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Abstract

Predicting travel times of vehicles in urban settings is a useful
and tangible quantity of interest in the context of intelligent
transportation systems. We address the problem of travel time
prediction in arterial roads using data sampled from probe
vehicles. There is only a limited literature on methods using
data input from probe vehicles. The spatio-temporal depen-
dencies captured by existing data driven approaches are ei-
ther too detailed or very simplistic. We strike a balance of
the existing data driven approaches to account for varying
degrees of influence a given road may experience from its
neighbors, while controlling the number of parameters to be
learnt. Specifically, we use a NoisyOR conditional probability
distribution (CPD) in conjunction with a dynamic Bayesian
network (DBN) to model state transitions of various roads.
We propose an efficient algorithm to learn model parameters.
We also propose an algorithm for predicting travel times on
trips of arbitrary durations. Using synthetic and real world
data traces we demonstrate the superior performance of the
proposed method under different traffic conditions.

1 Introduction

Travel-time prediction: Advances in affordable technolo-
gies for sensing and communication have allowed us to
gather data about large distributed infrastructures such as
road networks in real-time. The collected data is digested
to generate information that is useful for commuters as well
as the road network administrators. From the commuters’
perspective, travel time is perhaps the most useful informa-
tion. Predicting travel time along various routes in advance
with good accuracy allows commuters to plan their trips
appropriately by identifying and avoiding congested roads.
This can also aid traffic administrators to make crucial real-
time decisions for mitigating prospective congestions, de-
sign infrastructure changes for better mobility and so on.
Crowd-sourcing based applications such as Google Maps al-
low commuters to predict their travel times along multiple
routes. While the prediction accuracy of such applications
is reasonable in many instances, they may not be helpful
for all vehicles. In certain countries, vehicles such as small
commercial trucks are restricted to specific lanes with their
own different (often lower) speed limit. Hence, the travel
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times and congestions seen by such vehicles could be dif-
ferent from the (possibly average) values that are predicted
from crowd sourced applications. In such cases, customized
travel-time prediction techniques are necessary.

Types of prediction models: Travel time prediction mod-
els can be broadly categorized into two types: traffic flow
based and data-driven (Mori et al. 2015). The traffic flow
models attempt to capture the physics of the traffic in varied
levels of detail. They however suffer from important issues
like need for calibration, being computationally expensive
and rendering inaccurate predictions.

Data-driven models: The data driven models typically
use statistical models which model traffic behavior to the
extent required for the prediction at hand. They rely on
real world data feeds for learning the parameters of the
employed statistical model. A variety of data driven tech-
niques to predict travel time have been proposed in the lit-
erature. Researchers have proposed techniques based on lin-
ear regression (Kwon, Coifman, and Bickel 2000; Nikovski
et al. 2005), time-series models (Ishak and Al-Deek 2003;
Vanajakshi, Subramanian, and Sivanandan 2009), neural
networks (Li and Rose 2011), regression trees (Kwon, Coif-
man, and Bickel 2000; Nikovski et al. 2005) and bayesian
networks (Hunter et al. 2009) to name a few.

Prediction in a freeway context (flow, travel time etc.)
has been typically better studied compared to urban or ar-
terial roads. This is because freeways are relatively well in-
strumented with sensors like loop detectors, AVI detectors
and cameras. On the other hand, urban/arterial roads have
been relatively less studied owing to complexities involved
in handling traffic lights and intersections. Nevertheless,
spread of GPS fixtures in vehicles/smart phones has ren-
dered probe vehicle data a reasonable data source for arterial
traffic (Liu, Yue, and Krishnan 2013; Aslam et al. 2012).
Recently, DBN based approaches have been proposed to
predict travel time on arterial roads based on sparse probe
vehicle data (Herring et al. 2010; Hofleitner et al. 2012;
Hofleitner, Herring, and Bayen 2012). Under real world
traffic conditions, these various DBN techniques have been
shown to significantly outperform other simpler methods
such as time-series models.

Gaps and contributions: Current DBN based modeling
approaches of congestion dependencies in road networks are
either too meticulous to be used in large networks or too
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simplistic to be accurate. The modeling assumption in (Her-
ring et al. 2010), albeit quite general, leads to an exponen-
tial number of model parameters. On the other hand, the
model proposed in (Hofleitner et al. 2012) even though has
a tractable number of parameters, assumes that the state of
congestion in a given road is influenced equally by the state
of congestion of all its neighbors, which can be pretty re-
strictive. In reality, different neighbors will exert different
degrees of influence on a given road – for instance, the state
of a downstream road which receives bulk of the traffic from
an upstream road will exert a higher influence on the con-
gestion state of the upstream road than other neighbors. In
this paper, we propose a novel DBN based approach that
models the individual influence of different neighbors while
remaining computationally tractable. Our specific contribu-
tions include:
• We propose to use a ‘NoisyOR’ CPD for modeling the

varying degrees of influence of different neighbors of a
road. The degree of influence is offered as a separate pa-
rameter for each neighboring link. It also keeps the num-
ber of parameters to be learnt linear in the number of
neighboring links.

• We develop a novel Expectation-Maximization (EM)
based algorithm to learn the DBN parameters under the
above NoisyOR CPD.

• We propose a new algorithm for predicting travel time of
a generic trip that can span an arbitrary duration. Existing
works can only handle trips that get completed within one
DBN time step only.

• We test the usefulness of our approach on both synthetic
data and real-world probe vehicle data obtained from the
cities of (i) Porto, Portugal and (ii) San Fransisco. On syn-
thetic data, relative absolute prediction error reduces by
as much as 70% under the proposed method in the worst
case. On real world data traces from Porto and San Fran-
sisco, the proposed approach performs up to 14.6% and
16.8% better respectively than existing approaches in the
worst case.

We note here that the proposed DBN with NoisyOR CPD
transitions can be used in other domains as well, such as
BioInformatics. Therefore, the proposed method has a wider
reach than the specific transportation application discussed
in detail in this paper.

2 Related work

Research based on probe vehicle data has been steadily on
the rise of late given the wide spread use of GPS based sens-
ing. Probe data has been utilized for various tasks like traffic
volume and hot-spot estimation (Aslam et al. 2012), adap-
tive routing (Liu, Yue, and Krishnan 2013), and estimation
and prediction of travel time. Travel time estimation1 is an-
other (well studied) important task useful in particular for
traffic managers. Since our focus in this paper is on predic-
tion alone and since most of the travel estimation methods

1Travel time estimation is the task of computing travel times of
trips or trajectories that have already been completed, while pre-
diction involves trips that start in the future.

do not have predictive abilities, we do not elaborate on this
further here. Please refer to App. B in (Achar et al. 2017) for
a summary.

Literature on arterial travel time prediction using probe
vehicles has been relatively sparse. We focus on DBN ap-
proaches which explicitly model the congestion state at
each link. Among such DBN approaches, a hybrid approach
that combines traffic flow theory and DBNs is proposed in
(Hofleitner, Herring, and Bayen 2012). It captures flow con-
servation and uses traffic theory inspired travel time distribu-
tions. The state variables are no longer binary but the queue
length built at each link. However, as discussed in (Hofleit-
ner 2013) some of the model assumptions made in (Hofleit-
ner, Herring, and Bayen 2012) like uniform arrivals are too
strong and have limitations compared with physical reality.
Reference (Hofleitner 2013) also recommends a relatively
more data-driven approach as proposed in (Hofleitner et al.
2012) for real world adoption. Our proposed work is closely
related to (Herring et al. 2010) and (Hofleitner et al. 2012) –
we try to incorporate the best of these approaches while cir-
cumventing their drawbacks. In fact, the approach suggested
in (Herring et al. 2010) may necessitate an exponential num-
ber of parameters to be learnt and hence suffers from over-
fitting.

3 DBN Model

Input Data: Probe vehicles are a sample of vehicles ply-
ing around the road network providing periodic information
about their location, speed, path etc. Such vehicles act as a
data source for observing the network’s condition. Such his-
torical data is used for learning the underlying DBN model
parameters. The learnt parameters along with current real-
time probe data are used to perform short-term travel time
predictions across the network. Real time is discretized into
time bins (epochs or steps) of uniform size Δ. At each time
epoch t, we have a set of probe vehicle trajectory measure-
ments. Each trajectory is specified by its start and end (xs

and xe) positions which come from successively sampled lo-
cation co-ordinates, and sequence of links traversed in mov-
ing from xs to xe. The data input to the algorithm is the set
of all such trajectories collected over multiple time epochs.
Notationally, for the kth vehicle’s trajectory at time step t,
xk
s,t and xk

e,t are its start and end locations, and Lt(k) is the
sequence of links traversed. If Nv

t denotes the number of ac-
tive vehicles at time step t, then the index k at time step t can
vary from 1 to Nv

t . Note that Nv
t is a function of t in general.

In order to filter GPS noise and obtain path information, map
matching and path-inference algorithms (Hunter et al. 2011)
can be used. The notation used in this paper is summarized
in App. A of (Achar et al. 2017).

DBN Structure

Fig. 1(a) shows the DBN structure (Herring et al. 2010;
Hofleitner et al. 2012) that we use in this paper to capture
spatio-temporal dependencies between links of the network.
The arterial traffic is modeled as a discrete-time dynamical
system. At each time step t, a link i ∈ I in the network is
assumed to be in one of two states namely, congested (1) or
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uncongested (0). si,t denotes this state of congestion at link i
and time t. Note that these are hidden state variables. We de-
note by πi, the set of roads that are adjacent (both upstream
and downstream) to road i including itself. The adjacency
structure of the road network is utilized to obtain the tran-
sition structure of the DBN from time step t to time t + 1.
Specifically, the state of a link i at time t + 1 is assumed to
be a function of the state of all its neighbors πi at time t. In
the DBN structure, this implies that the node corresponding
to the link i at time t + 1 will have incoming edges from
nodes in πi at time t.

We assume the travel time on a link to be a random vari-
able whose distribution depends on the state of the respective
link. The traversal time on a trajectory is a sum of random
variables, each representing the travel time of a (complete
or partial) link of the trajectory. From the structure of the
DBN (fig. 1(a)), given the state information of the underly-
ing links, these link travel times (τ i,t, denoted as rectangles
in fig. 1(a)) are independent. Hence the conditional travel
time on a path is a sum of independent random variables. In
general, the first and last links in the set Lt(k) get partially
traversed. In such cases, one can obtain the partial link travel
times by scaling (linear or non-linear (Herring et al. 2010;
Hofleitner et al. 2012)) the complete link travel time as per
the distance. In this paper, we use linear scaling.
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si,t−1

si−1,t−1

si+1,t

si,t

si−1,t

τ i+1,t−1

τ i,t−1

τ i−1,t−1

τ i+1,t

τ i,t
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(a) Two time-slice bayesian net (2TBN) structure.
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(b) NoisyOR: Proposed transition CPD model.

Figure 1: DBN structure and the proposed Transition CPD.

Conditional probability distributions on DBN

Observation CPD: Travel time distribution on a link i given
its state s, is assumed to be normally distributed with pa-

rameters μi,s and σi,s. We compactly refer to these obser-
vation parameters as (μ,σ). The travel time measurement
from the kth vehicle at time epoch t, yt,k (denoted by cir-
cles in fig. 1(a)) is specified by the set of links traversed,
Lt(k), and position of the start and end co-ordinates on
the first and last links (namely xk

s,t and xk
e,t respectively).

f(ykt |sLt(k),t, xk
s,t, x

k
e,t) denotes the conditional distribution

of a travel-time measurement, conditioned on the links tra-
versed and start-end positions. Given state information of
links along a path, owing to normality and conditional in-
dependence of these travel times, travel time on any path
is also normally distributed. The associated mean and vari-
ances are sum of mean and variances of individual link (pos-
sibly scaled) travel times.

Existing Transition CPDs: Let A(ηi,t−1, si,t) be the
CPD that models influence exerted on road i’s state at time
t by ηi,t−1, the states of its neighbors at time t − 1. If this
factor is a general tabular CPD as proposed in (Herring et al.
2010), then number of parameters grows exponentially with
number of neighbors.

To circumvent this, (Hofleitner et al. 2012) chooses a
CPD whose number of parameters is linear in the number
of neighbors. Instead of a separate Bernoulli distribution for
each realization of ηi,t−1, it looks at the number of con-
gested (or saturated) neighbors in the road network or par-
ents in the DBN. Hence we refer to this as SatPat CPD in the
rest of this paper. If ai,j denotes the chance of congestion at
the ith link given exactly j of its neighbors are congested at
the previous time instant, then

A(ηi,t−1, si,t) =

|πi|∏
j=0

(ai,j)
Ni,t−1

j si,t(bi,j)
Ni,t−1

j (1−si,t)

(1)
where bi,j = 1 − ai,j , and N i,t−1

j is an indicator random
variable which is 1 only when exactly j of link i’s neigh-
bors are congested. As mentioned earlier, this CPD has a
few shortcomings:

• It assumes all neighbors of a road have identical influ-
ence on a road’s state. In particular it assumes an identical
congestion probability (namely ai,1) at i at time t, given
exactly one of its neighbors is congested at t − 1. This is
irrespective of which of i’s neighbors is congested at t−1.

• It is intuitive to expect that congestion probability of a
road should increase with the number of congested neigh-
bors. Specifically, one would expect that ai,0 ≤ ai,1 ≤
· · · ≤ ai,|πi|. However, the learning strategy of (Hofleitner
et al. 2012) doesn’t ensure this total ordering. Hence, it
may be difficult to interpret real world dependency among
neighboring roads from learnt parameters.

Proposed Transition CPD: To alleviate the above short-
comings, we propose to use a NoisyOR CPD (Koller and
Friedman 2009) for modeling state transitions. If Y ∈
{0, 1}, is the output and X = (X1, X2, . . . Xn), Xk ∈
{0, 1}, is the input, then the NoisyOR CPD is parameter-
ized by n + 1 parameters, viz. (q0, q1, . . . qn), 0 ≤ qi ≤ 1,
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referred to as inhibitor probabilities. The CPD is given by:

P (Y = 0|X) = q0

n∏
k=0

qXk

k , Xk ∈ {0, 1}. (2)

When q0 = 1 and qk = 0, ∀k > 0, we have the noiseless
OR function. When one or more of the qks are non-zero, this
CPD allows for a non-zero chance of the output becoming
0 in spite of one or more high inputs. In our context, with
q0 clamped to 1, each qk exactly captures the chance of out-
put being 0 (and hence the chance of congestion) when only
the kth neighbor is congested. Hence, the NoisyOR (unlike
SatPat) captures influence of neighboring links in an inde-
pendent and link-dependent fashion – with qk representing
the extent of influence from the kth neighbor. As the num-
ber of congested inputs (neighbors) go up, the chance of un-
saturation goes down as is evident from eq. 2 . Hence it also
captures the intuition of congestion probability increasing
with the number of congested neighbors in the previous time
step. The term (1 − q0) captures the chance of congestion
getting triggered spontaneously at a link (while all its neigh-
bors are uncongested).

Alternative representation for NoisyOR: The NoisyOR
comes from the class of ICI (Independence of Causal In-
fluence) models (Heckerman and Breese 1994) and can be
viewed as in Fig. 1(b) . On each input line Xk, there is a
stochastic line failure function, whose output is Zk. The de-
terministic OR acts on the Zks. When the input Xk is zero,
the line output Zk is also zero. When Xk = 1, with inhibitor
probability qk, line failure happens – in other words, Zk is
zero. The bias term q0 controls the chance of the output be-
ing 1 in spite of all inputs being off. It is easy to check that
CPD in Fig. 1(b) is given by eq. 2 .

Under the NoisyOR CPD, the term which
models the hidden state transitions can be ex-
pressed as A(ηi,t−1, η̄i,t−1, si,t) where, ηi,t−1 =[
ηi,t−1
1 , ηi,t−1

2 , . . . , ηi,t−1
|πi|

]
with ηi,t−1

j representing
the actual state of i’s neighbor j at time t − 1. Similarly,
η̄i,t−1 =

[
η̄i,t−1
0 , η̄i,t−1

1 , . . . η̄i,t−1
|πi|

]
with η̄i,t−1

j denoting
the new random variable introduced via the representation
of Fig. 1(b). Note that η̄i,t is of length |(πi + 1)| while
that of ηi,t is |πi|. Based on Fig. 1(b), we can write
A(ηi,t−1, η̄i,t−1, si,t), the transition factor, as follows:

A(ηi,t−1, η̄i,t−1, si,t)

=P (η̄i,t−1
0 )P (si,t|η̄i,t−1)

|πi|∏
j=1

P (η̄i,t−1
j |ηi,t−1

j )

= q
(1−η̄i,t−1

0 )
i,0 p

η̄i,t−1
0

i,0 1{OR(η̄i,t−1)=si,t}
|πi|∏
j=1

(qi,j)
ηi,t−1
j (1−η̄i,t−1

j )(pi,j)
ηi,t−1
j η̄i,t−1

j

(3)

where pi,j = 1− qi,j and qi,j is the probability that conges-
tion at time step t − 1 in the jth neighbor of link i does
not influence i in time step t. Similar to the SatPat CPD
(eq.1), eq.3 demonstrates that a typical transition factor in

the DBN under the NoisyOR CPD also belongs to the ex-
ponential family. This in turn makes M-step of EM learning
feasible in closed form as explained later.

Complete data likelihood under NoisyOR: If s denotes
the state of all links across all time, and y denotes the set
of all travel time observations across all vehicles over time
t = 1, · · · , T , the complete data likelihood is given by:

p(s,y|θ) =
∏

t=2...T
i∈I

A(ηi,t−1, η̄i,t−1, si,t)×

∏
t=1...T
k=1...Nv

t

f(ykt |sLt(k),t)×
∏
i∈I

ci(si,1)
(4)

where ci(0) is the marginal probability of link i being uncon-
gested at time 1. We subsume this into A(., ., .) by constrain-
ing ci(0) = qi,0. This is same as assuming all links start at
time 0 uncongested. Note that, here θ = (q,μ,σ), where q
refers to all NoisyOR parameters of each of the links.

4 Learning

An EM approach (refer App. C of (Achar et al. 2017) for
details) is employed which is a standard iterative process
involving two steps at each iteration. The E-step computes
expectation of complete data log-likelihood (Q-function in
short) at the current parameter values, while the M -step
updates parameters by maximizing the Q-function. When
the complete data log likelihood belongs to the exponen-
tial family, then learning gets simplified (Bishop 2006;
Koller and Friedman 2009). The E-step involves just com-
puting the Expected Sufficient Statistics (ESS). The M -
step typically consists of evaluating an algebraic expres-
sion based on the closed form maximum likelihood estimate
(MLE) under completely observable data, in which SS is re-
placed by ESS.

E-step: E-step which involves ESS computation, is ac-
tually performing inference on a belief network. Exact in-
ference in multiply connected belief networks is known to
be NP-hard (Cooper 1990). Since our DBN is also mul-
tiply connected with a large number of links, exact infer-
ence would lead to unreasonable run times. Hence we use
a sampling based approximation algorithm for inference
(Hofleitner et al. 2012). Specifically, we use a particle fil-
tering approach. This involves storing and tracking a set
of samples or particles. For each particle r, we start off
with a vector of uncongested initial states for all the links.
At each time step t, we grow each particle (sample) based
on the current transition probability parameters (NoisyOR
or SatPat). Each particle in state si,tr is now weighted by∏

k=1...Nv
t
f(ykt |sLt(k),t

r ). An additional re-sampling of the
particles based on these weights (normalized) is performed
to avoid degeneracy. The required ESS (described above) are
then estimated from these sample paths. As the name filter-
ing indicates, the ESS at time t is calculated based on obser-
vations up to time t, namely yt, rather than all observations.
The ESS associated with observation parameters turns out to
be P (sLt(k),t = z|yt,θ�) ∀t, k, z. Here, z refers to a binary
vector of length |Lt(k)|.
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M-step Update for DBN model

Observation updates: From eq. 4 , it follows that Q-fn for
the DBN model involves a sum of two terms: one exclusively
a function of observation parameters (μ,σ) and the other
only of the transition parameters (q) for NoisyOR. Hence
the joint maximization over (μ,σ) and (q) gets decoupled.
High time-resolution GPS observations are used to learn a
2-component Gaussian mixture at each link, which gives the
means and variances of the individual link travel times. For
convenient optimization, the variances thus obtained can be
fixed and learning performed only over μ as carried out in
(Hofleitner et al. 2012). However, one still needs iterative
optimization owing to the complexity of the term involved.

Proposed transition parameters updates: Maximiza-
tion of the second term involving hidden state transition
parameters leads to an elegant closed-form estimate of the
transition parameters for the proposed NoisyOR transitions.
This is because each factor belongs to the exponential fam-
ily.
Proposition 1. Given the observations y and parameter es-
timate after the �th EM-iteration, θ�, the next set of transi-
tion parameters are obtained as follows.

q�+1
i,j ∝

T∑
t=2

P (ηi,t−1
j = 1, η̄i,t−1

j = 0|y,θ�)

p�+1
i,j ∝

T∑
t=2

P (ηi,t−1
j = 1, η̄i,t−1

j = 1|y,θ�)

(5)

where proportionality constants are same. Similarly for j =
0, the M -step updates are:

q�+1
i,0 ∝

T∑
t=1

P (η̄i,t−1
0 = 0|y,θ�)

p�+1
i,0 ∝

T∑
t=1

P (η̄i,t−1
0 = 1|y,θ�)

(6)

Please refer to App. D in (Achar et al. 2017) for a proof.
The proof involves computing the Q-function for the pro-
posed NoisyOR CPD and maximizing it in closed form. The
above ESS are actually computed conditioned on yt (obser-
vations upto time t) and not y, via particle filtering as ex-
plained in the E-step. Attempting to do exact smoothing us-
ing all the observations y would lead to unreasonable space
complexities, given the large number of links. The above up-
dates are for data observations from a single day. They can
readily be extended to multiple days and handled efficiently
in a parallel fashion as explained in App. E of (Achar et al.
2017). For a comparison of complexities between NoisyOR
and SatPat, please refer to App. F in (Achar et al. 2017).

5 Prediction

Formally, given θ� (learnt DBN parameters from historical
data) and current probe vehicle observations up to time tΔ
(or time bin t), the objective is to predict the travel time of
a vehicle that traverses a specified trajectory (or path) Γ =
[i1, i2, . . . i|Γ|] starting at say tΔ (from time bin (t + 1)).

Existing works (Herring et al. 2010; Hofleitner et al. 2012)
estimate the travel time along Γ under the assumption that it
is lesser than Δ (or one time step). However, in general, the
travel times for a trajectory can be greater than Δ.

Challenge: As the DBN evolves every Δ time units, the
state of the DBN estimated at (t + 1)th time bin can be
used to predict the network travel times only in the asso-
ciated time interval [tΔ, (t + 1)Δ). If the given trajectory
Γ is not fully traversed by (t + 1)Δ, the DBN’s state has
to be advanced to time epoch t + 2. The estimated network
state at t + 2 should now be used to predict the network
travel time in the interval [(t+1)Δ, (t+2)Δ), and so on. In
other words, the task of predicting the travel time along Γ =
[i1, i2, . . . i|Γ|] now gets transformed to the task of partition-
ing Γ to contiguous trip segments u1, u2, . . . , uM , such that
the expected travel time of segment uj , 1 ≤ j ≤ (M − 1),
is Δ time units as predicted using the hidden network state
estimated at time epoch (t+ j); uM corresponds to the final
trip segment in Γ whose expected travel time is less than or
equal to Δ.

Approach: Without loss of generality, we assume that the
end point xe of Γ coincides with the end of link i|Γ|. Algo-
rithm 1 describes the procedure to predict the mean travel
time, MTT, of Γ. App. G in (Achar et al. 2017) describes its
correctness proof. CurSuff refers to the currently remaining
suffix of Γ. CurSt is the fractional distance of the start point
of CurSuff from the downstream intersection. pT

� M� - Ex-
pected travel time of traversing a �-length prefix segment,
L = [i′1, i

′
2, . . . i

′
�], of CurSuff. The idea is to first narrow

down on the earliest � (say c) at which pT
� M� > Δ. Sub-

sequently, we need the exact position on i′c upto which ex-
pected travel time is exactly Δ. The main component of the
proof explained in App. G of (Achar et al. 2017) involves
how to arrive at this exact position via a closed-form. This
is utilized in lines 9 and 13 of Algorithm 1. FutStep keeps
track of additional number of time steps until which particles
are grown.

6 Experimental Results

Reference (Hofleitner et al. 2012), which proposes the Sat-
Pat CPD clearly demonstrates that a DBN with SatPat CPD
outperforms baseline approaches based on time series ideas.
Given this and comments made earlier in Sec. 2, we com-
pare our proposed method with SatPat method only. We first
test the efficacy of the methods on synthetic data. This is to
better understand the maximum performance difference that
can occur between the two approaches.

We implement learning by updating only the q (NoisyOR
case) or a (SatPat case) parameters. During learning on syn-
thetic data, we fix the observation parameters to the true val-
ues with which the data was generated. For ease of verifica-
tion and since our contribution is in the M-update of hidden
state transition parameters, we believe this suffices. How-
ever, it is straightforward to include μ as well in the iterative
process as described in Sec. 4. The real data we consider in
this paper is high time resolution probe vehicle data, where
one can obtain independent samples of individual link times
and learn a 2-component Gaussian mixture at each link. An-
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Algorithm 1: Compute expected travel time of an aribitrary length query route
Input: θ�, Query Path Γ = [i1, i2, . . . i|Γ|], αs - fractional distance of xs from downstream end of i1.
Output: Mean Travel time (MTT) of traversing Γ = [i1, i2, . . . i|Γ|], starting at tΔ from xs on i1.

1 Initialize MTT = 0, CurSuff = Γ, CurSt = αs, FutStep = 1, P = Set of particles grown upto t;
2 while CurSuff �= φ do
3 Grow all particles in P by one step (either as per NoisyOR or SatPat transitions);
4 L := �-length prefix path of CurSuff, say [i′1, i

′
2, . . . i

′
�]. bk−1 := �-length binary representation of (k − 1).

5 M�(k) := CurSt ∗ μi′1,bk−1(1) +
∑�

j=2 μ
i′j ,bk−1(j), p�(k) := P (sL,t+FutStep = bk−1|yt, θ�), (2�-length vectors).

6 if ∃ an � s.t. pT
� M� > Δ then

7 Compute the least � (say c) using binary search (Use P , the current set of particles to compute p�) ;
8 if c > 1 then

9 CurSt ← 1− {(Δ− pT
c M

e−
c )/pT

c M
e
c }, where M e−

c , M e
c are 2c-length vectors;

10 M e−
c (k) := CurSt ∗ μi′1,bk−1(1) +

∑c−1
j=2 μ

ij ,bk−1(j), M e
c = [μic,0 μic,1 μic,0 μic,1 . . . μic,0 μic,1]T .

11 CurSuff ← suffix of CurSuff (from c); MTT ← MTT +Δ; FutStep ← FutStep + 1;
12 end

13 else CurSt ← CurSt(1− (Δ/pT
c M

e
c )); MTT ← MTT +Δ; FutStep ← FutStep + 1 ;

14 end

15 else MTT ← MTT + pT
|CurSuff|M|CurSuff|; CurSuff = φ ;

16 end
17 return MTT

other justification of our approach could be that there may
not be a necessity to update μ and σ once learnt via high
time resolution GPS data.

We briefly summarize the synthetic data generation setup
here and point the reader to App. I in (Achar et al. 2017) for
additional details. The main idea is to use the DBN model
of Sec. 3 with NoisyOR transitions and Gaussian travel
times to generate trajectories. The generator takes as input
a road network’s neighborhood structure and individual link
lengths. The DBN structure is fixed from neighborhood in-
formation. The NoisyOR CPD gives a nice handle to embed
a variety of congestion patterns. We choose CPD parameters
to embed short-lived and long-lived congestions. The chosen
synthetic network has 20 links with gridded one-way roads
mimicking a typical downtown area. We chose 8 probe ve-
hicles to circularly ply around the north-south region while
another 8 along the east-west corridor.

Results on synthetic traces

We compare prediction error between proposed and exist-
ing methods as (true) trip duration is gradually increased.
Specifically, we use the clearly distinct NoisyOR learning
scheme (proposed) and SatPat learning scheme (existing)
for comparison (Sec. 4). For prediction however, we empha-
size that the algorithm used for comparisons here (for both
NoisyOR and SatPat schemes) is not an existing algorithm
but rather a generic one proposed here in Sec. 5 which can
tackle trips of arbitrary duration. We randomly pick from
the testing trajectories of each of the 16 probe vehicles, dis-
tinct non-overlapping trips of a fixed duration. We provide
results of persisting (OR long-lived) congestion alone here.
Results on short-lived congestion were found to be similar.

Each point in fig. 2(a) shows (Relative) Mean Absolute
Error (MAE), obtained by averaging across all the distinct
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Figure 2: Error vs prediction horizon (True Trip Duration) -
long-lived congestions, Δ = 5 mins.

randomly chosen trips of a fixed duration (true trip time).
By relative error, we mean the error divided by the true trip
time. As true trip time (or prediction horizon) of the cho-
sen trajectories is increased, the (MAE) also increases as in-
tuitively expected. We also find that NoisyOR consistently
gives more accurate predictions than SatPat justifying the
need to model the varying influences of individual neigh-
bors. For every prediction horizon, we also look for a trip
on which difference in prediction errors between the pro-
posed and existing approach is maximum. Fig. 2(b) gives
the performance of both NoisyOR and SatPat with the max-
imum difference in prediction error, for a given prediction
horizon. We see that prediction error difference can be as
high as 70%, with NoisyOR being more accurate. Overall, it
can be summarized that NoisyOR method’s predictions are
significantly more accurate than the existing SatPat method.
Further, NoisyOR learnt parameters can be interpreted better
in real world than SatPat parameters.
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Results on real-world probe vehicle data
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Figure 3: City of Porto: Test trajectory duration=Δ(5 min).
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Figure 4: San Francisco: Test trajectory duration = 2Δ(10
min).

PORTO: To validate on real probe vehicle traces, we first
used GPS logs of cabs operating in the city of Porto, Portu-
gal. The data was originally released for the ECML/PKDD
data challenge 2015. Each trip entry consists of the start and
end time, cab ID and a sequence of GPS co-ordinates sam-
pled every 15 seconds. The GPS co-ordinates in the data are
noisy as many of them map to a point outside the road net-
work. The GPS noise was removed using heuristics such as
mapping a noisy point to one or more nearest links on the
road network. The observation parameters μi,s and σi,s are
learnt for each link i using the high resolution (15 sec) mea-
surements as performed in (Hofleitner et al. 2012). We fix
observation parameters to these values and learn only the
transition parameters.

We choose a connected region of the Porto map which
was relatively abundant in car trajectories. This region con-
sisted of roughly 100 links. App. J in (Achar et al. 2017)
shows the actual region we narrowed down to. We chose
a few second order neighbors (neighbor’s neighbor) too to
better capture congestion propagation. It is likely that a con-
gestion originating at an upstream neighbor of a short link
might actually propagate to a down stream neighbor of the
short link in question within Δ minutes. To account for this
possibility, we add such second order neighbors (both up-
stream and downstream) to the list of original neighbors. We
quantified short by links < 75m in length and pick Δ = 5
min.

Trajectories from 4 p.m. to 9 p.m. were considered. One
can expect the traffic conditions to be fairly stationary in this
duration. The traffic patterns during a Friday evening can be
very different from the other weekdays, which is why we
treated Fridays separately. For sake of brevity, we discuss
results obtained on Fridays alone. We trained on the best
(in terms of the number of trajectories) 24 Fridays. Training
was carried out using both the proposed NoisyOR and ex-
isting SatPat CPDs. We tested the learnt parameters on two
Fridays.

Fig. 3 shows the performance of both the proposed and
SatPat method on trajectories (with true trip time equal to Δ
minutes) one time epoch ahead of the current set of obser-
vations. Given the sparse nature of the data obtained, we fo-
cused on testing trips of one Δ duration. Fig. 3(a) shows the
empirical CDF of the absolute prediction errors (in %). The
empirical CDF essentially gives an estimate of the range of
errors both the methods experienced. A relative left shift of
the NoisyOR CPD prediction errors indicate a relatively bet-
ter performance compared to SatPat. We also observe from
the errors that the NoisyOR method has a relative absolute
error of about 5% lower than SatPat on an average and a rel-
ative absolute error of about 14.5% lower in the worst case.
Figure 3(b) gives a sequence of (one-step) prediction errors
for both methods across a few consecutive time ticks around
which data was relatively dense to report meaningful predic-
tions. Note that the worst case error of 14.5% was obtained
at the 33rd time tick around which NoisyOR method contin-
ues to do better than SatPat.

SAN FRANCISCO: We also considered a similar taxi
data from a region (please refer to App. J in (Achar et al.
2017) for a map view) of the bay area of San Francisco.
Specifically, we considered trajectories of 2Δ duration for
testing from this data. We trained both the NoisyOR and Sat-
Pat models on about 11 days of data collected from this re-
gion of about 275 links in the evening. We present results in
Fig. 4 for test trajectories of 2Δ duration. As before, the em-
pirical CDF given in Fig. 4(a) has a relative left-shift in the
NoisyOR’s CDF, indicative of its better performance. Fur-
ther, Fig. 4(b) gives the trajectory-wise prediction error com-
parison and an improvement of up to 16.8% was observed in
the worst case and about 6% on an average.

This vindicates that the proposed technique of modeling
influences of different roads in propagating traffic conges-
tion can indeed be helpful. We also note that the worst case
performance different between NoisyOR and SatPat is not
as pronounced as in the synthetic traces. This could be at-
tributed to the one of the following reasons: (i) the under-
lying congestion propagation characteristics may not be too
much link dependent; (ii) even if the congestion propagation
is link dependent, enough samples from probe vehicles may
not be present in the available data logs.

7 Discussions and Conclusions
To conclude the paper, we proposed a balanced data driven
approach to address the problem of travel time prediction
in arterial roads using data from probe vehicles. We used
a NoisyOR CPD in conjunction with a DBN to model the
varying degrees of influence a given road may experience
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from its neighbors. We also proposed an efficient algorithm
to learn model parameters. We also proposed an algorithm
for predicting travel times of trips of arbitrary duration. Us-
ing synthetic data traces, we quantify the accuracy of the
proposed method to predict the travel times of arbitrary du-
ration trips under various traffic conditions. With the pro-
posed approach, the prediction error reduces by as much as
50 − 70% under certain conditions. We also tested the per-
formance on traces of real data and found that the proposed
approach fared better than the existing approaches. A pos-
sible future direction is to generalize the proposed approach
to model road conditions using more than two states.

We believe that our NoisyOR based DBNs can be use-
ful in other domains as well, as in Bio-Informatics. In-
ferring gene regulation networks (Karlebach and Shamir
2008) from gene expression data is a very important prob-
lem in Bio-informatics. Discovering the hidden excita-
tory/inhibitory interactions amongst the interacting genes is
of interest here. DBN based approaches based on continu-
ous hidden variables have been explored for this problem
(Perrin et al. 2003). The NoisyOR based DBN and the as-
sociated learning algorithm introduced in this paper can be
a viable alternative to infer the underlying gene interactions
by employing a fully connected structure among the inter-
acting genes. The learnt qi,j values can potentially indicate
the strength of influence. We intend to explore this too in our
future work.
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