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Abstract

Structural analysis of handwritten characters relies heavily on
robust skeletonization of strokes, which has not been solved
well by previous thinning methods. This paper presents an
effective fully convolutional network (FCN) to extract stroke
skeletons for handwritten Chinese characters. We combine
the holistically-nested architecture with regressive dense up-
sampling convolution (rDUC) and recently proposed hybrid
dilated convolution (HDC) to generate pixel-level prediction
for skeleton extraction. We evaluate our method on charac-
ter images synthesized from the online handwritten dataset
CASIA-OLHWDB and achieve higher accuracy of skeleton
pixel detection than traditional thinning algorithms. We also
conduct skeleton based character recognition experiments us-
ing convolutional neural network (CNN) classifiers on of-
fline/online handwritten datasets, and obtained comparable
accuracies with recognition on original character images.
This implies the skeletonization loses little shape informa-
tion.

Introduction

Recently, deep neural networks have promoted the handwrit-
ten character recognition performance significantly. Even
the large category set problem, handwritten Chinese char-
acter recognition (HCCR) (Zhang, Bengio, and Liu 2017),
has achieved high accuracies as over 97% by using convo-
lutional neural networks (CNNs). Despite the superior fea-
ture learning and classification capability of CNNs, they do
not offer structural interpretation of characters, say, the com-
position of strokes and radicals and their inter-relationship.
Structural analysis of handwritten characters has been stud-
ied since 1970s (Pritchard and Sondak 1973) but until now,
it is unsolved, partially because of the difficulty of stroke ex-
traction and structural model learning. Structural analysis re-
mains an important issue because in many applications, such
as education (Hsiung et al. 2017), human interaction, and
personalized font generation, the interpretation of strokes
and radicals, and the detection of stroke errors are necessary.

Character skeleton conveys key information for shape
recognition, and is particularly important for extracting the
structure of strokes. So, skeletonization or thinning has been
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studied intensively and many algorithms have been pro-
posed (Zhang and Suen 1984; Arcelli and Di Baja 1985;
Dong, Lin, and Huang 2016).

There are mainly two types of thinning algorithms:
neighbor-based algorithms and distance-based ones. The
former methods execute iteratively to delete pixels on the
boundary strokes until centered lines remain, and the dele-
tion or retention of stroke pixels depends on the connectiv-
ity in the neighborhood, such as the ZhangSuen algorithm
(Zhang and Suen 1984). An improved ZhangSuen algorithm
was designed for Odia characters, combining with stroke
correction (Pujari, Mitra, and Mishra 2014). In (Dong et al.
2017), stroke continuity detection serves as a preprocessing
step for thinning. Recently, (Alghamdi and Teahan 2017)
proposes a novel algorithm based on the boundary deletion
with colour coding. The latter ways yield skeletons straight-
forwardly by using distance transforms to extract the medial
axis of a stroke. Variant methods differ in the distance func-
tions: city block distance (Arcelli and Di Baja 1989), Eu-
clidean distance or constrained Delaunay triangulation tech-
nique (Zou and Yan 2001).

These methods are likely to yield unsatisfactory results
when facing: (1) complex shapes, (2) variable stroke widths
and (3) unsmooth edges. Particularly, the extracted lines
are often distorted at the crosses or intersections of strokes
(Dong et al. 2017). These outcomes make stroke extraction
and structural analysis difficult, while fully convolutional
networks (FCNs) (Long, Shelhamer, and Darrell 2015) pro-
vide an pixel-to-pixel manner to solve these problems. For
example, holistically-nested networks (Xie and Tu 2015)
and scale-associated networks (Shen et al. 2016) success-
fully predict the contour maps and skeleton maps of generic
objects in natural images, respectively. But these models do
not assure that it is one-pixel width in the output contour or
skeleton.

This paper proposes a FCN-based skeleton extraction
method for handwritten Chinese characters, which are typ-
ical of complex structures. The network fuses holistically-
nested features at multiple scales (Xie and Tu 2015), to re-
duce the information loss caused by upsampling operations.
With fewer computational overhead, our method is particu-
larly beneficial for better structure preservation at crossing
areas. For supervised training, it is infeasible to label skele-
ton pixels for large number of offline handwritten samples.
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So, we synthesize training samples from online handwritten
data. Experiments show that the model trained with synthe-
sized data work well on real offline data.

The major contributions of this work are as follows: (1)
we propose an effective FCN-based method for skeletoniza-
tion of handwritten characters; (2) we adopt a regressive ver-
sion of dense upsampling convolution (DUC) (Wang et al.
2017) to bridge breakpoints; (3) in the fusion phase, we de-
sign multi-rate dilated convolution to make full use of con-
textual information from different scales, and attain recog-
nizable skeletons for machine recognition.

The rest of this paper is organized as follows: Section 2
briefly reviews the multi-loss FCNs for relative tasks, Sec-
tion 3 details the proposed method, Section 4 presents exper-
imental results of skeleton extraction and character recogni-
tion, and Section 5 offers concluding remarks.

Related Work

Deep Side Outputs

Most existing methods in character skeleton extraction fo-
cus on either local visual rules (Zhang and Suen 1984;
Pujari, Mitra, and Mishra 2014; Dong et al. 2017) or dis-
tance measurements (Zou and Yan 2001). These methods
focus on low-level features in local regions, but when read-
ing, humans turn to concern the skeletons of characters sub-
consciously and ignore the colors or widths of strokes.

Deep side outputs (Xie and Tu 2015) emulate the afore-
mentioned human behavior at multiple scales with different
receptive field (RF) sizes. A standard architecture with layer-
by-layer side outputs in a simple 1-stream network (Shen et
al. 2016) has announced the progress in extracting skeletons
of generic objects, such as quadrupeds or airplanes under
natural scenes. Though fusing scale-specific features from
different stages and producing more sensible results, deep
side outputs generate skeleton lines with nonuniform widths
and bring out quite a number of breakpoints inevitably.

Multi-Loss Learning under Multi-Scale Skeleton

Since the side outputs are attached to different convolution
layers on the identical 1-stream net, (Shen et al. 2016) in-
corporate a weighted-fusion output layer that connects to
all side-output layers. The key characteristic of the standard
multi-loss architecture is that each side-output map should
drive a loss function to optimize the networks.

Here are some reasons why researchers adopt multi-loss
learning in similar tasks: (1) different side outputs trace back
to different receptive field sizes and scales, thus each scale
generates a relevant skeleton map. Furthermore, the fusion
operation of the single-scale skeletons are also designed to
be a learnable convolutional operation; (2) different side out-
puts are learned from features with different levels. Our goal
is learning effective features from which it is easy to cap-
ture skeletons. Low-level features from shallow convolution
layers usually bring out skeletons of smooth strokes with-
out bending segmentations, i.e., the trends of these strokes
change weakly. High-level features from deep convolution
layers work on extracting skeletons at the places where the

trends of strokes change dramatically, such as junctions, in-
tersections and inflections in strokes.

Domain-Relative Initialization

The performances of almost all FCNs are limited by the
lackness of training data (Dai et al. 2016). So, researchers
cast pre-trained deep classifiers into FCNs (Long, Shel-
hamer, and Darrell 2015) and fine-tune them. Due to the us-
age of the fully connected layers, deep classifiers only accept
input samples with fixed-sizes and calculate confidences for
each category. Thus, casting CNNs into FCNs by remov-
ing fully connected layers provides a effective method for
fine-tuning networks without the limit of input size (Long,
Shelhamer, and Darrell 2015).

Domain-relative initialization indicates that the FCN-
based tasks share the same feature spaces with their homol-
ogous CNNs. For segmenting generic objects out of natu-
ral images, (Long, Shelhamer, and Darrell 2015) initializes
FCNs with VGG net (Simonyan and Zisserman 2014) which
was previously trained on large-scale generic object images.
Pre-trained VGG net also works well in extracting contours
(Xie and Tu 2015) or skeletons (Shen et al. 2016) of generic
objects. Similarly, we pre-train deep character recognition
models for our character skeleton extraction task.

Methodology

The proposed character skeleton extraction method dia-
grammed in Fig. 1 consists of 4 major parts: the 1-stream
convolutional layers act as feature extractor; regressive
dense upsampling convolution (rDUC) extends feature maps
without interpolation; scale-associated side outputs con-
tribute to predicting skeletons at multiple scales; and multi-
rate dilated fusion (MDF) fuse all candidate skeleton maps
into a final results. Besides, we design a concise and effec-
tive postprocessing method to obtain pure skeletons.

Network Architecture

The training and testing stages of the proposed network are
detailed in Fig. 1, where the convolutional feature extractor
are initialized by the pre-trained model in Fig. 7. The fea-
ture extractor stretches into 4 groups of side outputs (in the
solid box, derived from conv2, conv3, conv4, and conv5)
connected to subsequent layers. Side outputs go through
two branches: (1) rDUC applies convolutional operations
directly on each side output to get a pixel-wise prediction
at the corresponding scale. (2) Regular upsampling expands
the size of side-output feature maps to the same as input im-
ages.

Then the slicing and concatenating operations divide all
available feature maps into 5 groups. When features at dif-
ferent scales contribute to the final performance all alone
like (Xie and Tu 2015), the skeletonization performance is
relatively poor. Therefore all groups should have concate-
nated features from all scales and generate candidate skele-
ton maps respectively (Shen et al. 2016). Dilated convolu-
tion plays a key role in fusing candidate skeleton maps and
predictions of rDUC. In order to drive the side outputs to
capture better features at all scales, as the dashed box shows
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Figure 1: The proposed character skeleton extraction net-
work.

in Fig. 1, the results of regular upsampling are also exploited
to generate the predictions of character skeletons.

Regressive Dense Upsampling Convolution (rDUC)
DUC was described in (Wang et al. 2017) for semantic
segmentation. Suppose that the size of a input image is
C × H ×W (channels × height × width), and we have
the feature maps FM with size c × h × w from the final
convolution layer (the downsampling factor r = H

h = W
w ).

FM is used to draw a label map with size H × W where
each pixel is predicted with a category label. Nc is the total
number of different categories. DUC performs convolution
on FM to get a feature map FD

M with size ((r2 × Nc) ×
h × w). Finally, FD

M is reshaped to predicted map with size
(Nc×H×W ). Our final goal is classifying pixels into 2 cat-
egories (skeleton/non-skeleton points), thus we propose the
regressive dense upsampling convolution as shown in Fig. 2.

Figure 2: The computation of regressive dense upsampling
convolution (rDUC).

The left-most feature maps Fl with the size (2 × 2 × 2)
in Fig. 2 are the outputs of a convolutional feature extrac-
tor, and they are used to generate a (1 × 4 × 4) predic-
tion. In FCNs, this process is done by bilinear upsampling
(Long, Shelhamer, and Darrell 2015). Due to the unlearn-
able property and insufficient amount of parameters, bilin-

ear upsampling loses lots of valuable information. In rDUC,
we directly conduct convolution operation on Fl to attain the
middle feature maps Fm with size (4 × 2 × 2). Following
the rules indicated by different colors in Fig. 2, we reshape
Fm to the final prediction Pr with size (1× 4× 4).

Though named "sampling", rDUC is a learnable process
without interpolation. Moreover, it is capable of capturing
fine-detailed features, which are easily missed in the bilin-
ear interpolation. In comparison with DUC, rDUC reduces
the number of parameters and has better generalization. The
reason is that it has no concern with variant classes. In our
task, rDUC contributes a lot to eliminating the breakpoints
in character skeletons.

Multi-Rate Dilated Fusion (MDF) Dilated convolution
is used to maintain high resolution of feature maps in FCNs
through replacing the max-pooling operation or convolution
layer (Wang et al. 2017), and it can also extend the recep-
tive field. But single-rate dilated convolution always cause
"gridding" problems as Fig. 3(a) (Wang et al. 2017) shows.

(a) Single rate fusion. (b) Multi-rate dilated fusion.

Figure 3: Comparison of multi/single-rate dilation.

Fig. 3 displays 2 feature maps: the blue pixels mean that
they have contribution to the calculation of the central pixel
(marked in red). In Fig. 3(a), all kernels are 3 × 3 with sin-
gle dilate rate, and many pixels at fixed positions contribute
nothing. The pixel-wise utilization of HDC is shown in Fig.
3(b), where each pixel is in full use because of multiple di-
lated rates 1, 2, 3.

Figure 4: The role of HDC. HDC covers larger context. In
the red box, 3× 3 kernel with single-rate dilation may cover
9 background points but 0 foreground ones. But the multi-
rate kernels concern much more pixels, and are more likely
to connect broken lines.

In our task, large convolutional kernels (≥ 5× 5) neglect
details, while the respective fields of 3×3 kernels are narrow.
Especially when extracting the character skeletons, we need
small kernels to predict detailed skeleton points, and large
kernels to capture the holistic shapes of handwritten strokes.
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Dilated convolutions provide respective fields with different
sizes without extra parameters. Furthermore, the foreground
points of predicted skeleton maps are far less than the num-
ber of background points, HDC fully utilizes all foreground
pixels as shown in Fig. 4. The HDC module in our task are
shown in Fig. 5, where dilated convolutions contain multiple
rates from 1 to 4. The summation of 4 feature maps from di-
lated convolution kernels is delivered to a fusing convolution
layer for the final prediction.

SUM
fusing conv

Figure 5: The HDC module in our task. Blue points mean
the non-zero parameters of one kernel, and we insert blanks
between them.

Multi-Loss Learning

(Xi, Yi) denotes one training pair, where Xi refers the input
sample and Yi expresses the ground truth skeleton of Xi. A
typical instance of (Xi, Yi) is (Fig. 6(b), Fig. 6(a)). Predic-
tions and ground truth maps are used to calculate Sigmoid
Cross Entropy loss LSCE .

Besides fine-tuning the weights WH inherited from the
pre-trained HCCR-CNN9Layer, we need to learn following
parameters: (1) Side outputs come from K different scales,
and the weights for working out k-th side output are de-
noted as WS

k . (2) Unlike the unlearnable bilinear filters in
(Long, Shelhamer, and Darrell 2015; Shen et al. 2016), our
kernels WU

k of k-th upsampling layer are learnable, which
we will prove to be superior to the unlearnable case in Fig.
10. (3) Suppose after the slicing and concatenating, there
are G groups of feature maps. The convolutional kernel WC

g
works out the g-th candidate skeleton map, and the predic-
tions boxed by dashed lines in Fig. 1 are related to WO

k .
(4) The proposed rDUC also contains convolutional calcula-
tions, and WR

k denotes the weights for the k-th side output.
(5) For convenience, we denote all kernels in multi-rate di-
lated convolution by WD.

From the perspective of the final outputs, PU
k , PR

k , and
PF represents the k-th prediction generated by the regu-
lar upsampling results, the k-th prediction generated by the
rDUC results, and the final fused prediction, respectively.
Given the above, we define the fusion loss as

Lf = LSCE (PF , Yi|WH ,WS ,WU ,WC ,WO,WR,WD),
(1)

where W H ∼ WD are the weights which will be updated
by minimizing Lf . As for the k-th prediction generated by
the regular upsampling results, the objective function caused

by PU
k is

Ls = LSCE (PU
k , Yi|WH

k ,WS
k ,WU

k ,WO
k ). (2)

Similarly, we consider the loss refers to PR
k as

Lr = LSCE (PR
k , Yi|WH

k ,WS
k ,WR

k ). (3)

Training Data Preparation Supervised deep learning de-
mands plenty of ground-truthed skeletons of offline hand-
written Chinese characters. It is impossible to human-
annotate ground truth skeletons for a large number of sam-
ples. Fortunately, the online handwritten samples (Liu et al.
2011a) record strokes by (x, y)-coordinate sequences, which
can be viewed as the ideal skeletons of synthesized images
(generated by dilating the stroke skeletons). Thus we gen-
erate a large number of synthesized character images from
online handwritten characters for training.

As shown in Fig. 6(a), the online character is plotted by
connecting the sequential (x, y)-points recorded for pen tra-
jectory in writing. The offline image Fig. 6(b) is generated
by dilating the strokes of plotted online character image with
appropriate control of stroke width, edge smoothness and
foreground gray scale. Specifically, we obtain realistic gray-
scale images by controlling the image qualities of the whole
images in JPG format. It is clear that our synthetic image
is much better than the one which is processed by Gaussian
noises or pseudo-gray means.

(a) Online handwritten char-
acter from plotting the (x, y)-
points.

(b) Synthesized offline char-
acter image.

Figure 6: Conversion from online handwritten character to
offline image.

We train deep HCCR model by samples like Fig. 6(b) to
provide foundational parameters for our FCNs, and we will
illustrate the necessity of pre-training in Fig. 12. Obviously,
Fig. 6(a) is quite qualified for serving as the ground truth
skeleton of Fig. 6(b), and provides accurate supervision.

Pre-trained Model As shown in Fig. 7, the HCCR-
CNN9Layer (Xiao et al. 2017) reaches excellent perfor-
mance, and its similar architecture with VGG net (Simonyan
and Zisserman 2014) makes it easy to cast into FCNs.
Therefore we use the convolutional parameters of HCCR-
CNN9Layer to initialize our FCNs and fine-tune all layers.

Because the character skeleton extraction network should
share the same inputs with its corresponding deep domain-
relative HCCR model, we use the universal set of on-
line Handwritten database CASIA-OLHWDB1.1 (Liu et
al. 2011a) to synthesize training data (∼1.121 millions)
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96x96x96 128x48x48 160x24x24
256x12x12 384x6x6

Figure 7: The Architecture of HCCR-CNN9Layer. Differ-
ent colors indicate different groups of conv layers. Each
convolutional layer works with 3 × 3-kernels, 1-stride and
1-pad. We employ SGD with learning rate 10−1, momen-
tum 0.9, weight decay 2 × 10−4, and the learning rate is
dropped by ×0.1 per 3.5 epochs. Here we omit the 2 × 2-
max-pooling and batch normalization layers after each con-
volutional group.

like Fig. 6(b). We test the pre-trained model on a random
subset (∼230 thousands) of the training part of CASIA-
OLHWDB1.0 (Liu et al. 2011a).
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Figure 8: The pre-training process of HCCR-CNN9Layer.

As shown in Fig. 8, during the early stages of training,
the model exhibits unstable state. With the periodic drop
of learning rate, there is a significant accuracy improve-
ment for testing set. Therefore we stop training after 15
epochs (94.53% accuracy) instead of running more epochs
to achieve higher performance.

Postprocessing

The postprocessing in similar tasks (Xie and Tu 2015;
Shen et al. 2016) is very simple: employing 1

2 -thresholded
binarization on sigmoid(PF ). However, this method only
captures a coarse result like Fig. 9(b), where there are lots
of breakpoints, and most segmentations are not one-pixel
width. In the heatmap of PF in Fig. 9(a), it is easy to distin-
guish the mainlines of objective skeletons (in deep red) from
non-skeleton pixels (in bright color). Therefore we conduct
K -Means on Fig. 9(a) (set K as 2) and generate a binary im-
age Fig. 9(c), where there are no unsatisfactory breakpoints.
Finally, rules from (Zhang and Suen 1984) clear the redun-
dant foreground points and generate ideal skeleton as Fig.
9(d) shows.

(a) Heatmap of PF .
(b) 1

2
-thresholded

sigmoid(PF ).

(c) K -Means on (a). (d) Our result.

Figure 9: The results of our postprocessing method.

Experiments and Results

Experiments on Skeleton Extraction Tasks

We use the framework in Fig. 1 without rDUC as our base-
line model, which obeys the widely accepted construction
standards introduced by (Shen et al. 2016). We replace the
MDF with the general convolutional fusion in the baseline
model. Besides, the bilinear upsampling operations in the
baseline model are unlearnable.

We synthesize the pair-wise training data as (Fig. 6(a),
Fig. 6(b)) from CASIA-OLHWDB1.1 (∼1.121 millions) for
the training and test our models on the synthesized data
(∼224 thousands) from ICDAR-2013 Online HCCR Com-
petition Database (Yin et al. 2013). The performances of
skeleton extraction methods are measured by the F-measure
( 2×Precision×Recall

Precision+Recall ) (Shen et al. 2016). Because the F-
measures cannot give visual descriptions about the perfor-
mances of different models, we propose a new metric named
Average Minimal Distance (AMD) to evaluate our methods.
Ps and Pg express the sets of skeleton points in the predicted
maps and ground truth map, respectively. Each item dij in
matrix D|Ps|×|Pg| indicates the distance between P i

s and P j
g .

Therefore, we have:

AMD = average(H (D)), (4)

where H is the Hungarian algorithm1 designed to solve the
linear sum assignment problems.

We conduct our experiments on 4 models: baseline, base-
line + learnable upsampling, baseline + learnable upsam-
pling + MDF, and baseline + learnable upsampling + MDF
+ rDUC, and 3 different input sizes: 96 × 96, 64 × 64, and
48 × 48. The Lf curves with different configurations and
the consistent input size 96 × 96 are present in Fig. 10 and

1https://en.wikipedia.org/wiki/Hungarian_algorithm
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Figure 10: The average loss of each epoch.

Fig. 11. The average losses of each epoch in Fig. 10 shows
the combination of baseline + learnable upsampling + MDF
+ rDUC exceeds all other models. Moreover, the curves in
Fig. 10 indicate that all of the learnable upsampling, MDF,
and rDUC are conducive to optimizing our networks.

In Fig. 11, the black curve tells the history of Lf when
we train the baseline net without inheriting WH from the
pre-trained model, and the green one means the fine-tuning
phase on the basis of WH . Obviously, even if we have > 1
million pairs of training samples, domain-relative initializa-
tion by pre-trained HCCR-CNN9Layer is indispensable.
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Baseline (fine-tuning on pre-trained model)
Baseline (without fine-tuning)

Figure 11: The necessity of pre-training.

We report the F-measure in Table. 1, where our models
outperforms others significantly. In our experiments, Zhang-
Suen algorithm works better than other traditional methods,
such as stroke correction (Pujari, Mitra, and Mishra 2014)
and stroke continuity (Dong et al. 2017). Distance-based
methods are suitable for patterns with simple shapes and
smooth contours, but fail to present comparable outputs in
our task. HED network reports a much better AMD than tra-
ditional methods, but its recall is not ideal. Though the skele-
tons extracted by our models are not fit the ground truth per-
fectly, they look very natural, that means they can be read
by humans and recognized by machines. AMDs in Table.
1 strongly demonstrate that in our methods, the predicted
skeleton points are closer to the ground truth points.

Table 1: Comparison between different models on synthe-
sized data from ICDAR-2013 Online HCCR Competition
Database. Image size: 96× 96.

Method F-measure AMD
Stroke Correction (Pujari, Mitra, and Mishra 2014) 0.215 3.87

Stroke Continuity (Dong et al. 2017) 0.349 3.45
ZhangSuen (Zhang and Suen 1984) 0.381 3.23

HED (Xie and Tu 2015) 0.373 1.78
Baseline 0.575 1.51

Baseline + learnable upsampling 0.592 1.44
Baseline + learnable upsampling + MDF 0.597 1.46

Baseline + learnable upsampling + MDF + rDUC 0.610 1.29

Experiments on Recognition Tasks

We illustrate the character skeleton extraction results ob-
tained by different methods in Fig. 12. These examples
show that our method has detected the most ground truth
points. Obviously, our results are more smooth, and contain

Figure 12: The character skeletons attained by different
methods on synthesized data from ICDAR-2013 Online
HCCR Competition Database. From up to down: input
images; ground truths; stroke continuity based algorithm;
ZhangSuen method; HED network, and ours. Image size:
96× 96.

fewer noisy points. Above all, our results are as human-
readable as the raw images and ground truths. Though
our models are trained on synthetic data, they can handle
the real offline handwritten Chinese character samples in
CASIA-OFFHWDB1.1 (Liu et al. 2011a), and extract re-
sultful skeletons in Fig. 13.

It is clear that skeletons of real/synthesized offline char-
acters are human-readable. Thus, we recognize skeletons
directly in classification tasks. We use HCCR-CNN9Layer
as our classifier and conduct experiments on two sides: (1)
Training models directly on character skeletons. (2) Train-
ing models on the 2-channel inputs, where the raw images
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and skeletons occupy one input channels separately. From
Table. 2, we can see that when only recognizing skeletons,
the best accuracy 95.53% is 1.28% lower than the state of the
art 96.81% achieved by training on the 96× 96 raw images.
Nevertheless, combining raw image and skeleton as classi-
fier input reports the best performance 96.90% when only
training on CASIA-OFFHWDB1.1, this result is compara-
ble with the best accuracy 96.95%. Moreover, in Table. 2,
the low accuracy 69.94% for skeletons generated by Zhang-
Suen algorithm indicates that traditional thinning algorithms
do not preserve character shapes well.

Table 2: Testing accuracies on ICDAR-2013 Offline HCCR
Competition Database. All models are trained on offline
dataset CASIA-OFFHWDB1.1.

Method Training Data Input Image Size Accuracy
(Liu et al. 2011b) 1.1 Raw 48× 48 92.18%
(Yin et al. 2013) 1.1 Raw 48× 48 94.77%

(Cireşan and Meier 2015) 1.1 Raw 48× 48 95.79%
(Wu et al. 2014) 1.1 Raw 64× 64 96.06%

HCCR-CNN9Layer

1.1 Raw 96× 96 96.81%
1.1 Skeleton (Ours) 96× 96 94.34%
1.1 Skeleton (Ours) 64× 64 95.53%
1.1 Skeleton (Ours) 48× 48 94.66%
1.1 Skeleton (ZhangSuen) 64× 64 69.94%
1.1 Raw + Skeleton (Ours) 96× 96 96.90%
1.1 Raw + Skeleton (Ours) 64× 64 96.63%
1.1 Raw + Skeleton (Ours) 48× 48 96.10%

(Zhang, Bengio, and Liu 2017) 1.1 + 1.0 DirectMap 8× 32× 32 96.95%

Though only recognizing skeletons cannot reach the
best performance, we can not ignore the structural in-
variance contained in skeletons. The changes of fore-
ground/background colors, stroke widths, and image qual-
ities will cause the performances degradation on mod-
els trained on the raw images, but the recognitions of
skeleton are robust to these kinds of variants. As Fig.
6(b) shows, we synthesize two offline datasets from two
online datasets: ICDAR-2013 Online HCCR Competition
database and CASIA-OLHWDB1.1TST (the testing set of
CASIA-OLHWDB1.1 (Liu et al. 2011a)), which are named
ON2OFF-Comp2013 and ON2OFF-HWDB1.1TST.

In Table. 3, we present the accuracies under 4 kinds of
different inputs: raw images, binary images, directMaps (Liu
2007), and skeletons. On the synthesized datasets, the classi-
fiers trained on the raw data of CASIA-OFFHWDB1.1 drop
by >6%. When training and testing on binary images or di-
rectMaps, models perform better. However, models trained
on binary samples or directMaps cannot reach higher ac-
curacies because the stroke widths in testing sets are vari-
ous while the stroke width in CASIA-OFFHWDB1.1 have
smaller variance.

Table 3: Testing accuracies on synthesized datasets. All
models are trained on the real offline datasets CASIA-
OFFHWDB1.1.

Method Input Image Size ON2OFF-Comp2013 ON2OFF-HWDB1.1TST

HCCR-CNN9Layer Raw 96× 96 89.27% 89.41%
Binary 96× 96 88.37% 89.65%

(Zhang, Bengio, and Liu 2017) DirectMap (Raw) 8× 32× 32 90.14% 90.73%
DirectMap (Binary) 8× 32× 32 90.40% 91.23%

HCCR-CNN9Layer Skeleton (ZhangSuen) 64× 64 70.26% 70.44%
Skeleton (Ours) 64× 64 94.42% 94.53%

In Table. 3 the models trained on skeleton still report com-
parable performances with the result in Table. 2, and this can
be easily explained. A real offline sample is shown in Fig.

Figure 13: The character skeleton extraction results on the
real offline data. From up to down: input images; stroke con-
tinuity based algorithm; ZhangSuen method; HED network,
and ours. Image size: 96× 96.

(a) Offline sam-
ple.

(b) Skeleton of
(a).

(c) Synthesized
data.

(d) Skeleton of
(c).

Figure 14: The different forms of offline and synthesized
data.

14(a), and a typical synthesized sample is just like Fig. 14(c).
Though they are machine-readable, the pixel-wise distribu-
tions of synthesized data are totally different from the real
offline one. Hence, even if under the gray normalization, the
models trained on the real offline data fall down evidently
on synthesized data. By contrast, the directMaps can capture
more invariant features for recognition tasks. In the skeleton
based recognition task, we recognize the extracted skeletons
of input samples instead of the raw images. Though there
exists different distributions in the raw data and the synthe-
sized data, the skeletons hold enough discriminative and in-
variant clues for robust recognition, i.e., Fig. 14(b) and Fig.
14(d) are the skeletons of Fig. 14(a) and Fig. 14(c) respec-
tively, and models trained on samples like 14(b) are capable
to understand samples like Fig. 14(d).

To show the usefulness of skeletons extracted from char-
acter images synthesized from online handwritten charac-
ters, we also evaluate the recognition accuracies on real of-
fline test data using models trained with synthesized sam-
ples in ON2OFF-HWDB1.1 (synthesized by the universal
set of the online data CASIA-OLHWDB1.1). The results are
shown in Table. 4, where we can see that the accuracies are
comparable with the ones in Table. 3. This implies means
the online samples can fulfill data argumentation in offline
recognition tasks.
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Table 4: Testing accuracy on ICDAR-2013 Offline HCCR
Competition Database. All models are trained on the syn-
thesized offline data ON2OFF-HWDB1.1.

Method Input Image Size Accuracy

HCCR-CNN9Layer Raw 96× 96 89.05%
Binary 96× 96 89.42%

(Zhang, Bengio, and Liu 2017) DirectMap (Raw) 8× 32× 32 90.56%
DirectMap (Binary) 8× 32× 32 91.20%

HCCR-CNN9Layer Skeleton (ZhangSuen) 64× 64 69.77%
Skeleton (Ours) 64× 64 94.51%

Conclusion

We propose a fully convolutional network with multi-loss
learning to extract skeletons for handwritten Chinese char-
acters. By combining the standard side-output architecture
with the regressive dense upsampling convolution (rDUC)
and multi-rate dilated fusion (MDF), we achieve high F-
measure in skeleton pixel detection. Our experimental re-
sults of skeleton-based character recognition using CNNs
demonstrate that the skeletons extracted using the proposed
method preserves character shapes very well. In the future,
we will study into structural shape analysis, matching and
interpretation based on character skeletonization.
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Cireşan, D., and Meier, U. 2015. Multi-column deep neural net-
works for offline handwritten Chinese character classification.
In International Joint Conference on Neural Networks, 1–6.
Dai, J.; He, K.; Li, Y.; Ren, S.; and Sun, J. 2016. Instance-
sensitive fully convolutional networks. In European Conference
on Computer Vision, 534–549.
Dong, J.; Chen, Y.; Yang, Z.; and Ling, B. W.-K. 2017. A
parallel thinning algorithm based on stroke continuity detection.
Signal, Image and Video Processing 11(5):873–879.
Dong, J.; Lin, W.; and Huang, C. 2016. An improved paral-
lel thinning algorithm. In International Conference on Wavelet
Analysis and Pattern Recognition, 162–167.
Hsiung, H.-Y.; Chang, Y.-L.; Chen, H.-C.; and Sung, Y.-T. 2017.
Effect of stroke-order learning and handwriting exercises on rec-
ognizing and writing Chinese characters by Chinese as a foreign
language learners. Computers in Human Behavior 74:303–310.
Liu, C.-L.; Yin, F.; Wang, D.-H.; and Wang, Q.-F. 2011a. CA-
SIA online and offline Chinese handwriting databases. In In-

ternational Conference on Document Analysis and Recognition,
37–41.
Liu, C.-L.; Yin, F.; Wang, Q.-F.; and Wang, D.-H. 2011b. IC-
DAR 2011 Chinese handwriting recognition competition. In In-
ternational Conference on Document Analysis and Recognition,
1464–1469.
Liu, C.-L. 2007. Normalization-cooperated gradient feature ex-
traction for handwritten character recognition. IEEE transac-
tions on Pattern Analysis and Machine Intelligence 29(8):1465–
1469.
Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully convolu-
tional networks for semantic segmentation. In IEEE Conference
on Computer Vision and Pattern Recognition, 3431–3440.
Pritchard, J. D., and Sondak, N. E. 1973. Automatic recogni-
tion of handwritten characters using structural features. In ACM
Annual Conference, 442–2.
Pujari, A. K.; Mitra, C.; and Mishra, S. 2014. A new parallel
thinning algorithm with stroke correction for Odia characters. In
Advanced Computing, Networking and Informatics, volume 1.
Springer. 413–419.
Shen, W.; Zhao, K.; Jiang, Y.; Wang, Y.; Zhang, Z.; and Bai,
X. 2016. Object skeleton extraction in natural images by fus-
ing scale-associated deep side outputs. In IEEE Conference on
Computer Vision and Pattern Recognition, 222–230.
Simonyan, K., and Zisserman, A. 2014. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.
Wang, P.; Chen, P.; Yuan, Y.; Liu, D.; Huang, Z.; Hou, X.; and
Cottrell, G. 2017. Understanding convolution for semantic seg-
mentation. arXiv preprint arXiv:1702.08502.
Wu, C.; Fan, W.; He, Y.; Sun, J.; and Naoi, S. 2014. Handwritten
character recognition by alternately trained relaxation convolu-
tional neural network. In International Conference on Frontiers
in Handwriting Recognition, 291–296.
Xiao, X.; Jin, L.; Yang, Y.; Yang, W.; Sun, J.; and Chang, T.
2017. Building fast and compact convolutional neural networks
for offline handwritten Chinese character recognition. arXiv
preprint arXiv:1702.07975.
Xie, S., and Tu, Z. 2015. Holistically-nested edge detection.
In IEEE International Conference on Computer Vision, 1395–
1403.
Yin, F.; Wang, Q.-F.; Zhang, X.-Y.; and Liu, C.-L. 2013. IC-
DAR 2013 Chinese handwriting recognition competition. In In-
ternational Conference on Document Analysis and Recognition,
1464–1470.
Zhang, T., and Suen, C. Y. 1984. A fast parallel algorithm
for thinning digital patterns. Communications of the ACM
27(3):236–239.
Zhang, X.-Y.; Bengio, Y.; and Liu, C.-L. 2017. Online and of-
fline handwritten Chinese character recognition: A comprehen-
sive study and new benchmark. Pattern Recognition 61:348–
360.
Zou, J. J., and Yan, H. 2001. Skeletonization of ribbon-
like shapes based on regularity and singularity analyses. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cyber-
netics) 31(3):401–407.

2547


