The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

Differential Performance Debugging
with Discriminant Regression Trees*

Saeid Tizpaz-Niari, Pavol Cerny,
Bor-Yuh Evan Chang, Ashutosh Trivedi

University of Colorado Boulder

Abstract

Differential performance debugging is a technique to find per-
formance problems. It applies in situations where the per-
formance of a program is (unexpectedly) different for vary-
ing classes of inputs. The task is to explain the differences
in asymptotic performance among various input classes in
terms of program internals. We propose a data-driven tech-
nique based on discriminant regression tree (DRT) learning
problem where the goal is to discriminate among different
classes of inputs. We propose a new algorithm for DRT learn-
ing that first clusters the data into functional clusters, cap-
turing different asymptotic performance classes, and then in-
vokes off-the-shelf decision tree learning algorithms to ex-
plain these clusters. We focus on linear functional clusters and
adapt classical clustering algorithms (KX -means and spectral)
to produce them. For the K-means algorithm, we generalize
the notion of the cluster centroid from a point to a linear func-
tion. We adapt spectral clustering by defining a novel kernel
function to capture the notion of “linear” similarity between
two data points. We evaluate our approach on benchmarks
consisting of Java programs where we are interested in de-
bugging performance. We show that our algorithm outper-
forms other well-known regression tree learning algorithms
in terms of running time and accuracy of classification.

1 Introduction

Developers often face the problem of finding and fixing
performance problem in their programs. Performance bugs
manifest themselves only on certain pathological inputs. For
instance, there can be two inputs of the same size on which
the performance is unexpectedly different in an otherwise
functionally correct program.

We study the differential performance problem, where the
goal is to explain the difference in performance between
two classes of inputs in terms of program internals, such as
which functions were called and how many times were they
called. This information is useful, as it allows a programmer
or an analyst to better assess whether the performance dif-
ference is inherent to the problem, or is a result of a coding
inadequacy. The problem is hard for both traditional static

*This research was supported in part by DARPA under agree-
ment FA8750-15-2-0096.
Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2468

as well as dynamic analysis techniques. Static analysis com-
monly target logical correctness properties (and not the per-
formance), and are not as scalable as techniques based on
machine learning. On the other hand, dynamic analysis tech-
niques such as profiling, focus on individual traces, whereas
for the differential performance problem, we need to com-
pare the performance on different traces.

We propose a technique called differential performance
debugging, based on inference of discriminant regression
trees (DRTs). DRTs are regression trees where the goal is to
classify input data. In contrast, the objective of standard re-
gression tree learning is to predict the output for a previously
unseen input. The input to the differential performance prob-
lem is a set of program traces. Each trace is represented as
follows. We have input variables (such as the size of the user
input), auxiliary variables (such as the functions called), and
the output variable (such as the running time). The output to
the differential performance problem is the DRT. The inter-
nal nodes of the tree has predicates on auxiliary variables.
The leaf nodes model the output variable as a function of in-
put variables. The leaf nodes represent the performance for
different classes of inputs capturing asymptotically different
performance behaviors.

In accordance with Occam’s razor, we are interested in
finding a DRT with a small number of clusters, while min-
imizing the modeling error. Furthermore, the DRT should
be a human readable explanation, which also suggests that
smaller number of clusters is preferable. There are two ma-
jor steps in our algorithm. First, we project the data into the
input and output variables and cluster the data in this do-
main. Second, we consider the auxiliary variables only and
identify what separates the clusters in terms of these vari-
ables. We use an off-the-shelf decision tree learning algo-
rithm for the second step. The first, clustering, step thus re-
duces the regression tree inference problem to the decision
tree inference problem.

For our approach, we need a clustering algorithm that
produces functional clusters, that is, clusters that represent
functions from input variables to the output variable. We
adapt two classical clustering algorithms. First, we extend
the K-means algorithm to produce linear functional clus-
ters. This is done by generalizing the notion of the cluster
centroid from a point to a linear function. Second, we adapt
the spectral clustering algorithm by defining a new notion

of similarity between two data points that we dub alignment

kernel. Here, two data points are more similar when the line

defined by them captures more data points.
The key contributions of this paper are:

e We propose discriminant regression trees which are re-
gression trees where the goal is to classify input data into
a small number of clusters.

e We give a new algorithm for learning discriminant regres-
sion trees. It finds (functional) clusters first, which enables
learning the tree using an efficient algorithm for learning
decision trees.

e We present extensions to two classical clustering algo-
rithms: k-means and spectral clustering. These extensions
allow us to obtain functional clusters.

e We implement our approach in the tool DPDEBUGGER
and evaluate it on benchmarks consisting of a suite of Java
programs. Our experiments that the approach is scalable
and is able to explain the differences in performance be-
tween different classes of inputs.

2 Overview

We show how our prototype tool DPDEBUGGER can be
used for diagnosing performance problems on a real-life ex-
ample. We also use the example to explain how the tool
works and compare it to existing approaches.

Performance problem with Apache FOP. Apache FOP
(Formatting Objects Processor) is a Java application that
reads a formatting object such as an XML file and renders
the resulting pages to a specified output format such as PDF
and PS. The formatting document can specify that an exter-
nal image in, for example, a PNG or JPEG format should be
included. A user had a suspicion that there is a performance
bug in handling PNG images. They reported in a forum post
in 2011 that they have two PNG images, which have the
same size, but one of them takes seven times as much to
render as the other one!.

Performance debugging with DPDEBUGGER. Our tool,
DPDEBUGGER, can be used exactly in this situation, to help
an analyst to explain the differences in performance. The an-
alyst can then decide whether the differences are inherent to
the problem or they are a manifestation of a coding error.
Song and Lu (Song and Lu 2014) reported that in 60% of
bugs analyzed by them, users notice huge performance dif-
ferences among similar inputs.

The analyst has to collect a number of inputs which in this
case are PNG and JPEG images of various sizes. We remark
that in many cases, the inputs can be collected from log files
of a system or generated by existing software fuzzers (Cadar
et al. 2008).

Given the collection of inputs, the tool produces the two
diagrams in Figure 1. The analyst can diagnose the perfor-
mance problem using these two figures. The left diagram
is a plot of the image size (input variable) and the running
time (output variable). From the plot, the analyst can see
that there are two performance clusters. However, the ana-
lyst does not know what separates these two clusters. It is
instructive to emphasize that looking at the two groups of

"https://bz.apache.org/bugzilla/show_bug.cgi?id=51465

2469

ps.ImageEncodingHelper.
encodeRenderlmageWith-
DirectColorModel ASRGB

30 . o

20 e

200 R 1 profile.
E, ColorProfileUtil
£etlCC_Profile
10 <1 >1

A
[+ z"g 1
ﬁ inline.Line |]
st i
0 2 1 6 8

LayoutManager
10°

Time (s)
,1
kS

handleOverflow

-0, =1
] |

Tmage size (in bytes)

Figure 1: Performance clusters (left) in the FOP data set and
a DRT (right) explaining the the clusters in terms of function
calls.

inputs does not explain the difference. All the JPEG images
are in the lower (red) cluster, but there are PNG images of
similar size in both clusters.

We thus turn to the DRT on the right side of Figure 1
for the explanation. It says that if for an input, the function
encodeRender. . .RGB is not called, then the input will
be in the red cluster. The user can analyze the reverse call
graph to see how the function is called, and realize that it is
called for PNG files, but not for JPEG files. Further, the node
to the right of the root has the function get ICCprofile.
This function is what distinguishes the red (fast) cluster from
the blue (slow) one among PNG files. It is called once for
every PNG file, but it is called more than once only for PNG
files with a color scheme that needs to be deflated. After
code analysis, we see that one source of the performance
problem is that some PNG files have a compressed color
scheme that needs to be deflated. Another way how a PNG
image can be in the blue cluster is that the dimension of
the input image overflows the allowed size (see the lowest
internal node).

The user thus learns from the discriminant regression tree
(DRT) that what separates the two clusters is the fact that the
images in the blue clusters either need to be deflated first, or
overflow. So in this case, the diagnosis is that the difference
in performance is not a coding mistake but it is inherent to
the problem. The user can conclude this without needing to
sift through almost 40,000 methods that Apache FOP has.
Inside the tool DPDEBUGGER. We now describe how
DPDEBUGGER obtains the diagrams in Figure 1. The dia-
gram on the left side is obtained as follows. The program
is run on all the inputs, and the graph of input size ver-
sus running time is plotted. Then we need to cluster the
data. As a preliminary step, we need to get the values of
the auxiliary variables. In this example, they indicate how
many times a function was called. We have a variable for
each (non-standard library) function. Then, we find func-
tional clusters in the data from the left diagram. That is
we consider input and output variables only (not auxiliary
variables) and identify a given number K of clusters. These
clusters are intended to capture the classes of inputs with
different (asymptotic) performance. For our example, spec-
tral clustering identifies the clusters marked red and blue in
Figure 1.

To obtain the right diagram, the next step is decision tree
learning. We want to learn what separates the clusters in
terms of predicates on the auxiliary variables. Note that here

each data point is labeled with one of the K labels (indi-
cating to which cluster the data point belongs), therefore ef-
ficient decision tree learning (such as CART) can now be
used to construct the regression tree. The final discriminant
regression tree is on the right part of Figure 1.

Comparison with existing regression-tree algorithms. We
applied the state-of-the-art algorithms for learning regres-
sion trees (M5Prime (Witten et al. 2016) and GUIDE (Loh
2002)) to our problem. Our goal is different from the goal
of these algorithms: we aim to classify data, whereas both
Guide and M5Prime aim to predict the output for previously
unseen input. We believe that this accounts for the following
differences.

M5Prime finds a linear regression tree with 23 different
linear models in leafs. Guide finds 4 linear models — two
of them same as our algorithm, but two of the in-between,
perhaps to account for noise. Note that DPDEBUGGER iden-
tified 2 clusters. Furthermore, the running time of the algo-
rithms are as follows: M5Prime 97 seconds, Guide 1233.6
seconds, and our DPDEBUGGER 14.4 seconds.

3 Discriminant Regression Tree Learning

Let X = {x1,X3,...,X,} € R™ be the set of input vari-
ables, Z = {z1,...,z,} € R™ be the set of auxiliary vari-
ables, and y € R be the performance (observable output)
variable of our target program. To keep the presentation sim-
ple, we assume that there is a single performance variable y,
although techniques presented in the paper can easily be ex-
tended to include a set of performance variables represent-
ing time-series data on various performance measures such
as time and memory.

An execution trace T of the program is a tuple (X, Z,y)
wherein X = (z1,29,...,2n), Z = {21,...,2m}, and y
represent the valuations to the input, auxiliary, and output
variables, respectively. We further assume that the valua-
tions of the auxiliary variables deterministically depend only
on valuations of the input variables. However, we allow the
process of measuring performance to be noisy. Due to this
we can potentially have multiple traces of the program with
the same values for the input and the auxiliary variables but
different values for the performance variable.

A trace discriminant is defined as a disjoint hyper-
rectangular partitioning of the space of auxiliary variables
along with an affine function for each partition modeling
the performance variable as a function only of input vari-
ables. Formally, a trace discriminant ¥ = (F, P) is a set
of affine functions F = (fi, fo,..., fx)—where each f; :
R™ — R models the performance variable y as a function of
the input variables—and a hyper-rectangular partition P =
<(¢1a d1)7 (¢27 d2)7 R (¢l? dl)> where each (bi R™ —
{true, false} is a hyper-rectangular predicate over aux-
iliary variables Z, and each d; : F — [0, 1] is discrete proba-
bility distribution over F giving a probabilistically weighted
modeling of the affine functions from F. The size size(¥)
of a discriminant ¥ is defined as total number of affine func-
tions (i.e., size(V¥) = |F|). Given a trace T = (X, Z,y)
and a discriminant ¥ = (F, P), we define the prediction er-

ror as e(T,) o (y — Zfil di(f;) - fi(z1,22,.. ',xn))zv

2470

where 1<¢<[is the index of the unique partition in P such
that Z = ¢; (i.e., the predicate ¢; evaluates to true for the
valuation Z). Given a set of traces T = {T1,T5,...,Tn},
and a discriminant W, we define the fitness of the discrim-

inant as mean-squared-error u(7, V) = 4 vazl e(T;,0).

Given a set of traces 7, a bound on the size of the dis-
criminant B € N, and a bound on the error B, € R, the
discriminant learning problem is to find a discriminant ¥
with size(¥) < B and p(7,¥) < B.. It follows from
Theorem 1 in (Alur and Singhania 2014) that the discrimi-
nant learning problem is NP-HARD. For this reason, we use
heuristics to construct discriminant using classification and
regression trees.

A discriminant regression tree is a trace discriminant rep-
resented as a binary tree structure whose nodes contain pred-
icates over auxiliary variables and leaves contain a discrete
probability distribution over affine functions in input vari-
ables. An example of a distribution regression tree is shown
in Figure 1 where each leaf represents a partition, and the
probability distribution over functions is pictorially depicted
using relative sizes of different colors.

Classical regression tree algorithms can be used to learn
the discriminant regression trees. The most straightforward
way to generalize the decision tree algorithm to learn regres-
sion trees is computationally expensive (Loh 2011) as it re-
quires solving two linear regression problems for each split
candidate. Popular regression tree algorithms algorithms
CART (Breiman et al. 1984), M5Prime (Witten et al. 2016),
GUIDE (Loh 2002) propose various ways to avoid this prob-
lem. CART is a piecewise constant regression tree model
that uses the standard regression-tree algorithm (with piece-
wise constant clusters) and then applies cross-validation to
prune the tree. M5Prime (Witten et al. 2016) algorithm first
constructs a piecewise constant model, and then fits linear
regression models to leaves during pruning step. GUIDE re-

Algorithm 1: LEARNDISCRIMINANTREGRES-
SIONTREE(T, B, B:)

Input: A set of traces 7 = {1, T», . .

discriminant size, and a bound on mean-squared error B..

., TN }, an upper bound B on

Output: Return a discriminant regression tree of size B and error bound
B, if possible. Otherwise return NULL.
Extract points £ = {(X1,y1), (X2,¥y2), ..., (Xn~,yn~)} from the
trace set 7 = {Th,..., TN} where T; = (X;, Z;,y;) € T.
2 Using linear clustering algorithms presented in the next section, find the

2] B/| } that can fit

-

smallest number B’ of linear clusters F = {fl, -

the data with mean-squared error smaller than B..
3 if B’ > B then return NULL

4 else

5 Extract points &' = {(Z1,41),...,{Zn,{N)} where {; € F is
the label assigned by the clustering algorithm to the dataset
(X, i)

6 Use a standard decision tree algorithm to learn a decision tree (along
with its accuracy based on k-fold cross-validation) from £’.

7 Return the discriminant regression tree (along with its accuracy) by

replacing labels at the leaves with corresponding linear functions.

gression tree algorithm (Loh 2002), at each node, fits the
best regression model that predicts the response variable and
computes the residual. Then, it adds different class labels for
traces with negative and positive residuals and solves classi-
fication problem to find the auxiliary variable to split over.

In our setting (where the goal is classification and a tight
upper bound on the number of linear clusters is known), we
propose a simple but rather effective method to overcome the
complexity of repeatedly fitting the piecewise linear model.
Our approach is summarized as Algorithm 1. Our approach
is to first cluster traces along the lines based only on input
and output variables, and then assign different labels to var-
ious traces based on the linear clusters into which they fall.
The next step is to learn a classification decision tree in aux-
iliary variables with the leaves as clusters labels (classes)
learned in the first step. Using a set of microbenchmarks re-
lated to performance debugging, in Section 5 we show that
our algorithm performs better than other regression tree al-
gorithms specially when the relationship between auxiliary
variables and linear clusters is complex.

4 Linear Clustering Algorithms

In this section, we study K-linear clustering problem re-
quired at the clustering step of Algorithm 1. Consider the
set £ = {(X1,v1),...,(Xn,yn)} of data points where
X; € R™ is an n-dimensional vector of valuations to
the input variables and y; € R is the value of the out-
put (response) variable. Given the number of desired clus-
ters K, the K-linear clustering problem asks to compute
a partition of set £ into K clusters S = (51, 53,...,5k)
minimizing the residual-sum-of-squares (RSS) defined as

Zil(:l 2o (xyes, Minger (y — f(X))?, where f is a linear
function f : R™ — R over input variables in the form of
f(x)=Ax+c with x as an n-dim. vector and c as a scalar.

Regarding the computational complexity of the K -linear
clustering problem, observe that for a given cluster S, the
RSS can be computed using (least squares) linear regres-
sion in polynomial time (linear in the number of points and
quadratic in input dimension). Since, there are only finitely
many (K'V) distinct clusters possible, the K-linear cluster-
ing problem is decidable. The NP-hardness of K -linear clus-
tering problem follows from NP-hardness of K -means clus-
tering problem which is known to be NP-hard both for gen-
eral dimensions and 2 clusters (Aloise et al. 2009), as well
as 2 dimension and K clusters (Mahajan, Nimbhorkar, and
Varadarajan 2009). For this reason, we present two heuristics
to solve K-linear clustering problem. The first algorithm,
which we call “K-linear” clustering, extends K -means al-
gorithm by using line centroids instead of point centroids,
while the second algorithm is based on spectral clustering
with a new notion of measuring similarity between points in
order to detect functional relationships.

4.1 K-Linear Clustering

We propose a modification of the standard K -means cluster-
ing algorithm to give a heuristic to solve K -linear clustering
problem as shown in Algorithm 2. The termination of our
algorithm is guaranteed as the number of distinct clusters

2471

Algorithm 2: K-
LINEARCLUSTERINGALGORITHM
Input: Data & = {(X1,v1),...,(Xn,yn)} and number of clusters
K.
Output: A partition of the set of traces € in K sets (S1,S2,...,SK).
1 Let S = (Sil), S;l), RV SS)> be an arbitrary partition of the points
E.
2 SetitoO
3 repeat
4 Setito? + 1
5 For each set SJ(.“ = {(Xp,yp)} where (Xp,yp) is aset of

points assigned to partition S; at i-th iteration, learn a linear function
fi = Ajx+ c; minimizing > p(yp — A; Xp — ;).

6 Compute S+ = (S§i+1), Sé“rl), AU S%Jrl)) such that for
each 1 < j < k we have (Xp,yp) € S5V if

(yp—A; Xp—c;)? = miny <p<i(yp—AnXp—cn)?, with
condition that (X, yp>€SJ(.i) and (X, y,,)ES,(IHl) for j#h
implies

(o —AjXp —¢)> > (yp — AnXp —cn)® (D)

7 until () = gG+D
8 return clusters S(*) and linear “centroids” (f1, f2,---

, fre).

possible are finite, and in each step we get a strict improve-
ment in residual-sum-of-squares due to the restriction (1) in
Algorithm 2 on changing the set only in the case of a strict
improvement. However, similar to the K-means algorithm,
there is no guaranteed convergence to a global optimum. The
choice of initial partition to fit linear “centroids” is crucial in
converging towards the global optimal solution. One way to
choose a good partition is to pick lines defined by pairs of
points such that e-size tubes around the lines pass through a
large number of points. Another possible heuristic to achieve
better partition is similar to that often seen with K-means
algorithm—we execute the K '-linear algorithm a couple of
times with randomly selected initial partitions, and then we
choose the result that gives minimum RSS.

4.2 Spectral Clustering with ALIGNMENT Kernel

Spectral clustering is a popular clustering algorithm that
views the clustering data as a weighted graph of points
and the clustering problem as a graph partitioning prob-
lem. Spectral clustering algorithms are parameterized by the
notion of adjacency between two data points defined us-
ing kernel functions. Spectral clustering is useful in clus-
tering problems where the measurement of the center and
the spread of cluster are not a suitable description of clus-
ters (Von Luxburg 2007).

In order to define the notion of adjacency in terms of being
close to a given linear cluster, we characterize a novel ker-
nel function—called alignment kernel—that puts two points
closer to each other if the line passing through those points
have multiple other points in the line’s neighborhood. The
concept of alignment kernel is shown in the figure 2 where
points A and B are closer to each-other in linear sense
than points A and C, although the latter points are closer
than former points in terms of Euclidean distance. Given

a data set £, we define an alignment kernel function oz? :

1 2 3 4 5 6
Figure 2:
(R™ x R) x (R™ x R) — R to be a real-valued symmetric

and non-negative function defined as the following for every
pair of neighboring points (X;,y;) and (X, y;):

0 ifi=j
def _ L .
ag (Xi i), (Xj,u5)) = 2716l if Ry >=1
00 otherwise,

where R;; is the set of points (X, y,-) in € such that r=£i=7,
and it has A distance from the line passing through (X, y;)
and (X, y;). Finally, we construct similarity matrix by cal-

culating e~ (4:B) for every pair of points A and B. Ob-
serve that the exact computation of the alignment matrix is
cubic in number of data points. However, we have imple-
mented a quadratic procedure (see supplemental material in
(Tizpaz-Niari et al.)) computing an approximation of the the
alignment kernel. In our experiments, we have found that
for linear clusters the quality of the alignment kernel is bet-
ter than the RBF and the nearest-neighborhood kernels. In
comparison with the K -linear clustering, spectral clustering
with alignment kernel can often detect non-linear clusters.

5 Microbenchmark Results

Empirical evaluation questions. We compare our approach
to existing algorithms for learning regression trees and focus
on the following questions. 1. How deep are the regression
trees and how many leaves do they have? As we expect our
regression trees to serve as human readable explanations,
smaller height and number of leaves are better. 2. How scal-
able is our approach compared to the existing approaches?
3. What is the prediction ability (as measured by coefficient
of determination) compared to state-of-the-art approaches?
The metric we are interested in is accuracy of classification
based on 10-fold cross-validation. However, the standard ap-
proaches are built with the goal of prediction measured by
coefficient of determination R2. We therefore compare per-
formances with R?.

Synthetic benchmarks. We compared the performance of
regression tree learning approaches on a set of microbench-
marks. The benchmarks were constructed in such a way that
the clusters have increasingly complex characterizations. We

2472

consider micro-benchmarks named R_n#v where n is the
number of functions in the benchmark, and v is the ver-
sion number. For R_2 to R_7, in each case there is a clus-
ter which consists of inputs where all the functions were
called. R.200 to R_6400 are versions of the same bench-
marks with many other functions that do not influence per-
formance. Each function call executes a for loop statement
where the number of iterations depends on the inputs. Each
trace of a benchmark invokes a set of functions that lead to
the different time of execution. We want to detect clusters
and explain them based on function calls.

Results. Table 1 summarizes the results of applying CART,
M5Prime, and GUIDE (the standard algorithms) as well as
our algorithms with K-linear and spectral clustering.

Our first question is about the simplicity of the expla-
nation produced by our tool. Table 1 shows that CART
and M5Prime produce significantly deeper trees with more
models than GUIDE and DPDEBUGGER. For instance, for
benchmark R_7, CART produces a tree with more than 5000
nodes, M5Prime with more than one node, whereas the
benchmark has only 4 clusters.

Our second question is about scalability. As the first ques-
tion established that CART and M5Prime are unsuitable for
our purpose, we compare scalability only with the GUIDE
algorithm. Table 2 shows the performance of GUIDE re-
gression tree and DPDEBUGGER with K-linear clustering
when there are many features (function calls). We see that
DPDEBUGGER is more scalable on this set of benchmarks.
For instance, for R_6400, GUIDE takes more than 9 hours,
whereas DPDEBUGGER takes less than 5 minutes.

Our third question asks to compare the coefficient of de-
termination 122. From Table 1, we have the following: CART
and M5Prime generally perform well (but there are some
outliers where the coefficient of determination drops). The
main problem with these algorithms for our purpose is the
large size of the regression trees. For GUIDE, the coeffi-
cient of determination is lower for more complex examples.
DPDEBUGGER performs uniformly well in this metric.

Finally, we compare the two versions of our algorithm:
one with K -linear and one with spectral clustering. Table 1
shows that for these benchmarks with linear clusters, they
are similar in all metrics except running time, where the K-
linear clustering is slightly better.

6 Case Study

Table 4 summarizes the results over eight case studies in-
volving large Java applications, while Table 3 shows clus-
tering and classification steps in DPDEBUGGER for seven
of them (the eighth is in Figure 1). We next explain
how DPDEBUGGER explained differences in performance
for different classes of inputs for these seven applications
(Apache FOP has been treated already in Section 2) 2.

1. Charts4j. Charts4j is a Java chart library that enables
developers to generate different charts available in the
Google Chart API. The input data set for our experiments
consists of asking for different plots of the same data. Our

Zsee supplemental material for detailed information in (Tizpaz-
Niari et al.)

Table 1: Micro-benchmark results for comparison different affine cost model learning algorithms. Legend: #M: number of
functions, #N: number of traces, T: computation time in seconds, R?: coefficient of determination H: decision-tree height, Li:
Number of detected models, A: accuracy of classification model, ¢ < 0.1 sec.

CART M5prime GUIDE DPDEBUGGER (K -linear) DPDEBUGGER (spectral)
Bench | #M #N T|] R°T H L T|] R°TH L T[] RFTH| L T Al RPTH|L T Al RFIH]L
R2 2 400 ¢ 099] 14] 237 351099 6 17 ce[099] 2] 4 0.7 9% [099] 213 0.2 96% | 098] 21 3
R_3#1 3 800 || 0.15 | 0.77 | 14 | 486 451 07 1 1 e 099] 3] 8 1.3] 100% | 099 | 3| 2 0.7] 100% | 099 | 3| 2
R_3#2 3 800 || 0.14 | 0.99 | 15| 470 69| 09| 8] 41 €| 08 | 3| 6 1.7] 100% | 099 | 3| 3 0.8 9% | 099 | 3|3
R_4#2 4 1200 021099 |14] 652 881099 7] 23]J02[]099] 3] 5 291 100% [099 | 4] 4 1.6 98% | 099] 41 4
R_4#1 4 1600 |[0.28 [0.99 [20 | 893 977099 7] 25]]02]099] 47 7 35 99% [099] 413 3.0 98% [099] 413
R_4#3 4 1600 |[0.27 [0.97 [16 | 955 9971 09 8] 87]02]093] 4711 35 9% [099] 413 2.8 9% [099] 413
RS S| 3200 || 0.54 | 0.94 | 16 | 1810 || 17.6 | 0.71 | 11 | 147 || 04 | 0.73 | 5| I5 6.7 9% | 099 | 51| 3 11.3 9% | 099 | 5] 3
R.6 6 | 6400 1.1 1099 | 22 | 3695 || 24.1 | 098 | 12 | 173 || 1.1 06 [4] 11] 163 9% | 099 | 6| 4 42.5 98% | 099 | 6| 4
R_7 7 | 12800 247099 325126496 [099 [12142 [[14063 414][318 [97.9% [098 | 7] 4] 210.1 [955% [097 7] 4

Table 2: Micro-benchmark results comparing GUIDE and
DPDEBUGGER with dummy function calls.

tool applied spectral clustering with the number of clus-
ters set to 3. It finds three functional clusters between ex-
ecution time and the number of data items. The DRT for
this experiment (shown in Table 3) gives two key insights:
First, we notice that green cluster consists of plots that call
scale function. Upon further investigation, the scale func-
tion is indeed expensive since it computes minimum and
maximum for the input array and normalized values for
each element of the input array. Next, the class initializa-
tion for PlotImpl distinguishes blue and red clusters.
This happens for plots with one dimension where it needs
to generate another dimension. It also needs to convert the
new data set to a double array. This part is a performance
bug because it can build a double array structure for the
new dimension instead of double list.

. Snapbuddy. SnapBuddy is a mock social network appli-
cation where users can make their public profiles (Borges
et al. 2017; Tizpaz-Niari et al. 2017). As inputs for our ex-
periments, we passively monitored users’ interaction with
public profile pages. We applied K-linear clustering al-
gorithm where we set the number of clusters to 5. As a
result, our tool finds five linear relationships between the
size of public profile image and download time. The DRT
learned by our tool is shown in Table 3. It reports that
filter combinations applied in profile pictures are the key
discriminants.

. JFreeChart. JFreeChart is a free Java chart library that
helps developers to plot different charts in their appli-
cations. The input data set is the set of open-high-low-
close (OHLC) items. We use this library to plot OHLC
items with different renders. Our tool applied K-linear
clustering algorithm with K 2. The clustering step
finds two linear relationships between time of execution

2473

and the number of OHLC items. The DRT produced
by our algorithm is shown in Table 3. We observe that
whether the plot applies CandlestickRenderer and

GUIDE DPD K-li s gl .
Benchmark | #M | #N T PR T T A] FH[T calls drawItem distinguishes between red and blue clus-
R 200 200 400 30]099 | 2 4 0.7 1996% [099] 23 1 3
R a0 | %0 R e ters. In particular, the number .of c’alls to drawlItem is
RA00F2 | 400 | 800 122099 3| 8] 18] 100% 099 | 3] 3 equal to the number of data points in OHLC dataset, and
R_600 600 1200 3821099 | 3 5 347 100% | 099 | 4] 4 .
RS00FT | 800 | 1600 | 850 [009 | 4| 71 39| 98.9% | 099 [4|3 each call executes the loop statement when a candlestick
R_800#2 800 1600 846|096 | 4| 15 401983% [099] 413 4 H 5
R_T600 T600 | 3200 | 6249 | 0.3 | 4 [15| 9.1 [053% [099 [53 rendere.r 18 apphed: Thls Performance bl.lg Was.also re-
R3200 [3200 | 6400 || 47062 [0.59 [4 [12]] 595]99.1% [099 [6] 4 ported in (Olivo, Dillig, and Lin 2015) using static analy-
R_6400 6400 | 12800 || 34897.0 | 0.63 | 4 | 14 || 261.2 | 98.0% | 0.99 | 7 | 4

Sis.

. Apache POI. The Apache POI Project’s mission is to read

and write MS Excel, MS Word, and PowerPoint files us-
ing Java. As inputs to our experiments, we used different
slides that randomly include text, table, images, shapes,
and smartArts, We applied the spectral clustering algo-
rithm with number of clusters set to 3. The DRT produced
by our algorithm is shown in Table 3. The DRT shows
that all program traces labeled with the blue cluster do not
have any image data source (like PNG, smartArts, and so
on). Green and red clusters are distinguished only based
on their item sizes.

. Odedj. Ode4j is an open source, high performance li-

brary for simulating rigid body dynamics. The data set
includes the different number of geom objects that inter-
act with different APIs. We applied the spectral cluster-
ing algorithm with the number of clusters set to 2. The
clustering finds two functional relationships between the
time of execution and number of geom objects. The DRT
(Table 3) reports collide function in DxSAPSpace
class to distinguish between blue and red clusters. Look-
ing into the source code, we can see the quadratic behav-
ior in collide function. As there is a linear cost func-
tion named collide?2 in DxSAPSpace class, we sus-
pect that quadratic behavior can be mitigated.

. Collab. Collab is a scheduling application that allows

users to create new events and modify existing events.
The data set consists of different operations to add and
modify events using ADD, UNDO, and DONE commands.
We applied K-linear clustering algorithm with K equals
to 2. It finds two linear relationships between the time of
execution and the number of add operations. The DRT
produced by our algorithm is shown in Table 3. The dis-
criminant model shows that the traces in red cluster call
split function more times than traces in blue cluster.

Table 3: Java applications studied using DPDEBUGGER.

Snapbuddy

JFreeChart

Apache POI

Odedj

Collab

The average number of calls to split function for blue
cluster is 1, 678 and for red cluster is 88, 507. The tempo-
rary store data structure of Collab is a B-tree. The number
of times that the B-tree needs to split a parent node is the
main explanation to distinguish red and blue clusters.

. Tweeter. Tweeter application is a mock of Twitter ap-
plication. Users can post tweets and see tweets posted
by other users. The data set consists of a maximum 20
words for a tweet. We applied K -linear clustering algo-
rithm where we set K to 2. The clustering step finds two
relationships between time of execution and number of
words in a tweet. The DRT produced by our algorithm
is shown in Table 3. The discriminant model produces
getAlternatives function as a feature to distinguish
blue and red clusters. This function is called more times
when the input tweet includes mistakes, and it will never

2474

Table 4: Java applications studied using DPDEBUGGER.
Legend: #Myp: total number of functions in application,
#Mp: total number of observed functions, #N: number of
collected traces, C'r: Clustering algorithm (K for K-linear
and S for spectral), T: computation time of DPDEBUGGER
in seconds, A: accuracy of classification model, H: decision-
tree height, #C: Number of clusters, € < 0.1 sec.

Application #Mp | #Mp #N | Cr T A|H|#C
Apache FOP | 39,694 | 2,765 | 1,988 S| 144] 964% | 3 2
Charts4j 715 71 | 2,000 STILT[871% | 2 3
SnapBuddy 3,071 150 616 | K 1.6 | 88.6% | 5 4
JFreeChart 9,162 527 | 1,000 | K 1.6 994% | 1 2
Apache POI | 10,396 199 661 S 1044 |864% | 2 3
Odedj 4,564 114 577 S| 78 [850% | 1 2
Collab 185 53 530 | K| 0.7]96.6% | 1 2
Tweeter 947 31 3200 K| 06| 100% | 1 2

be called if the tweet is correct.

7 Related Works

Performance debugging The work by Tizpaz-Niari et
al. (Tizpaz-Niari et al. 2017) is the closest to ours. They
use decision tree learning for finding security vulnerabili-
ties, whereas we focus on performance bugs. They heavily
rely on the assumption that it is enough to consider con-
stant clusters, whereas we consider a much more realistic
and the general setting of linear functional clusters. On the
algorithmic side, for Tizpaz-Niari et al. it is sufficient to use
the standard K -means algorithm (since they have only con-
stant clusters), whereas we needed to adapt the K -means
and clustering algorithms for the linear functional case.

Spectrum-based fault localization is often used for ex-
plaining bugs(Wong et al. 2016; Song and Lu 2014; Jin et al.
2010; Jones, Harrold, and Stasko 2002; Liblit et al. 2003).
In particular, Song and Lu (Song and Lu 2014) use a sta-
tistical based technique for performance debugging prob-
lem. They indicate that the problems are manifested by the
performance not being uniform, but rather there being two
set of inputs: bad and good inputs. They refer to bug re-
port databases to generate the bad inputs. They use statisti-
cal models to find predicates that distinguish good and bad
inputs. They assume that two sets of bad and good inputs
are given. In contrast, we are not given any labeled data set.
We obtain different classes by clustering techniques. In ad-
dition, we are not limited to two sets of inputs. Finally, Song
and Lu find the ranking of predicates and choose the top one
that is responsible for bad runs. On the other hand, we use
decision tree learning that can produce conjunctions of pred-
icates. This can be seen in the SnapBuddy example.

Time series data has been used as well for profiling and
failure detection (Hauswirth et al. 2004; Hauswirth et al.
2005; Sweeney et al. 2004; Adamoli and Hausiwrth 2010;
Abreu et. al 2007). In particular, Hauswirth et al. (Hauswirth
et al. 2005) consider different performance metrics of a sys-
tem such as instruction per cycle (IPC) and monitor these
factors over time. Then, they apply dynamic time warping
(DTW) (Berndt and Clifford 1994) to combine the traces
of the same input. When they observe a pattern like sudden
IPC changes, they align all traces using DTW and apply sta-

tistical correlation measurements to find predicates that are
highly correlated with the changes in the target metric as the
cause of performance anomaly. In our work, however, we
do not collect metrics over time as a time series, although
an extension is possible. As we collect only the total execu-
tion time, we do not need trace alignment, but we efficiently
cluster traces based on relationships between running time
and user inputs.

Functional data clustering. Functional data clustering is
a technique for clustering given functions (Jacques and
Preda 2014a) (Jacques and Preda 2014), (Abraham et al.
2003). Even though there is a similarity in names, we are not
given functions. Instead we are given individual data points,
and we are discovering (linear) functions by clustering. In-
vestigating the use of functional data clustering for debug-
ging of software is an interesting area left for future work.

References

Abreu, R.; Zoeteweij, P; and Van Gemund, A. 2007
On the accuracy of spectrum-based fault localization. In
TAICPART-MUTATION 2007, 89-98. IEEE.

Abraham, C.; Cornillon, P.-A.; Matzner-Lgber, E.; and
Molinari, N. 2003. Unsupervised curve clustering using
b-splines. Scandinavian journal of statistics 30(3):581-595.

Adamoli, A., and Hauswirth, M. 2010. Trevis: A context tree
visualization and analysis framework and its use for classi-

fying performance failure reports. In Software visualization,
73-82. ACM.

Aloise, D.; Deshpande, A.; Hansen, P.; and Popat, P. 2009.
Np-hardness of euclidean sum-of-squares clustering. Ma-
chine Learning 75(2):245-248.

Alur, R., and Singhania, N. 2014. Precise piecewise affine
models from input-output data. EMSOFT, 3:1-3:10. New
York, NY, USA: ACM.

Berndt, D. J., and Clifford, J. 1994. Using dynamic time
warping to find patterns in time series. In KDD, volume 10,
359-370. Seattle, WA.

Borges, M.; Phan, Q.-S.; Filieri, A.; and Pasédreanu, C. S.
2017. Model-counting approaches for nonlinear numerical
constraints. In NASA Formal Methods Symposium, 131-138.
Springer.

Breiman, L.; Friedman, J.; Stone, C. J.; and Olshen, R. A.
1984. Classification and regression trees. CRC press.

Cadar, C.; Dunbar, D.; Engler, D. R.; et al. 2008. Klee:
Unassisted and automatic generation of high-coverage tests
for complex systems programs. In OSDI, volume 8, 209-
224.

Hauswirth, M.; Sweeney, P. F.; Diwan, A.; and Hind, M.
2004. Vertical profiling: Understanding the behavior of
object-priented applications. In OOPSLA, 251-269. New
York, NY, USA: ACM.

Hauswirth, M.; Diwan, A.; Sweeney, P. F.; and Mozer, M. C.
2005. Automating vertical profiling. In OOPSLA, 281-296.
New York, NY, USA: ACM.

2475

Jacques, J., and Preda, C. 2014a Functional data cluster-
ing: a survey. Advances in Data Analysis and Classification
8(3):231-255.

Jacques, J., and Preda, C. 2014b Model-based clustering
for multivariate functional data. Computational Statistics &
Data Analysis, 71: 92106

Jin, G.; Thakur, A.; Liblit, B.; and Lu, S. 2010 Instrumen-
tation and sampling strategies for coopera tive concurrency
bug isolation. In OOPSLA, 241255 New York, NY, USA
ACM.

Liblit, B.; Aiken, A.; Zheng, A. X.; and Jordan, M. I. 2003.
Bug isolation via remote program sampling. In PLDI, 141—
154. New York, NY, USA: ACM.

Loh, W.-Y. 2002. Regression tress with unbiased variable
selection and interaction detection. Statistica Sinica 361—
386.

Loh, W.-Y. 2011. Classification and regression trees. Wi-
ley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 1(1):14-23.

Mahajan, M.; Nimbhorkar, P.; and Varadarajan, K. 2009.
The planar k-means problem is np-hard. In WALCOM, 274~
285. Springer-Verlag.

Olivo, O.; Dillig, I.; and Lin, C. 2015. Static detection
of asymptotic performance bugs in collection traversals. In
PLDI, 369-378. New York, NY, USA: ACM.

Song, L., and Lu, S. 2014. Statistical debugging for real-
world performance problems. In OOPSLA, 561-578.

Sweeney, P. F.; Hauswirth, M.; Cahoon, B.; Cheng, P.; Di-
wan, A.; Grove, D.; and Hind, M. 2004. Using hardware
performance monitors to understand the behavior of java
applications. In Virtual Machine Research and Technology
Symposium, ST-72.

Tizpaz-Niari, S.; Cern}’/, P.; Chang, B.-Y. E.; and Trivedi,
A. Differential performance debugging with discriminant
regression trees. arXiv:1711.04076.

Tizpaz-Niari, S.; éerny, P; Chang, B.-Y. E.; Sankara-
narayanan, S.; and Trivedi, A. 2017. Discriminating traces
with time. In TACAS, 21-37. Springer.

Von Luxburg, U. 2007. A tutorial on spectral clustering.
Statistics and computing 17(4):395-416.

Witten, I. H.; Frank, E.; Hall, M. A.; and Pal, C. J. 2016.
Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann.

Wong, W. E.; Gao, R.; Li, Y.; Abreu, R.; and Wotawa, F.
2016. A survey on software fault localization. IEEE Trans-
actions on Software Engineering 42(8):707-740.

