
Multi-Step Time Series Generator for Molecular Dynamics

Katsuhiro Endo, Katsufumi Tomobe, Kenji Yasuoka
Department of Mechanical Engineering, Keio University

3-14-1 Hiyoshi, Kohoku-ku, Yokohama
Kanagawa, Japan 223-8522

Abstract

Molecular dynamics (MD) is a powerful computational
method for simulating molecular behavior. Deep neural net-
works provide a novel method of generating MD data effi-
ciently, but there is no architecture that mitigates the well-
known exposure bias accumulated by multi-step generations.
In this paper, we propose a multi-step time series generator
using a deep neural network based on Wasserstein genera-
tive adversarial nets. Instead of sparse real data, our model
evolves a latent variable z that is densely distributed in a low-
dimensional space. This novel framework successfully miti-
gates the exposure bias. Moreover, our model can evolve part
of the system (Feature extraction) with any time step (Step
skip), which accelerates the efficient generation of MD data.
The applicability of this model is evaluated through three dif-
ferent systems: harmonic oscillator, bulk water, and polymer
melts. The experimental results demonstrate that our model
can generate time series of the MD data with sufficient accu-
racy to calculate the physical and important dynamical statis-
tics.

1. Introduction

Molecular dynamics (MD) is a standard and powerful tool
for investigating molecular behavior, and has been used
in various fields, e.g., polymers (Gee, Lacevic, and Fried
2006), proteins (Lindorff-Larsen et al. 2011), methane hy-
drates (Walsh et al. 2009), nucleation (Matsumoto, Saito,
and Ohmine 2002), carbon nanotube (Legoas et al. 2003),
and metals (Yamakov et al. 2004). The method solves the
Newton’s equation of motion and provides the coordinates,
velocities, and forces of all the atoms in a system at each
time step. Although the applicability of the MD simula-
tions is well known, the high computational costs of large-
scale, long-time MD simulations limit the expansion of the
method. If we directly calculate two-body forces between all
atom pairs, the computational complexity per step is propor-
tional to the square of the number of atoms, which presents a
serious bottleneck when the MD simulations are conducted
with large number of atoms. Recently, the number of atoms
N and time length of the simulation T have reached scales
of 109 (Shibuta et al. 2017) and 1010 (Needham et al. 2016),
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respectively; thus, a novel solution to overcome the bottle-
neck is desired.

Recently, deep neural networks have achieved sig-
nificant results in many fields. Recurrent neural net-
works (RNNs) (Elman 1990), long short-term memory
(LSTM) (Hochreiter and Schmidhuber 1997), and other
derivative models (Mogren 2016; Fabius and van Amers-
foort 2014) have led to remarkable advances in both discrim-
inative and generative sequence data tasks. However, when
the generative models are used repeatedly, the generations
are affected by previous ones, leading to an accumulation of
bias, called the exposure bias. In a naive generator, this bias
causes the probability of error to grow quadratically with
the iteration number (Ross and Bagnell 2010). Various stud-
ies have attempted to mitigate the exposure bias. In the nat-
ural language processing field, many studies use the beam
search to mitigate effects of the exposure bias (Sutskever,
Vinyals, and Le 2014). Some studies have mitigated the bias
by using the specific loss functions that directly evaluate the
correlations with the training sequence (Shen et al. 2015). A
recent study by Yu et al. used extended generative adversar-
ial nets (GANs) (Yu et al. 2017). Although the above studies
achieved some success, our task of generating the MD data
suffers from more serious exposure bias. The computational
costs of the MD simulations mean that we would like to ob-
tain long-term dynamical statistics from short-time-length
MD data. To fulfill this requirement, we have to generate
the short-time-length MD data repeatedly and concatenate
them to make a long-time-length MD data; therefore, a novel
framework for mitigating the exposure bias is needed.

To develop a new deep neural generative model, we in-
troduce a multi-step time series generator (MD-GAN) that
efficiently samples time series of the MD simulations (see
Fig. 1A). Our model has the following advantages:

1. Mitigation of the exposure bias: as we consider
time series generation not as p(Xt|Xt−1) but as
p(Xt−1|zt−1), p(Xt|zt), and p(zt|zt−1), our model suc-
cessfully mitigates the exposure bias.

2. Feature extraction (contributing to the efficient sam-
pling): our model can simulate the time evolution of a
part of the whole system.

3. Step skip (contributing to the efficient sampling): it can
operate with any time step; thus, users can set a suitable
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Figure 1: Schematic view of our concepts. (A) The proposed multi-step time series generator for MD. Using the advantages of
feature extraction and step skip, our model efficiently generates MD time series data. (B) Schematic view of the internal and
external biases. In the external bias, data evolve outside of the manifold. All data are distributed in the manifold; however, their
density and distribution changes in the case of internal bias.

time step for the target dynamics.
4. Probabilistic time evolution: thanks to the Wasserstein

GANs (Arjovsky, Chintala, and Bottou 2017), our model
gives a probabilistic time evolution.

5. Identification of latent structures: our model reveals the
latent structure of the data through the behavior of the la-
tent variable.

2. Preliminaries

Let us first consider a deterministic system and the evolution
equation

d

dt
x(t) = f(x(t)),

where f is the function for time evolution determined by
scientific considerations and x(t) ∈ R

D is state variables
in a D-dimensional space at time t. From this equation, we
obtain the time series from the initial state x(0). In com-
puter simulations, the equation f adopts a finite-difference
approximation in both the spatial and temporal dimensions
to give a discretized equation fΔt with a time step Δt. The
time step Δt depends on the required precision, e.g., fem-
tosecond timescale is required in all-atom MD simulations.
The discretized equation fΔt evolves the state of the system
as xn+1 = fΔt(xn) where xn is x(nΔt).

Consider an extracted feature yn ∈ R
D′
(D′ ≤ D) which

contains rich physical information but exists in a lower-
dimensional space (see Fig. 1 Feature extraction). However,
unlike xn, deterministic equations for most yn are unknown.
Instead of the deterministic evolution, we consider stochas-
tic evolution represented by a conditional probability of yn

given all the previous states p(yn|Yn−1:0), where Yb:a:s is
the time series of features with time step s from time a to
time b (yb, yb−s, ..., ya). By convention, s is omitted when
s = 1. When calculating dynamical statistics that only de-
pends on the time series of the features Y , we calculate

the statistics from the time series obtained by the stochas-
tic evolution p(yn|Yn−1:0). Moreover, when the dynami-
cal statistics of interest do not depend on small-step dy-
namics, we use only the step-skipped stochastic evolution
p(yKn|YKn−1:0:K) (see Fig. 1 Step skip).

Our goal is to obtain the stochastic evolution
p(yn|Yn−1:0). Unfortunately, this probability distribu-
tion is usually intractable. Machine learning can be applied
to obtain an approximated distribution for the stochastic
evolution. In this paper, we assume the following two
assumptions:

• Assumption 1: the stochastic evolution of yi does
not depend on yi−m(m > M), p(yn|Yn−1:0) =
p(yn|Yn−1:n−M ).

• Assumption 2: the distribution of the features yn is sta-
tionary and the stochastic evolution is time invariant. In
this model, we focus on the physical “equilibrated sys-
tems”, which means that p(yn) is stationary, and we can
use the same distribution for stochastic evolution at any
time.

With these assumptions, we construct a novel gen-
erative model for time series. Let us consider
p(Y(k+1)M−1:kM |YkM−1:0). According to assumption 1,
this can be denoted by p(Y(k+1)M−1:kM |YkM−1:(k−1)M ).
Using this sequence-to-sequence probability distribution,
we form the time series as a generative model; however,
when we use the generative model iteratively, we encounter
the exposure bias (Ross and Bagnell 2010). In multi-step
generations, the generative model uses the previous output
as the real input, and this includes some small bias from
the incompleteness of the model. Over the multi-step
generations, this small bias accumulates and becomes
non-negligible.

To clarify the problem, we assume that this bias can be di-
vided into two types: internal and external biases. In many
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Figure 2: Architecture of our model. (A) Effects of the la-
tent variable z. Instead of the sparse real data distributed in a
high-dimensional space, we evolve the dense latent variable
z, which are embedded in a low-dimensional space. (B) Ar-
chitecture of our model. G, D, W , Y , z, and rk represent
a generator, a discriminator, the Wasserstein distance, fea-
tures, a latent variable, a random vector, respectively. After
determining the latent variable (top), DG discriminates Y1

and Y2 which are generated using the latent variable (bot-
tom).

cases, yn lies along a low-dimensional manifold embed-
ded in a high-dimensional space (Basri and Jacobs 2016;
Lee et al. 2003; Basri and Jacobs 2003). We define exter-
nal bias as that when the predicted data are located outside
this manifold; in contrast, internal bias is defined as the bias
located in the manifold but different from the real data (see
Fig. 1B). To mitigate both the biases, we propose the follow-
ing latent variable model. In this model, the probability dis-
tribution of the features p(Y(k+1)M−1:kM ) depends on the
latent variable zk as follows:

p(Y(k+1)M−1:kM ) =

∫
p(Y(k+1)M−1:kM |zk)p(zk)dzk.

zk contains all the information of Y(k+1)M−1:kM and
is densely distributed in a low-dimensional space (see
Fig. 2A). The model generates time series of the features us-
ing p(Y(k+1)M−1:kM |zk)p(zk). Let us set zk as being em-
bedded in a low-dimensional space. As we have constructed
dense variables zk in a low-dimensional space, the out-of-
manifold probability decreases, which mitigates the exter-
nal bias. In the internal case, assumption 2 contributes to

the mitigation of the bias. The distribution of feature yt is
stationary; thus, the internal bias becomes small under the
constraint p(zk) = p(zk−1).

3. Proposed architecture

Architecture of our model

In this section, we implement the novel generative model de-
scribed in Section 2. The Wasserstein GAN (WGAN) (Ar-
jovsky, Chintala, and Bottou 2017) is used to approximate
the probability distribution. The WGAN has two networks:
a generator G : z → Y and a discriminator D : Y → R.
G generates Y from the probability distribution pG with a
seed z ∼ p(z), and D calculates the Wasserstein distance
(WD) between the generated distribution pG and the objec-
tive distribution pR defined as

W (pG, pR) = sup
||g||L≤1

Ex∼pG
[g(x)]− Ex∼pR

[g(x)], (1)

where the supremum is over all the 1-Lipschitz functions g.
The network G is trained to minimize this WD, and the gen-
erator captures the objective distribution after the training.

Figure 2B shows the architecture of the proposed model.
Visual icons show multi-layer affine networks (green pen-
tagon), U-net based networks with z inserted in the bottle-
neck of the U-net (green bow tie), a random vector (pink cir-
cle), the latent vector (blue circle), a discriminator (yellow
rectangle), and the generated data (white circle).

Let z1 ∼ U(RW ) be sampled from W dimensional uni-
form distribution between 0 and 1. Gz is a generator and
generates z using previous z and a random value sampled
from U(RW ). Then, we apply Gz to z1, and it generates
z2, z3, · · ·, repeatedly. Dz is a discriminator and estimates
the WD between zk and zk+1 to make the distribution p(z)
stationary. Since we consider that the former z (z1, z2, z3,
and z4) are not stationary, we only apply the Dz to the later
pairs of z. After a consecutive pair of z is randomly picked
up (z5 and z6, or z6 and z7, or · · ·), Gy generates Y1 and
Y2 using the pair of z. Dg is a discriminator and discrimi-
nates the generated Y1 and Y2 and real data. Training pro-
cess of this network is as follows: (1) Gz is trained to min-
imize the total WD estimated by all Dz and Dg , (2) Gy is
trained to minimize the WD estimated by Dg , (3) Each Dg

was trained to estimate the WD between the pair of z, (4)
Dz is trained to estimate the WD between the generated and
real data. At the inference, time series z is generated by Gz

from z1 ∼ U(RW ), the former some steps is excluded, and
time series Y is generated from zk by GY .

Inside structure of the networks

The GY consists of the U-net (Ronneberger, Fischer, and
Brox 2015) based networks, which transform uncorrelated
multi dimensional time length M normal distributions into
some distributions. The DY is multi-layer convolutional
network. In our experiments, the U-net based networks
achieved more accurate than the network only having decon-
volution. We found that deconvolution in the GY achieved
most accurate when the stride size was equal to kernel size.

2194



�� �

Figure 3: Motion of harmonic oscillator with noise. (A) Time series of the reference (upper) and that generated by our model
(bottom). In the generated time series, each color represents the sequence data generated in one generation. (B) Spectra of the
reference and generated time series. (C) Behavior of the latent variable in our model. The x and y axes show third and fourth
dimension of the latent variable. Yellow/red circles represent second dimension of the latent variable greater than/less than 0.5
at t = 3, respectively. The results show that the latent variable obtain a periodic structure.

The number of convolution layers is same as that of decon-
volution layers as well as the U-net. The Gz and Dz con-
sist of multi-layer affine networks. Training of Gz can be
dramatically fast when the Residual Network (ResNet) was
used (He et al. 2016). Other parameters of the networks are
needed to be tuned for each dataset.

Advantages of the proposed model for MD

This model has a number of advantages for the rapid pre-
diction of dynamical statistics. The mitigation of the expo-
sure bias is one of the novel advantages for the MD simu-
lations. Because of the the dense variables z embedded in
a low-dimensional space, we can obtain long-term dynami-
cal statistics using multi-step time evolutions. The other ad-
vantage is that this model needs only 2M steps of real data
for the training. In the MD simulations, we have to calcu-
late time series of the state variables x that are much longer
than the time length of the dynamics of interest. In many
cases, this is the bottleneck in the scaling of MD simula-
tions. Therefore, the short real time series requirement en-
hances the computational efficiency of the simulations. In
addition to the above advantages, as our model uses the la-
tent variable z in a low-dimensional space, it is expected that
the structures of the time series features yn are mapped into
p(z). Thus, we are able to extract hidden time-directional
structures of the features. Moreover, compared with LSTM,
our model is easier to analyze behavior of the latent variable
because our model has only one latent variable. This charac-
teristic provides a great benefit for the MD studies through
this high interpretability.

4. Experimental results

We performed three experiments: harmonic oscillator with
noise, water vibrational spectra, and polymer dynamics in
melts. Each experiment was performed by following four
steps: (1) running short and long MD simulations to get time
series of x for learning and comparison, respectively, (2)
getting the pair of Y (the consecutive pair of 64 steps of
the extracted features) by Feature extraction and Step skip,

Table 1: Dimensions of the parameters in the experiments.
Experiment Harmonic Water Polymer

x 1 2x3x330 2x3x30000
Y 64x1 64x3 64x3
z 16 16 16

(3) training the model using Y , and (4) comparing the gen-
erated and real long data. Table 1 shows dimensions of the
parameters (x, Y , and z) in the experiments.

Harmonic oscillator with noise

We first demonstrate that our model can evolve features
while mitigating the exposure bias. Figure 3A shows our re-
sults for a harmonic oscillator with noise, where the top and
bottom figures represent the reference and generated time
series, respectively. The reference time series was generated
by the equation

0.1sin(0.7t) + η,

where η ∼ N (0, 0.01). Our model provides time series con-
taining 64 steps, and each color shows the time series of each
generation in Figure 3A (bottom). This result clearly shows
that our model can generate time series with the correct am-
plitude, frequency, and noise. Remarkably, these quantities
did not change after multi-step generations, indicating that
our model successfully mitigates the exposure bias. More-
over, when the frequency changes due to the bias, the gener-
ated time series exhibits self-modification. Figure 3B shows
the vibrational spectra obtained by the Fourier transform of
the time series. The frequency and intensity of the mode in
the generated time series are in good agreement with those
in the reference. Thus, the generated time series quantita-
tively match the reference. To compare with other machine
learning models, we calculated mean square error of the nor-
malized spectra with real data. When we extended 128 into
1024 steps, the performance of our model is 79 and 104
times better than that of a naive model of the proposed archi-
tecture and C-RNN-GAN (Mogren 2016). The naive model
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Figure 4: OH vibrational spectra of water molecules in the
equilibrium bulk system. (A) Snapshot of the system con-
taining 110 water molecules. (B) Schematic view of vibra-
tional motion of the water molecule. (C) OH relative veloc-
ities of the MD (top) and generated data by our model (bot-
tom). Blue, green, and red lines represent x, y, and z compo-
nents of the velocity vector, respectively. (D) OH vibrational
spectra of water molecules using the MD and generated time
series. The spectra were obtained by the Fourier transform
of the OH relative velocity correlation function. Insets show
that larger training data reduce the noise of spectrum.

has a generator without latent variables and a discriminator.
In this experiment, the dimensions of the latent variable was
set to be 16. Let us investigate the behavior of the latent vari-
able. Figure 3C shows transitions of the latent variable in the
generation of z after training. The x and y axes show third
and fourth dimension of the latent variable, and the yellow
and red denote whether the second dimension of the latent
variable was greater or less than 0.5 at t = 3, respectively.
At t = 0, all the latent variable were generated from the
uniform distribution. After the initialization, the distribution
of z reached a stationary distribution through our generator
Gz . We can identify a periodic structure in the stationary
distribution of z, and this is one of the example where the
latent variable successfully extract the interesting structures
in the target system. This advantage of our model will con-
tribute to an understandings of the system behavior.

Water vibrational spectra

Next, we applied our model to a more complex system:
the bulk water. Water molecules are an important target of
research in chemical, physical, and biological fields. Be-
cause of thermodynamic fluctuations and interactions with

other molecules, the OH bonds of water molecules have spe-
cific vibrational motions. We performed ab initio MD sim-
ulations, which is an MD method on the basis of ab ini-
tio energy calculations, for the bulk water (see Fig. 4A).
To test the applicability for real time series, we used the
OH motions as an input and calculated vibrational spec-
tra using the generated time series. For the ab initio MD
simulations, we used the CPMD code (Hutter and Ian-
nuzzi 2005) using the Car-Parrinello method (Car and Par-
rinello 1985). In the CPMD simulations, the Predew-Burrke-
Ernzerhof functional was used to approximate the exchange-
correlation terms (Perdew, Burke, and Ernzerhof 1996), and
we described the valence-core interaction using the Martins-
Troullier pseudo-potentials (Troullier and Martins 1991).
The CPMD simulation was conducted under the isothermal
and iso-volume conditions (305 K), and the volume of the
system was predefined by the classical isothermal and iso-
baric classical MD simulation using the NAMD 2.9 soft-
ware (Phillips et al. 2005) with the TIP3P water model (Jor-
gensen et al. 1983). In this experiment, the OH relative ve-
locities were prepared as input for our model, and our model
generated time series of OH velocities. A notable point is
that input velocities are not long time enough to calculate
the statistic (M = 64 steps = 61.92 fs). Figure 4C shows
the OH velocities of the MD and generated data in the wa-
ter molecules. As this figures shows, the vibrational motion
of the water molecules is complex. Vibrational spectra were
obtained by taking the Fourier transform of the OH rela-
tive velocity correlation function (the vibrational density of
states) (Tanzi, Ramondo, and Guidoni 2012),

P (ω) =

N∑
k=1

∫ ∞

−∞
〈ṙk(0)ṙk(t)〉eiωtdt,

where ṙi(0)ṙi(t) is the time series velocity auto-correlation
function and 〈〉 is the ensemble average. Figure 4D shows
OH vibrational spectra from the MD and generated time
series of OH motion in water molecules. The OH vibra-
tional motion is characterized by three modes: libration
(600 cm−1), bend (1500 cm−1), and stretch (3200 cm−1)
motions (see Fig. 4B). In the spectra given by CPMD, we
identified three peaks corresponding to these modes. No-
tably, the generated motion also contained this information,
and there are three clear peaks with precise frequencies. Fur-
thermore, the external forms of the frequency distribution,
including slopes and intensities, matched each other. Real
vibrational motion includes anharmonic combinations of the
peaks, and interactions with external environments make the
spectra significantly complex. Under this environment, our
model precisely generated the time series of OH bonds, and
we could obtain physical and important dynamical statistics
using the generated time series. Unfortunately, there is one
unexpected peak at around 8300 cm−1. This peak is unphys-
ical and can be attributed to the bias. Note that larger train-
ing data reduce a noise of the libration peak (see Fig. 4D
insets).
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Figure 5: MD simulations of polymer PE melts. (A) Snapshot of the system containing 300 PE polymers. The molecular weight
is 1405 g/mol. (B) Schematic representation of entangled polymer melts and snake-like motion in a tube. Until the end-to-end
relaxation time, the polymers end-to-end relaxation time scales with polymer length. (C) Mean square displacement of the
chain center using (left) the MD data and (right) generated data by our model. In the generated data, each color represents the
sequence data generated in one generation.

Polymer dynamics in melts

Polymer materials have unique and complex dynamics in
the melts, and the dynamics depends on various molecu-
lar and thermodynamic parameters. We performed the MD
simulations of polymer polyethylene (PE) melts to simulate
the complex dynamics of the polymer. The MD simulations
were conducted using the TraPPE-UA force field (Martin
and Siepmann 1998) and the GROMACS package (Pronk et
al. 2013) under the same conditions and preparations as a
previous study (Takahashi et al. 2017). Figure 5A shows a
snapshot of the system filled with 300 PE polymer chains.
In the MD simulations, the diffusion coefficient can be char-
acterized by the mean square displacement (MSD):

g(t) = 〈[r(t)− r(0)]2〉,
where r(t) is the coordinate vector at time t. It is known
that the slope of the MSD (diffusion coefficient) of the chain
center anomaly changes with time because of the chain
entanglement (Takahashi et al. 2017). Figure 5B shows a
schematic view of the chain entanglement and the concept
of tube theory (Doi and Edwards 1978). In tube theory, chain
entanglement is described as a tube constraint, and the poly-
mer chain can only moves along the major axis like a snake
(reptation motion). Figure 5C shows the MSDs of the chain
center of the polymers using time series generated by the
MD simulation and our model. In our model, each color
shows each generation which contains 64 steps (= 640 ps).
In the MD simulation results, the slopes of the MSDs (i.e.,
diffusion coefficient) changes from t<0.5 to t1; this transi-
tion time is called the end-to-end relaxation time τR. This

retardation can be described as the tube constraint by the en-
tanglement of surrounding polymers, and τR corresponds to
the chain length of the polymer (see Fig. 5B right). In the re-
sult given by our model, the MSD also has a transition time
τR. Remarkably, τR is much longer than the length of the
one-step sequence; thus, our model generates sequence data
from the precise phase space (a space containing all possible
states of the system), and the generated time series enclose
the short- and long-term dynamics of the polymers.

Table 2 shows calculation performance of the MD simu-
lation and our model with one process of the Intel Core i7-
4930K. Using one of the fastest MD package GROMACS,
whole calculations reached 55.2 days when we obtained the
averaged MSD of the polymers for 40 ns. In our model, total
calculation time was 67.9 hours in this experiment, and most
calculation time was the training. As a result, we achieved
our goal of obtaining the averaged MSD of chain center 19
faster than the MD simulations. These results show that the
time evolutions given by our model are precise enough to
simulate the complex dynamics of the polymers; moreover,
our model much more efficiently generates time series of the
target features than the MD simulations.

4. Conclusions and future work

In this paper, we have presented a multi-step time series gen-
erator using the Wasserstein GAN-based deep neural net-
work to efficiently generate time series of MD simulations.
Using our novel framework, the model successfully miti-
gates the exposure bias. MD simulation research will ben-



Table 2: Calculation performance of the MD simulation and
our model with one process of the Intel Core i7-4930K.

MD (GROMACS) Our model
Speed 1.38 day/ns 67.9 h/model

Speed (/40 ns MSD) 55.2 days 2.83 days

efit from several advantages (e.g., step skip, feature extrac-
tion, and the structures of the latent variable z). Using var-
ious systems (harmonic oscillator, bulk water, and polymer
melts), we have demonstrated the capability of our model
to generate time series that are sufficiently precise to calcu-
late physical and important dynamical statistics. However,
it remains difficult to verify that the assumption 1 was sat-
isfied and the trained probability was the same as that of
the real data. In future work, we will study five aspects.
(1) The latent variable z can extract the important struc-
tures of the system in a low-dimensional space; however,
it is still difficult to analyze the characteristics of the struc-
tures. Some suitable analysis methods are required. (2) In
our model, there are two generators, Gz and GY ; thus, it
is difficult to determine when to terminate the learning step,
because the convergence properties of the two generators are
basically different. Other multi-network coexistence archi-
tectures (e.g., GAN) also suffer from this drawback. We will
attempt to provide some metric for finding the best point be-
tween over- and under-fitting. (3) The model requires sensi-
tive adjustment of hyperparameters, as in other deep neural
networks. (4) Our results showed that dynamics properties
(e.g., MSD) can be calculated using smaller time length than
the time length of the dynamics properties. However, it is
unclear what time length is required. (5) Finally, there is no
method to verify that the generated data follows the prob-
ability distribution of the real data. Future works will also
include an improved model that is easier to use.
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