory impact due
to the increased number of layers.

AlexNet and ResNet

We apply the proposed framework to other popular deep
neural structures: AlexNet (Krizhevsky, Sutskever, and Hin-
ton 2012) and ResNet (He et al. 2015). Note that we did
not apply tensor weights compression to those two mod-
els which can further reduce the model forwarding latency.
First, we study the classical AlexNet model. We apply
streamline slimming approach to re-generate new slim lay-
ers by merging the first two convolution layers followed by
LRN layers. We illustrate the result in Table 7. This indi-
cates that by applying slimming to the first two layers, the
model forwarding time of AlexNet is reduced from 445 ms
to 274 ms on Samsung Galaxy S5, and the Top-5 accuracy
is slightly dropped from 80.03% to 79.57%.

We apply the acceleration scheme to the more advanced
ResNet model. In the experiment, we use the popular 50-
layer ResNet-50 model as baseline. We mainly apply the ac-
celeration framework to conv1 and res2a layers (res2a has
2 branches; one branch has 1 convolution layer and another
branch has 3 convolution layers). We present the result in Ta-
ble 8. The time latency on Samsung Galaxy S5 for the pro-
cessed layers (i.e., conv1 and res2a) is reduced from 189 ms

2328

Table 7: AlexNet Result (Accuracy vs. Speed vs. Energy
cost)

Step Slim Layer(s) Top-5 Accuracy Speed-up Energy Cost

0 N/A 80.03% 445 ms 688 mJ
1 conv1+norm1 → conv1 79.99% 343 ms (1.29x) 555 mJ (1.24x)
2 conv2+norm2 → conv2 79.57% 274 ms (1.63x) 458 mJ (1.51x)

Table 8: ResNet (conv1-res2a) Result (Accuracy vs. Speed
up). For each step, we absorb the “BatchNorm” and “Scale”
layers to the bottom convolution layer.

Step Slim Layer(s) Top-5 Accuracy Speed-up Runtime-Mem Batch32

0 N/A 92.36% 189 ms 2505 MB
1 conv1 92.13% 162 ms (1.17x) 2113 MB (1.19x)
2 res2a branch1 92.01% 140 ms (1.35x) 1721 MB (1.46x)
3 res2a branch2a-2c 91.88% 104 ms (1.82x) 1133 MB (2.21x)

to 104 ms. Moreover, the run-time memory cost is reduced
by 2.21x. The accuracy is only slightly reduced. Meanwhile,
since batch normalization layers can be directly merged to
their preceding convolutional layers using Eq.(9), additional
30%-45% speed-up can be achieved without accuracy loss
as indicated by Figure 2c.

Related Work

Reducing the model size and accelerating the running speed
are two general ways to facilitate the deployment of deep
learning models on mobile devices. Many efforts have been
spent on reducing the model size. In particular, most works
focus on optimizing tensor-layers to reduce the model size
due to the high redundancy in the learned parameters in ten-
sor layers of a given deep model. Vanhoucke et al. (Van-
houcke, Senior, and Mao 2011) proposed a fixed-point im-
plementation with 8-bit integer activation to reduce the num-
ber of parameter used in the deep neural network while
(Gong et al. 2014) applied vector quantization to com-
pressed deep convnets. These approaches, however, mainly
focus on compressing the fully connected layer without con-
sidering the convolutional layers. To reduce the parameter
size, Denten et al. (Denton et al. 2014) applied the low-
rank approximation approach to compress the neural net-
works with linear structures. Afterwards, hashing functions,
which have been widely adopted to improve efficiency of
traditional computer vision tasks (Wang, Kumar, and Chang
2010; Du, Abd-Almageed, and Doermann 2013), were uti-
lized to reduce model sizes by randomly grouping con-
nection weights (Chen et al. 2015). More recently, Han et
al.(Han, Mao, and Dally 2016) proposed to effectively re-
duce model size and achieve speed-up by the combination
of pruning, Huffman coding and quantization. However, the
benefits can only be achieved by running the compressed
model on a specialized processor (Han et al. 2016).

Recently, SqueezeNet (Iandola et al. 2016) has became
widely used for its much smaller memory cost and increased
speed. However, the near-AlexNet accuracy is far be-
low the state-of-the-art performance. Compared with these
two newly networks, our approach has much better accu-

racy with more significant acceleration. Springenberg et al.
(Springenberg et al. 2014) showed that the conv-relu-pool
substructure may not be necessary for a neural network ar-
chitecture. The authors find that max-pooling can simply be
replaced by another convolution layer with increased stride
without loss in accuracy. Different from this work, DeepRe-
birth replaces a complete substructure (e.g., conv-relu-pool,
conv-relu-LRN-pool) with a single convolution layer, and
aims to speed-up the model execution on the mobile device.
In addition, our work slims a well-trained network by re-
learning the merged layers and does not require to train from
scratch. Essentially, DeepRebirth can be considered as a spe-
cial form of distillation (Hinton, Vinyals, and Dean 2015)
that transfers the knowledge from the cumbersome substruc-
ture of multiple layers to the new accelerated substructure.

Conclusion and Future Work

An acceleration framework – DeepRebirth is proposed to
speed up the neural networks with satisfactory accuracy,
which operates by re-generating new tensor layers from op-
timizing non-tensor layers and their neighborhood units.
DeepRebirth is also compatible with state-of-the-art deep
models like GoogleNet and ResNet, where most parameter
weight compression methods failed. By applying DeepRe-
birth on different deep learning architectures, we obtain sig-
nificant speed-up on different processors (including mobile
processors), which will readily facilitate the deployment of
deep learning models on mobile devices in the new AI tide.

In future work, we plan to integrate DeepRebirth with
other state-of-the-art tensor layer compression methods and
also extend our evaluation to heterogeneous mobile proces-
sors such as mobile GPUs, DSPs. We envision that under-
standing the characteristics of these different chips can help
us design better algorithms and further improve the model
execution efficiency.

Acknowledgements

We thank all the anonymous reviewers for their insightful
comments and valuable suggestions.

References
Arora, S.; Bhaskara, A.; Ge, R.; and Ma, T. 2013. Prov-
able bounds for learning some deep representations. CoRR
abs/1310.6343.
Bottou, L. 2012. Stochastic Gradient Tricks, volume 7700.
Springer. 430445.
Chen, W.; Wilson, J. T.; Tyree, S.; Weinberger, K. Q.; and
Chen, Y. 2015. Compressing neural networks with the hashing
trick. CoRR, abs/1504.04788.
Denton, E. L.; Zaremba, W.; Bruna, J.; LeCun, Y.; and Fer-
gus, R. 2014. Exploiting linear structure within convolutional
networks for efficient evaluation. In Advances in Neural In-
formation Processing Systems, 1269–1277.
Donahue, J.; Anne Hendricks, L.; Guadarrama, S.; Rohrbach,
M.; Venugopalan, S.; Saenko, K.; and Darrell, T. 2015. Long-
term recurrent convolutional networks for visual recognition
and description. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2625–2634.

2329

Du, X.; Abd-Almageed, W.; and Doermann, D. S. 2013.
Large-scale signature matching using multi-stage hashing. In
2013 12th International Conference on Document Analysis
and Recognition, Washington, DC, USA, August 25-28, 2013,
976–980.

Du, X.; El-Khamy, M.; Lee, J.; and Davis, L. S. 2017. Fused
DNN: A deep neural network fusion approach to fast and ro-
bust pedestrian detection. In 2017 IEEE Winter Conference
on Applications of Computer Vision, WACV 2017, Santa Rosa,
CA, USA, March 24-31, 2017, 953–961.

Glorot, X., and Bengio, Y. 2010. Understanding the difficulty
of training deep feedforward neural networks. In In Proceed-
ings of the International Conference on Artificial Intelligence
and Statistics (AISTATS10). Society for Artificial Intelligence
and Statistics.

Gong, Y.; Liu, L.; Yang, M.; and Bourdev, L. 2014. Com-
pressing deep convolutional networks using vector quantiza-
tion. arXiv preprint arXiv:1412.6115.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. Gen-
erative adversarial nets. In Advances in neural information
processing systems, 2672–2680.

Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M. A.;
and Dally, W. J. 2016. Eie: Efficient inference engine on
compressed deep neural network. International Conference
on Computer Architecture (ISCA).

Han, S.; Mao, H.; and Dally, W. J. 2016. Deep compres-
sion: Compressing deep neural networks with pruning, trained
quantization and huffman coding. International Conference
on Learning Representations (ICLR).

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Deep
residual learning for image recognition. arXiv preprint
arXiv:1512.03385.

Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distilling the
Knowledge in a Neural Network. ArXiv e-prints.

Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. CoRR abs/1704.04861.

Iandola, F. N.; Moskewicz, M. W.; Ashraf, K.; Han, S.; Dally,
W. J.; and Keutzer, K. 2016. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and <1mb model size.
arXiv:1602.07360.

Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. In Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
448–456.

Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Gir-
shick, R.; Guadarrama, S.; and Darrell, T. 2014. Caffe: Convo-
lutional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093.

Kim, Y.; Park, E.; Yoo, S.; Choi, T.; Yang, L.; and Shin,
D. 2015. Compression of deep convolutional neural net-
works for fast and low power mobile applications. CoRR
abs/1511.06530.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Ima-
genet classification with deep convolutional neural networks.
In Advances in neural information processing systems, 1097–
1105.
Li, W.; Wen, L.; Chang, M.-C.; Nam Lim, S.; and Lyu, S.
2017. Adaptive rnn tree for large-scale human action recog-
nition. In The IEEE International Conference on Computer
Vision (ICCV).
Razavian, A. S.; Azizpour, H.; Sullivan, J.; and Carlsson, S.
2014. CNN features off-the-shelf: an astounding baseline for
recognition. CoRR abs/1403.6382.
Ren, S.; He, K.; Girshick, R. B.; and Sun, J. 2015. Faster R-
CNN: towards real-time object detection with region proposal
networks. CoRR abs/1506.01497.
Shen, D.; Wu, G.; and Suk, H.-I. Deep learning in medical
image analysis. Annual Review of Biomedical Engineering
(0).
Springenberg, J. T.; Dosovitskiy, A.; Brox, T.; and Riedmiller,
M. A. 2014. Striving for simplicity: The all convolutional net.
CoRR abs/1412.6806.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S. E.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich, A.
2014. Going deeper with convolutions. CoRR abs/1409.4842.
Tran, L.; Kong, D.; and Liu, J. 2016. Privacy-cnh: A frame-
work to detect photo privacy with convolutional neural net-
work using hierarchical features. In Proceedings of the Thir-
tieth AAAI Conference on Artificial Intelligence, February 12-
17, 2016, Phoenix, Arizona, USA., 1317–1323.
Vanhoucke, V.; Senior, A.; and Mao, M. Z. 2011. Improving
the speed of neural networks on cpus.
Wang, J.; Kumar, S.; and Chang, S.-F. 2010. Semi-supervised
hashing for scalable image retrieval. In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on,
3424–3431. IEEE.
Xianyi, Z.; Qian, W.; and Chothia, Z. 2014. Openblas. URL:
http://xianyi. github. io/OpenBLAS.
Yosinski, J.; Clune, J.; Bengio, Y.; and Lipson, H. 2014.
How transferable are features in deep neural networks? CoRR
abs/1411.1792.
Yu, F.; Li, W.; Li, Q.; Liu, Y.; Shi, X.; and Yan, J. 2016. POI:
multiple object tracking with high performance detection and
appearance feature. In ECCV Workshops.
Yu, X.; Liu, T.; Wang, X.; and Tao, D. 2017. On compressing
deep models by low rank and sparse decomposition. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).
Zhang, J.; Li, Q.; Caselli, R. J.; Ye, J.; and Wang, Y. 2017.
Multi-task dictionary learning based convolutional neural net-
work for computer aided diagnosis with longitudinal images.
CoRR abs/1709.00042.
Zhang, Z.; Song, Y.; and Qi, H. 2017. Age progres-
sion/regression by conditional adversarial autoencoder. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

2330

