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Abstract

Urban air pollution has attracted much attention these years
for its adverse impacts on human health. While monitoring
stations have been established to collect pollutant statistics,
the number of stations is very limited due to the high cost.
Thus, inferring fine-grained urban air quality information is
becoming an essential issue for both government and people.
In this paper, we propose a generic neural approach, named
ADAIN, for urban air quality inference. We leverage both
the information from monitoring stations and urban data that
are closely related to air quality, including POIs, road net-
works and meteorology. ADAIN combines feedforward and
recurrent neural networks for modeling static and sequential
features as well as capturing deep feature interactions effec-
tively. A novel attempt of ADAIN is an attention-based pool-
ing layer that automatically learns the weights of features
from different monitoring stations, to boost the performance.
We conduct experiments on a real-world air quality dataset
and our approach achieves the highest performance compared
with various state-of-the-art solutions.

Introduction

Urban air pollution is undoubtedly a severe problem in the
world, responsible for a growing number of health effects.
The acquisition of spatially fine-grained urban air quality in-
formation is of great importance for both government and ur-
ban people to understand the problem and take necessary ac-
tions in time. Recent effort has been devoted to establishing
monitoring stations to collect air quality statistics. However,
due to the high monetary cost (about $200,000 per station),
the number of available monitoring stations is very limited,
e.g., Beijing has only 36 monitoring stations in a total area
of 16,410 km? (Center 2017). As a result, it is becoming
crucial to infer a large amount of air quality information in
areas without monitoring stations.

Existing approaches to inferring spatially fine-grained air
quality information mainly fall into two categories: physical
methods and data-driven approaches. Physical methods es-
timate air quality in unmonitored locations by simulating the
complex physical dispersion process of air pollutants based
on observed data and several empirical assumptions (Arys-
tanbekova 2004; Kim, Park, and Kim 2012). However, the
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necessary data such as the distribution of all kinds of pol-
lution sources, accurate weather conditions (Godish, Davis,
and Fu 2014) and specific street configurations (Kim, Park,
and Kim 2012), are always difficult to obtain in practice.
Furthermore, some empirical assumptions may not reflect
real scenarios accurately, which degrades the model perfor-
mance. For example, the concentration of air pollutants may
not follow the Gaussian distribution as assumed in Gaussian
Plume models (Arystanbekova 2004).

Data-driven approaches exploit the effects of the available
spatio-temporal urban data on air quality inference (Hasen-
fratz et al. 2014; Chen et al. 2016a; Zheng, Liu, and Hsieh
2013). Intuitively, various factors from external data sources
such as POIs, land-use, traffic and meteorology in a particu-
lar location, can be partially or fully acknowledged to its air
quality. By augmenting the limited statistics from monitor-
ing stations with plentiful spatio-temporal data, data-driven
approaches are generally more effective at capturing local
information that relates closely to a location’s air quality,
thus achieving better inference results than those physical
methods.

Typically, data-driven approaches have to address two
challenging issues. The first challenge is: how fo incorpo-
rate auxiliary multi-source data with monitoring data? The
recent work (Zheng, Liu, and Hsieh 2013) propose to train
multiple prediction models with different feature sets and
then conduct co-training to retrain each model iteratively.
However, developing models separately can hardly capture
complex interactions between different features, and hence
fails to make accurate inference. The second challenge to be
addressed is: how to differentiate the importance degrees of
air quality data from different monitoring stations? Since not
all the monitoring data contribute equally to predicting the
air quality in a particular location, existing methods adopt a
random scheme (Zheng, Liu, and Hsieh 2013) or k-nearest
neighbor strategy (Chen et al. 2016a) to select a subset of
monitoring stations and only model the effects of the se-
lected monitoring station data for inference. Unfortunately,
the random selection scheme may cause the inconsistency
problem (Chen et al. 2016a), while the features from k near-
est stations are unnecessarily the most effective and the sig-
nificance of the same stations may rather vary with time (see
details in the Experiments Section).

In this paper, we address the aforementioned problems



by introducing a generic neural attention model, named
ADAIN (Attentional Deep Air quality Inference Network),
for spatially fine-grained urban air quality inference. We ex-
plore the use of deep neural networks (DNNs) for: 1) model-
ing heterogeneous data (e.g., air quality data, POIs, road net-
works, meteorological data) in a unified way, and 2) learning
complex feature interactions without costly handcrafted fea-
ture engineering. In general, ADAIN combines two kinds of
neural networks: i.e., feedforward neural networks to model
static data and recurrent neural networks to model sequen-
tial data, followed by hidden layers to capture feature in-
teractions. A novel attempt of ADAIN is to utilize the at-
tention mechanism (Bahdanau, Cho, and Bengio 2014), to
learn the importance degrees of monitoring stations for in-
ferring air quality in a particular location automatically. The
importance degree of each monitoring station is incorpo-
rated in ADAIN to dynamically re-weight the features from
each station during prediction. We conduct experiments on
real-world air quality data and the results demonstrate the
superiority of our approach in inference performance. Fur-
thermore, the learned weights of monitoring stations shed
light on the potential behaviors of air pollutant emissions
and variations, which are valuable for practitioners in ad-
dressing air quality issues.

Overview
Definition and Problem

Definition 1 (AQI and IAQI) The air quality index (AQI)
is widely used to measure air quality. For a specific air pol-
lutant, its individual air quality index (IAQI) in an area is
measured by a monitoring station, reflecting the real-time
concentration of the pollutant. AQI is the highest IAQI val-
ues among all kinds of air pollutants. We denote by D!, the
set of IAQI values for a certain pollutant in a city during
time period .

Definition 2 (POI) A point of interest (POI) represents a
specific location, with name, category, coordinates and sev-
eral auxiliary attributes. We denote by D,, the set of all POls
in a city.

Definition 3 (Road Network) A road network D,. consists
of a set of linked road segments in a city. Each road seg-
ment includes coordinates of the start and end points, and is
associated with a road type (e.g., motorway).

Definition 4 (Meteorological Data) A meteorology dataset
D, includes district-level meteorological records of a city.
Let D¢ denote the real-time meteorological information like
weather, temperature, pressure, humidity, wind speed and
wind direction during time period t.

In this paper, we aim to infer spatially fine-grained urban
air quality based on the above heterogeneous data.
Problem Statement. Consider a particular air pollutant.
Given its IAQI data D, = {D!}L, from monitoring sta-
tions, POI data D,, road network D, and meteorological
data D,, = {D! }]_, of a city, we aim to predict IAQI
value for any location [ without monitoring stations during
time period 7T'.
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Figure 1: Framework of our approach

Since different pollutants are typically influenced by the
observed data differently, we develop an individual model
for each pollutant. Note that AQI values can be easily de-
rived from TAQIs by choosing the maximum.

Framework

Figure 1 provides the framework of our proposed solution,
which consists of two major components: offline learning
and online inference.

o Offline learning. We first extract features from hetero-
geneous data. The features are generally divided into two
groups: static ones that are mostly time-invariant (e.g., fea-
tures from POIs and road networks), and sequential ones that
vary with time (e.g., features from meteorology and moni-
toring data).

To obtain training data, we deliberately remove a mon-
itoring station, and associate the features extracted from
data in its affecting region (i.e., within certain distance) and
data collected by the remaining monitoring stations with the
ground-truth IAQI value as one training example.

Our prediction model ADAIN employs feedforward neu-
ral networks (FNN) to handle static features, and uses re-
current neural networks (RNN) to absorb sequential ones.
The transformed features are further combined to learn a
unified representation that models feature interactions well.
ADAIN incorporates the attention mechanism to discrimi-
nate the importance of features from different monitoring
stations automatically. Note that ADAIN serves two bene-
fits: 1) it is generic to deal with new features that are either
static or sequential; 2) it also provides possible explanation
on which monitoring data contributes more to the prediction.
While the training data is limited by the number of monitor-
ing stations, ADAIN still outperforms the advanced semi-
supervised methods experimentally.

e Online inference. The online inference process tries
to predict TAQI value for a target location in a given time
period. To do this, we first extract features from the het-
erogeneous data observed in the affecting region of the tar-
get location. We then combine these features with the ones
from real-time monitoring data, and feed them to the trained
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Figure 2: Structure of ADAIN model

model, producing the inferred air quality result.

Methodology
Feature Extraction

We first introduce the features used in this paper, which have
been proved to be useful in previous works (Xu and Zhu
2016; Zheng, Liu, and Hsieh 2013). Without loss of gen-
erality, we focus on estimating air quality for location [ and
extract features from the data within [’s affecting region, i.e.,
within certain distance d. By default, d is set to 2 kilometers.
Meteorological features X'". The concentrations of air pol-
Iutants are easily influenced by meteorological factors. In
this paper, we consider six meteorological features: weather,
temperature, pressure, humidity, wind speed and wind direc-
tion. Among these features, weather and wind direction are
categorical with 12 and 10 categories each, while the oth-
ers are numerical. We adopt one-hot encoding to represent
weather and wind direction features. For numerical ones, we
normalize their values to be in the range of [0, 1]. As meteo-
rological data varies with time and locations, we extract fea-
tures for each region periodically (e.g., every 1 hour). We de-
note by X™ the set of meteorological features during time
period ¢ and omit the region label with the context is clear.

POI features X?. Intuitively, areas having many factories
tend to have poor air quality due to the emission of air pollu-
tants, while those surrounded by public parks are more likely
to have fresh air. As POIs well capture the characteristics of
locations, we leverage POI data for air quality inference. We
consider a set C? of 12 POI categories specified in (Zheng,
Liu, and Hsieh 2013) and compute the number of each POI
category within a region as one feature. Let X? = {22} .ccop
denote the POI features extracted for a location [. We have:

22 = [{l' € D, | dist(1,I') < d Al .category = c}| (1)

Road Network features X". The structure of road networks
also affects local air quality as vehicles are known to be an
important source of urban air pollutants (Faiz et al. 1997).
We divide all road segments in D, into three categories:
C" ={highway, trunk, others}. To capture the intensiveness
of road segments in different types, we measure the toral
length of road segments per category within a region as a
feature z;, € X", c€ C":

T = Z seg.length 2)

sege ST

where S7 = {seg € D, | seg.category = c A
seg is overlapped with [’s affecting region}.
Monitoring features X and X°. For each monitoring sta-
tion s, we extract meteorological, POI and road network fea-
tures X7, XP X7 from data within s’s affecting region. In
addition, we provision each station s with relative position
features X¢ that records the distance and direction of s to
the target location [, and IAQI features X¢ that contain a
sequence of observed IAQI values in s over time.

Proposed Model

Figure 2 provides the neural network structure of our
ADAIN model. The input layer of ADAIN consists of two
groups of input features: local features X" UX] UX] for lo-
cation [, and station-oriented features X™ UXPUX"UX U
X for each station s. Recall that the output of ADAIN is the
estimated TAQI value for location [. In what follows, we in-
troduce each layer of ADAIN in detail.

FNN-RNN Hybrid Layers. This layer tries to identify la-
tent features based on raw input features and model feature
interactions. Since some input features such as X", X* are
temporally related, we propose to use recurrent neural net-
works (RNN) to encode these sequential features. We ob-
serve the fact that the values of sequential features often ex-
hibit long periodicity, e.g., temperature. However, traditional
RNN can hardly capture long-term dependencies because
of gradient vanishing and exploding problems (Hochreiter
and Schmidhuber 1997). Hence, ADAIN employs the Long
Short-Term Memory (LSTM) (Graves 2013) to encode each
of the sequential features (i.e., X" and X?), which lever-
ages the gate mechanism to address the long-term depen-
dency problem.

The regular LSTM contains memory cells ¢ with self-
connections to store temporal states. Each memory cell is
associated with input gate i, forget gate f and output gate o
to control the flow of sequential information. Consider a se-
quence {X™1}T | of meteorological features for example.
The LSTM maps the input sequence to an output sequence
by calculating various unit activations using the following
equations.

i' = 0(WieX™ + Wi,h'"™' + Wie @' + b))

f' = o(WX™ + Wih' ™' + Wi o™ +by)

c=foc ! +i ©tanh(WX™ + Wh ™' +b.) 3)

ot = U(Wozxmt + Wohht71 + Woc ® Ct + bo)

h' = o' ® tanh(c")

where X! and h'! are one input element and the cor-

responding memory cell output activation vector at time ¢,
respectively. The W terms denote weight matrices (e.g.,
W, is the weight matrix from input gate to the input) and

b terms are bias vectors. ® denotes the Hadamard prod-
uct. o represents the standard sigmoid function. i, f, o, c are



the activation vectors in the same size for input gate, forget
gate, output gate and memory cell, respectively. We conduct
similar operations over sequential station-oriented features
Xm X2, Specifically, we concatenate X™*, X across all
stations to obtain a bigger sequential feature and feed it to
LSTM as one input element for time period ¢. As local and
station-oriented sequential features are typically extracted
from different locations, we treat them separately using dif-
ferent LSTMs.

For non-sequential local and station-oriented features
(i.e., X7 UX7 and X? UXT), we simply apply an individual
stack of the fully connected (FC) layers to learn high-order
interactions for each feature group. The definition of the FC
layers over non-sequential features is as follows.

z" =

{¢>(Wi"’(xi’ X, dXH +b™), n=1 @

(W21 4 b)), l<n<L

where * can be [ for local features or s for station-oriented

features, and L is the number of basic FC layer. ¢ is the ac-
tivation function and we use the rectifier ReLU in this paper
if not otherwise specified, which yields good performance.
Note that X? = () when modeling local features. In our de-
sign, we share the same set of network parameters among
all stations to control model complexity and increase model
flexibility when the number of stations changes.

To capture interactions among sequential and non-
sequential features, we further develop FC layers on top of
the basic FC and LSTM layers. Formally, the high-level FC
layers transform the last hidden state h” from LSTM and

the output vector z(%) of basic FC layers via the following
operations.

) -

W™ 2 ahT)+bi™), m=L+1
(W™D L b™) me[L+2,L+ 1)
)
where * can be [ or s, and L’ denotes the number of high-

level FC layers. To summarize, the output of hybrid lay-

(L+L")
l

ers contains latent local features z and latent station-

(L+L")

oriented features zg for each station.

Attention Layer. Since not all monitoring data contributes
equally to predicting air quality in the target location, we
propose to leverage the attention mechanism (Bahdanau,
Cho, and Bengio 2014) to our ADAIN model that learns the
importance of different station data automatically. The atten-
tion mechanism has been incorporated into neural network
modeling in various domains such as computer vision (Chen
et al. 2016b), information retrieval (Xiong, Callan, and Liu
2017) and recommendation (Xiao et al. 2017). The key idea
is to assign weights to different feature parts during predic-
tion. In our context, we compute a weighted sum over latent
station-oriented features from different stations as follows.

Falz" T ees) = 3 anz{ ) ©)

seS

where S denotes all monitoring stations and a; is the at-

tention score for latent features szJrL ) of station s learned

from the above hybrid layers. Intuitively, as discriminates
the importance of different station features to benefit model
prediction. Existing station selection schemes (e.g., random
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or k nearest) set values of a, to O or 1 based on certain rules.
The resultant weight can hardly distinguish the significance
among the selected station features where a4 equals to 1. To
address the problem, we parameterize the attention scores
based on a multi-layer perceptron (MLP), called Attention-
Net, as shown in Figure 2. The input to AttentionNet is the

concatenation of both zl(L+L ) and {zsFHE) Y cg. It then

encodes the interactions between local features and the ones
for station s to decide the attention score a:

ay = wip(Wa(z" ™) @ 2"*2)) £ b,) + b,

exp(as)

Z ses €Xp (ag )
where the matrix W, and the bias vector b, are model pa-
rameters in the first layer of MLP; vector w, and bias b, are
second-layer parameters. The length of w, equals the size
of hidden layer in MLP. The attention scores are normalized
via softmax such that they can be interpreted as the impor-
tance of different feature groups for prediction.

N

as =

Fusion Layer. Hybrid layers and attention layer model the

(L+L")

latent local features z, for location [ and high-level sta-

tion features f A({Z§L+L/)}S€ s), respectively. It is intuitive
to combine these features via concatenation and use a hidden
layer to learn high-order interactions. Hence, we develop a
fusion layer above the hybrid and attention layers, which is
defined as follows.

27 = $(Wi(z" 7 @ a5} ses)) +by) ®)

where z is the output vector of the fusion layer, matrix W s
and bias vector b are model parameters. While multiple fu-
sion layers can be stacked together, we observe good perfor-
mance based on a single fusion layer and omit further layers
to reduce model parameters.

Prediction Layer. At last, the output vector of the fusion
layer z is transformed to the final prediction score, i.e., the
estimated IAQI value for target location [ during time period
T:

g=wlzs +b, )
where w, is the neural weight vector for the prediction layer,
and by, is a bias scalar.

Summary. It is worth mentioning that the structure of our
ADAIN model is generic to incorporate more features that
are either static or sequential. When the number of monitor-
ing station increases, we may keep a subset of them and still
leverage the attention layer to determine the importance of
the feature group for each selected station.

Learning and Optimization

The air quality inference problem can be considered as a re-
gression task or a classification task (e.g., IAQI values are
organized into categories). As numerical IAQI values are
more accurate and valuable, we treat the inference problem
as a regression task and adopt the following squared loss as
the objective function:

Lioss = Z (9(X) — y(X))2

XeT

(10)



where T denotes the set of all training instances with
ground-truth TAQI values y(X).

Instead of using vanilla stochastic gradient descent (SGD)
to optimize the objective function, we adopt Adam (Kingma
and Ba 2014) as the optimizer. Based on adaptive estimates
of lower-order moments, the Adam optimizer dynamically
tunes the learning rate during training process and leads to
faster convergence. It is also known to be computationally
efficient with little memory requirement.

To prevent our model from overfitting, we consider two
widely used regularization techniques: dropout and Lo reg-
ularization. The main idea of dropout is to randomly drop
some neurons along with their connections during train-
ing (Srivastava et al. 2014), which prevents units from too
much co-adapting. In ADAIN , we employ dropout on each
hidden layer. Besides, we apply Lo regularization on model
weights to prevent possible overfitting. Formally, the actual
objective function we optimize is:

Lloss = Z (Q(X) - y(X))2 + A ||WH2
XeT

an

where A is a hyperparameter to control the regularization
strength and W denotes all weights in ADAIN .

Experiments
Experimental Settings

Datasets. To evaluate the performance of our proposed ap-
proach, we use the following available heterogeneous data
collected in Beijing, China.

(1) Air quality data: The air quality data (Zheng et al.
2015) was collected by 36 monitoring stations in Beijing,
from 2014/05/01 to 2015/04/30, with the collection time in-
terval of 1 hour. Each record contains TAQI values for dif-
ferent air pollutants observed by a station in an hour. We fo-
cus on predicting three important pollutants PM2.5, PM10,
NO,. All TAQI values follow the Chinese AQI standard.

(2) Meteorological data: The meteorological data (Zheng
et al. 2015) consists of real-time district-level meteorolog-
ical records. Each record contains weather, temperature,
pressure, humidity, wind speed and direction in an area.

(3) POI data: We query Map World APIs (world 2017)
and obtain about 151,000 POIs in Beijing.

(4) Road network data: We download the road network
for Beijing from OpenStreetMap (Openstreetmap 2017).
The number of road segments is 65,991, with a total length
of 27,889km.

Settings and Compared Methods. We divide all the mon-
itoring station data into the training and test sets with the
proportion of 2:1. The separation is based on stations and is
repeated randomly for 10 times, in order to avoid using his-
torical air quality data to infer current air quality informa-
tion for the same location. This is reasonable as we prefer
to predict air quality of locations without monitoring statis-
tics. We also select 10% of training data as the validation
set and allow training to be early stopped according to the
validation score. In our experiment, we construct a single
basic FC layer (L=1) with 100 neurons and two LSTM lay-
ers with 300 memory cells per layer. We then build two lay-
ers of high-level FC network (L'=2) with 200 neurons per
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layer. We initialize all the model parameters by sampling
from the uniform distribution between —0.1 and 0.1. We
compare ADAIN with the following approaches.

(1) k nearest neighbors (KNN): This method selects the k
monitoring stations closest to the inferred location, and com-
pute the average IAQI value from these stations as result. We
set k to be 3 in our experiments.

(2) Linear Interpolation (LI): This method calculates the
weighted average IAQI value based on data from all stations.
The weight of a station s is inversely proportional to its dis-
tance d to the inferred location:

(3) Gaussian Interpolation (GI): This is another interpo-
lation method based on a Gaussian distribution N (0, 0):

1 a3
e o2

5= S0 sTAQT x f(s), f(5)

s€S 2mo

where o is the average distance between two monitoring
stations, and Z is the normalizing factor.

(4) Gaussian Process Regression (GPR): GPR is a non-
parametric Bayesian regression model. We follow the for-
mulation of GPR in (Cheng et al. 2014) and use the follow-
ing kernel function:

= e Mlwi—as]l*
K(zi,xzj,\) =e J

where ) is a hyperparameter and set to 0.01 by default.

(5) Support Vector Regression (SVR): This is a classical
supervised regression model extended from support vector
machine. For station-oriented features, we only consider the
k (set to be 3) nearest stations as in (Chen et al. 2016a).

(6) Feedforward Neural Networks (FNN): This method
simply flattens all the features and feeds them into a multi-
layer feedforward neural network. For sequential features,
we only use their latest values. The network contains three
hidden layers, with 200 cells at each layer. We adopted
dropout and L2 regularization to reduce overfitting.

(7) Support Vector Machine (SVM): This is a classifica-
tion model that absorbs the same inputs as the support vector
regression model, while outputs categorical IAQI levels for
the target location. We consider 6 TAQI values introduced
in (Zheng, Liu, and Hsieh 2013).

(8) U-Air (Zheng, Liu, and Hsieh 2013): U-Air is a co-
training based classification model. It trains two classifiers
using data from different views, and improves the perfor-
mance of the two classifiers iteratively. This model produces
an inferred IAQI level by combining the outputs from both
classifiers.

Metrics. We use the root mean squared error (RMSE) to
measure the performance of various regression approaches
that infer IAQI values:

- \/ =YL (5(X)

y(X;))?

12
5 (12)
where NN is the number of instances in the test set.
To compare with classification methods (i.e., SVM and U-
air) that produce discrete IAQI levels, we convert the output
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Figure 3: ADAIN v.s. competing regression methods

of our method into the corresponding IAQI levels and adopt

accuracy as the measurement, which is defined as follows:

X € TestSet | §(X) = y(X)}|
N

where the numerator denotes the number of correct estima-
tions for the test cases.

Accuracy = (13)

Results

We first compare our method with aforementioned base-
lines. We then evaluate the effectiveness of different fea-
tures. Finally, we discuss the benefits of our attention model
and provide qualitative visualization results to explain it.
Comparison Results. Figure 3 shows the performance of
ADAIN and six regression methods, using RMSE metric.
ADAIN produces the lowest RMSE values for predicting all
three air pollutants. FNN provides the second best perfor-
mance. The reason may be the ability of hidden layers in
FNN that well model the feature interactions. However, on
average, the relative improvement of ADAIN over FNN is
still 20%. LI and GI perform worse than other methods on
all three pollutants. This indicates that the affecting degree
of air quality in areas with monitoring stations can hardly
be quantified using a function of distance. Furthermore, we
observe that the results on PM2.5 and PM10 are worse than
those on NO, for all methods. This is reasonable because
the concentration of NOs is more stable in different loca-
tions over time, compared wit PM2.5 and PM10.

Next, we compare our approach with competing classi-
fication methods, SVM and U-air. To do this, we convert
the outputs of our model into TAQI levels accordingly. Fig-
ure 4 provides the comparison results. It can be seen that
ADAIN achieves the highest accuracy than the other two
models on all three pollutants. On average, the relative im-
provements against U-Air and SVM are 10% and 28%, re-
spectively. The advantages of ADAIN over U-Air could be
explained in two aspects. First, U-Air trains two separate
classification models for spatial features and temporal fea-
tures, respectively. Such separation may fail to capture fea-
ture interactions, thus degrading the prediction performance.
Second, U-Air adopts random scheme when extracting fea-
tures from monitoring data. It is very likely that informa-
tive features are eliminated due to the randomness. In con-
trast, ADAIN leverages the attention model to discriminate
the importance of monitoring features from different stations
effectively. The benefits of the attention will be described in
the late part of this section.

ESVM mU-Air WADAIN

PM2.5 PM10 NO2

Figure 4: ADAIN v.s. competing classification methods

Table 1: Effects of various features in ADAIN

Features PM2.5 PM10 NO,
X 4+ X1 57.65 4555 32.06
X% 4 X4 4 XP 4 X" 53.54 41.74 29.43
X + X4 4 X™ 4945 3737 27.28
Xe 4+ X% 4+ X™ 4 XP4+X" | 42.60 33.01 23.19

Effects of Different Features. To evaluate the effective-
ness of different features in ADAIN , we manually remove
some features and compute the prediction error based on
the remaining features. Table 1 provides RMSE values of
our model using different features. It is easy to see that in-
corporating more features improves prediction performance
significantly and consistently over all three pollutants. The
last row with all features achieves the lowest RMSE values.
The first row provides the worst prediction results based on
station-oriented features only. The second row incorporates
non-sequential features from POI and road network data,
while the third row leverages sequential features from mete-
orological data. Sequential meteorological features are more
beneficial to air quality inference, which follows our intu-
ition that meteorological factors are highly correlated with
the concentration of air pollutants.

Effects of Attention Model. We now study the advantages
of our attention model in selecting useful information from
monitoring stations for prediction. To do this, we consider
two variants of our model. Instead of using attention-based
pooling, the two variants employ average pooling on the fea-
tures of all stations and & nearest stations (we set k to be 3
by default), respectively. Table 2 shows the RMSE values
using different pooling methods. Our attention-based pool-
ing approach achieves the lowest RMSE values in predict-
ing all three pollutants. The average pooling over all stations
provides the worst performance, which ignores the relative
importances of features from different stations. In particu-
lar, the averaged feature values may easily cancel out im-
portant information and introduce noise instead. Average-
k-nearest pooling outperforms average-all pooling by pro-
ducing lower RMSE values. This is because the features
from areas in closer distances are intuitively more informa-
tive for inferring local air quality values. However, average-
k-nearest pooling discriminates the importances of different
stations based on distance factor only and hence results in in-
ferior performance than our attention-based pooling method.
Attention Visualization. To better understand the effects
of our attention model, we visualize the attention scores



Table 2: Effects of different pooling methods

Pooling methods

PM2.5 PM10 NO,

Average-all pooling
Average-k-nearest pooling
Attention-based pooling

65.83 53.18 39.89
48.37 38.72 26.89
42.60 33.01 23.19
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Figure 5: Attention visualization

of monitoring stations in Figure 5, where the shapes repre-
sent monitoring stations and the colors reflect their attention
scores. We choose two target locations 1 and 2 and try to in-
fer their air quality during two time periods ¢; and 5. From
the results, we can have the following observations. First,
our attention model is able to dynamically identify impor-
tant station data for prediction. The learned importance of
features from a monitoring station can vary by location (lo-
cation 1 vs 2) and time (¢; vs t3), mainly because of the
chaotic air pollutants and unpredictable external incidents.
Second, distance is a critical factor that determines the im-
portance of monitoring stations, but not the only factor. We
use diamonds to highlight the top-3 stations with highest at-
tention scores. It can be seen from the colors that stations
far away from the target location may have higher attention
scores than those near the target location. For example, con-
sider the top-3 stations for location 2 in Figure 5c. Third,
the distribution of attention scores changes with the target
location. For location 1 surrounded by many monitoring sta-
tions, major attention weights are more uniformly assigned
to its nearby stations; for location 2 in remote area, high at-
tention scores are concentrated on 1-2 nearby stations. This
further verifies that the informative features from monitor-
ing stations are typically dependent on the particular target
location.

Related Work

There are two different ways predicting spatially fine-
grained urban air quality. One way is based on clas-
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sical emission models, including Gaussian Plume mod-
els (Arystanbekova 2004; Godish, Davis, and Fu 2014),
Street Canyon models (Kim, Park, and Kim 2012) and Com-
putational Fluid Dynamics (Scaar et al. 2012). These models
simulate the dispersion of air pollutants based on a number
of empirical assumptions and parameters. As some empir-
ical assumptions may not correspond to the real situations
and the required parameters such as emission density, street
geometry and dispersion parameters are hard to get pre-
cisely, the prediction results are far from satisfactory (Zheng,
Liu, and Hsieh 2013). The other is based on statistical mod-
els, such as linear regression, matrix factorization and neu-
ral networks for air quality inference (Shad et al. 2009;
Hasenfratz et al. 2014; Xu and Zhu 2016). However, many of
these models rely on local features from the target location
for prediction, without taking care of the spatial-temporal
correlations of air pollutants between adjacent areas. There
are several air quality inference models that take such de-
pendencies in account. For example, Zheng et al. (Zheng,
Liu, and Hsieh 2013) and Chen et al. (Chen et al. 2016a)
proposed semi-supervised based methods to estimate fine-
grained air quality. They use random scheme or k-nearest
neighbors to select nearby areas with monitoring stations to
model spatial dependencies of air pollutants. However, the
random scheme results in the inconsistency problem (Chen
et al. 2016a) while k-nearest method uses the distance of
station-oriented features to discriminate the importances of
different stations. Different from these works, we employ
the attention mechanism (Bahdanau, Cho, and Bengio 2014)
to assign weights to each group of station-oriented features
automatically, without human intervention. Moreover, our
proposed framework is generic and flexible to incorporate
more features to improve performance further.

Recently, many researches have developed deep learn-
ing based approaches to challenging tasks in urban com-
puting (Zheng et al. 2014). For example, Zhang et al.
proposed DNN-based prediction model to predict citywide
crowd flows (Zhang, Zheng, and Qi 2016). Liang et al.
utilized recurrent neural networks to predict metro den-
sity (Liang et al. 2016). Xing et al. and Grover et al. em-
ployed deep models for weather forecasting (Xingjian et al.
2015; Grover, Kapoor, and Horvitz 2015). Song et al. and
Chen et al. applied deep neural networks to urban trans-
portation systems (Song, Kanasugi, and Shibasaki 2016;
Chen et al. 2016¢). However, none of them concerns the
problem of inferring spatially fine-grained urban air quality,
which is the focus of this paper.

Conclusion

In this paper, we propose a generic neural attention model
based on deep neural networks for urban air quality infer-
ence. We leverage both records from monitoring stations and
various urban data (e.g., meteorology, road networks, POIs),
and extract important features that are correlated with air
quality. We model static and sequential features using dif-
ferent neural structures and incorporate the attention mech-
anism to discriminate the importance of features from dif-
ferent stations automatically, to boost the performance. The
experimental results on a real dataset verify the superiority



of our approach against compared methods.

Acknowledgment

We thank anonymous reviewers for their insightful and help-
ful comments, which improve the paper. This research is
supported in part by 973 Program (no. 2014CB340303),
NSFC (no. 61772341, 61472254, 61170238, 61602297 and
61472241), Singapore NRF ( CREATE E2S2 ), and 863 Pro-
gram (no. 2015AA015303). This work is also supported by
the Program for Changjiang Young Scholars in University
of China, and the Program for Shanghai Top Young Talents.

References

Arystanbekova, N. K. 2004. Application of gaussian
plume models for air pollution simulation at instantaneous
emissions.  Mathematics and Computers in Simulation

67(4):451-458.

Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.

Center, B. M. E. M. 2017. http://zx.bjmemc.com.cn.
Chen, L.; Cai, Y.; Ding, Y.; Lv, M.; Yuan, C.; and Chen, G.
2016a. Spatially fine-grained urban air quality estimation

using ensemble semi-supervised learning and pruning. In
UbiComp, 1076-1087. ACM.

Chen, L.; Zhang, H.; Xiao, J.; Nie, L.; Shao, J.; and Chua,
T.-S. 2016b. Sca-cnn: Spatial and channel-wise attention in
convolutional networks for image captioning. arXiv preprint
arXiv:1611.05594.

Chen, Q.; Song, X.; Yamada, H.; and Shibasaki, R. 2016c.
Learning deep representation from big and heterogeneous
data for traffic accident inference. In AAAI, 338-344.

Cheng, Y.; Li, X.; Li, Z.; Jiang, S.; and Jiang, X. 2014.
Fine-grained air quality monitoring based on gaussian pro-
cess regression. In JCONIP, 126-134. Springer.

Faiz, A.; Weaver, C. S.; Walsh, M.; Gautam, S.; and Chan,
L. 1997. Air pollution from motor vehicles: Standards and
technologies for controlling emissions. Technical report,
World Bank Group, Washington, DC (United States).

Godish, T.; Davis, W. T.; and Fu, J. S. 2014. Air quality.
CRC Press.

Graves, A. 2013. Generating sequences with recurrent neu-
ral networks. arXiv preprint arXiv:1308.0850.

Grover, A.; Kapoor, A.; and Horvitz, E. 2015. A deep hybrid
model for weather forecasting. In KDD, 379-386. ACM.

Hasenfratz, D.; Saukh, O.; Walser, C.; Hueglin, C.; Fierz,
M.; and Thiele, L. 2014. Pushing the spatio-temporal reso-
lution limit of urban air pollution maps. In PerCom, 69-77.
IEEE.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735-1780.

Kim, M. J.; Park, R. J.; and Kim, J.-J. 2012. Urban air qual-
ity modeling with full o 3—-nox—voc chemistry: Implications

for o 3 and pm air quality in a street canyon. Atmospheric
Environment 47:330-340.

2158

Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Liang, V. C.; Ma, R. T.; Ng, W. S.; Wang, L.; Winslett, M.;
Wu, H.; Ying, S.; and Zhang, Z. 2016. Mercury: Metro den-
sity prediction with recurrent neural network on streaming
cdr data. In ICDE, 1374-1377. 1EEE.

Openstreetmap. 2017. http://www.openstreetmap.org/.

Scaar, H.; Teodorov, T.; Ziegler, T.; and Mellmann, J. 2012.
Computational fluid dynamics analysis of air flow unifor-
mity in a fixed-bed dryer for medicinal plants. In Interna-
tional Symposium on CFD Applications in Agriculture, 119—
126.

Shad, R.; Mesgari, M. S.; Shad, A.; et al. 2009. Predicting
air pollution using fuzzy genetic linear membership krig-
ing in gis. Computers, Environment and Urban Systems
33(6):472-481.

Song, X.; Kanasugi, H.; and Shibasaki, R. 2016. Deep-
transport: Prediction and simulation of human mobility and
transportation mode at a citywide level. IJCAL

Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, 1.;
and Salakhutdinov, R. 2014. Dropout: a simple way to pre-
vent neural networks from overfitting. Journal of machine
learning research 15(1):1929-1958.

world, M. 2017. http://map.tianditu.com/map/index.html.
Xiao, J.; Ye, H.; He, X.; Zhang, H.; Wu, F,; and Chua, T.-
S. 2017. Attentional factorization machines: Learning the
weight of feature interactions via attention networks. arXiv
preprint arXiv:1708.04617.

Xingjian, S.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-
K.; and Woo, W.-c. 2015. Convolutional Istm network: A
machine learning approach for precipitation nowcasting. In
NIPS, 802-810.

Xiong, C.; Callan, J.; and Liu, T.-Y. 2017. Learning to attend
and to rank with word-entity duets. SIGIR.

Xu, Y., and Zhu, Y. 2016. When remote sensing data meet
ubiquitous urban data: Fine-grained air quality inference. In
Big Data, 1252-1261. 1EEE.

Zhang, J.; Zheng, Y.; and Qi, D. 2016. Deep spatio-
temporal residual networks for citywide crowd flows pre-
diction. arXiv preprint arXiv:1610.00081.

Zheng, Y.; Capra, L.; Wolfson, O.; and Yang, H. 2014. Ur-
ban computing: concepts, methodologies, and applications.
Transactions on Intelligent Systems and Technology 5(3):38.
Zheng, Y.; Yi, X.; Li, M.; Li, R.; Shan, Z.; Chang, E.; and
Li, T. 2015. Forecasting fine-grained air quality based on
big data. In KDD, 2267-2276. ACM.

Zheng, Y.; Liu, F; and Hsieh, H.-P. 2013. U-air: When
urban air quality inference meets big data. In KDD, 1436—
1444. ACM.



