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Abstract

In recent years, skeleton based action recognition is becom-
ing an increasingly attractive alternative to existing video-
based approaches, beneficial from its robust and compre-
hensive 3D information. In this paper, we explore an unsu-
pervised representation learning approach for the first time
to capture the long-term global motion dynamics in skele-
ton sequences. We design a conditional skeleton inpainting
architecture for learning a fixed-dimensional representation,
guided by additional adversarial training strategies. We quan-
titatively evaluate the effectiveness of our learning approach
on three well-established action recognition datasets. Exper-
imental results show that our learned representation is dis-
criminative for classifying actions and can substantially re-
duce the sequence inpainting errors.

Introduction

As an important branch of computer vision, action recogni-
tion has been widely used in many applications, such as in-
telligent video surveillance, robot vision, human-computer
interaction, game control and so on (Weinland, Ronfard, and
Boyer 2011; Yang and Tian 2017). Traditional studies about
action recognition mainly focus on videos recorded by 2D
cameras. The performances are still unsatisfactory, because
it is difficult to achieve viewpoint and scale invariances as
2D videos lose some information of 3D space. The other
general approach is skeleton based action recognition, in
which a person is represented by 3D coordinate positions
of key joints. Such representations are robust to variations
of positions, scales, and viewpoints.

In this paper, we focus on the problem of skeleton based
action recognition. The key to this problem is to learn the
discriminative body postures and their motion dynamics.
Most of the traditional skeleton based action recognition
methods model the temporal dynamics of skeleton joints
based on Hidden Markov Models (HMMs) (Xia, Chen,
and Aggarwal 2012) or Temporal Pyramids (TPs) (Vem-
ulapalli, Arrate, and Chellappa 2014). These models usu-
ally require selecting effective features to represent human
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body or choosing a proper width of the sliding window to
model the temporal dynamics. In past few years, end-to-end
deep learning techniques (Sutskever, Vinyals, and Le 2014;
LeCun, Bengio, and Hinton 2015), especially Recurrent
Neural Networks (RNNs) have been used for action recog-
nition and achieved impressively better performances (Du,
Wang, and Wang 2015; Zhu et al. 2016). The insights behind
these models are to extract discriminative features to repre-
sent the temporal evolutions of different actions. However,
most of these works mentioned above are referred to as su-
pervised learning methods which heavily rely on massive la-
beled training examples. These labeled data are usually very
expensive and not available. Hence, how to effectively and
efficiently learn representations from the common and eas-
ily accessible unlabeled examples is challenging and attracts
increasing research attention.

Recently, a stream of unsupervised representation learn-
ing approaches have been proposed. These methods are for-
mulated with various objectives. Some models enforce the
representations to be temporally smooth and learn slowly-
varying representations (Foldidk 2008), while others learn
representations through reconstructing past frames or pre-
dicting future frames (Srivastava, Mansimov, and Salakhudi-
nov 2015; Luo et al. 2017). These models receive fixed-
length input sequences, and then reconstruct past or predict
fixed-length future frames. Although they show promising
results, most of the learned representations still focus heav-
ily on either capturing appearance features or local motion
dynamics. These approaches are not flexible enough to han-
dle sequences of varying length and fail to take considera-
tion of encoding the long-term global motion dependencies
in skeleton sequences. Their learned representations are not
discriminative enough for classifying skeleton sequences.

To address the limitations mentioned above, we propose
an unsupervised representation learning framework for com-
pactly encoding long-term global motion dynamics con-
ditional inpainting. As illustrated in Figure 1, the frame-
work consists of three sub-networks, and it works as fol-
lows. An encoder (left side) runs through an input sequence
and compactly encodes it into a fixed-dimensional repre-
sentation. A decoder (middle side) learns to reconstruct the
randomly masked (corrupted) input sequence conditioned



on the learned representation. A discriminator (right side)
learns to distinguish the original from the reconstructed se-
quence. With only a traditional element-wise loss, the re-
constructed sequence may look visually unrealistic as the
filled regions may not be coherent with their context. The
discriminator is responsible for guiding the decoder towards
producing visually realistic sequences by giving an adver-
sarial loss. We call our model conditional inpainting as the
decoder inpaints sequences conditioned on the learned rep-
resentation. By using effective corruption strategies and re-
ducing inpainting error, we aim to induce the learned repre-
sentation to capture the long-term global motion dynamics.
Experimental results on three public datasets show that our
learned representation is discriminative for classifying ac-
tions, and with the learned representation we achieve better
performances than the recently proposed unsupervised mod-
els and supervised models. The contributions of our work are
as follows:

e Different from most existing sequential feature learning
methods, which only learn appearances or short-term lo-
cal motions, we introduce a novel conditional skeleton in-
painting network to capture the long-term global motion
dynamics in sequences with varying length. Moreover,
to our best knowledge, we are the first to explore unsu-
pervised representation learning approaches for skeleton-
based action recognition.

e By designing the additional adversarial training strategy,
we enhance the encoder-decoder model for learning more
discriminative representations and reduce errors in skele-
ton sequence inpainting.

e Exhaustive experiments on real-world benchmarks verify
the efficiency of our approach against both recently pro-
posed unsupervised and supervised networks. As a non-
trivial byproduct, we give comprehensive evaluations and
ablation studies on the representations learned by differ-
ent approaches.

Related Works

We first present related works on unsupervised representa-
tion learning for sequences. Then, we give a brief overview
on existing skeleton based action recognition approaches.

Sequential Representation Learning

Wiskott and Sejnowski proposed the slow feature anal-
ysis framework for exploiting temporal structure in se-
quences and attempted to learn slowly-varying representa-
tions (Foldidk 2008). Memisevic and Hinton approached
this problem with a generative model by learning transfor-
mations between pairs of consecutive moments (Memisevic
and Hinton 2010). Recently, a stream of reconstruction and
prediction based models have been proposed. Ranzato et al.
proposed a generative model that predicts the next frame
or interpolates between frames using a recurrent neural net-
work (Ranzato et al. 2014). This work was extended by Sri-
vastava et al. with an LSTM Encoder-Decoder architecture
that reconstructs fixed-length past frames or predicts fixed-
length future frames (Srivastava, Mansimov, and Salakhudi-
nov 2015). A further work is proposed by Luo et al. to learn
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representations by predicting the 3D motions of videos (Luo
et al. 2017). These models can learn useful semantic features
for some specific tasks. However, one common disadvan-
tage of them is that these models only read in fixed-length
sequence and can not flexibly handle sequences of varying
length. These models inherently suffer from the inability to
model long-term temporal dependencies.

Skeleton-based Action Recognition

Models for skeleton-based action recognition use body pos-
tures and motion dynamics to represent human actions. Most
of the previous skeleton based action recognition methods
explicitly model the temporal dynamics of skeleton joints
by using TPs (Wang et al. 2012) or HMMs (Wu and Shao
2014). Recently, inspired by the success of deep recurrent
neural networks for sequence modeling (Graves and others
2012), many end-to-end models have been proposed. The
hierarchical recurrent neural network of (Du, Wang, and
Wang 2015) divides the skeleton joints of a human body
into five sets, combines their features hierarchically, and
makes a final prediction with the fused joint information.
The work of (Zhu et al. 2016) leverages on the intuition
that co-occurrence of joints is a strong discriminative fea-
ture for human action recognition, and learns the mappings
between co-occurring joints and the human action by en-
forcing a group sparsity constraint on the connection matrix.
To learn features both in the temporal and spatial domains,
deep LSTMs with Trust Gates (Liu et al. 2016) and a spa-
tiotemporal attention model (Liu et al. 2016) are introduced.
Though these models achieve cracking performances, they
are usually limited by the heavy dependency on expensive
labels.

The Proposed Framework

In this section, we describe the proposed framework for un-
supervised learning of long-term motion dynamics. The pro-
posed framework is illustrated in Figure 1. It consists of
three sub-networks: encoder network (Enc), decoder net-
work (Dec) and Discriminator network (Dis). Our frame-
work is based on the recurrent neural network (RNN) and
the generative adversarial network (GAN) (Goodfellow et
al. 2014). We firstly give brief reviews of both.

Building Block Network Structures

RNN and GRUs. We use RNN for discriminative fea-
ture learning and temporal dependency modeling, as it
is a successful model for sequential information learning
(Sutskever, Vinyals, and Le 2014). Comparing with the Long
Short-Term Memory (LSTMs) (Hochreiter and Schmidhu-
ber 1997), the Gated Recurrent Units (GRUs) (Cho et al.
2014) is easier to train and has fewer parameters. We use
GRUs in our framework and achieve better performances,
but it also works well with LSTMs or other units.
Adversarial Loss. The GAN model is a framework for
training generative models. We incorporate it for conditional
skeleton sequence inpainting. It consists of two competing
networks: the generator is trained to map a latent variable
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Figure 1: (I) Pipeline of our proposed method. (a) Encoder, (b) Decoder and (c) Discriminator. (IT) Different learning strategies.
Green: Strategies in (Ranzato et al. 2014; Srivastava, Mansimov, and Salakhudinov 2015), and Blue: our strategy. Previous
works handle fixed-length sequences and model short-term temporal dependencies. Our model receives the whole input se-
quences with varying length and learns long-term global dynamics.

to the data space while the discriminator is trained to dis-
tinguish the generated data from samples from the training
data. By learning a best possible discriminator, we aim to
encourage the reconstructed sequences to best resemble the
original sequences.

Motion Dynamics Encoding

The Enc is designed to learn a compact representation that
encodes the long-term global motion dynamics and its struc-
ture is illustrated in Figure.2. The input is a sequence of
vectors, each of which corresponds to a frame of 3D skele-
ton coordinates. Unlike other prediction based models that
only read in parts of the input sequence, our Enc reads in
the whole input sequence. After the last frame is read in, the
last states of the GRUs cells in the last layer, acting as the
holistic summary, are fully connected to a hidden layer to get
the fixed-dimensional representation. To utilize the context
information of each step and facilitate learning global tem-
poral dependencies, the Enc uses bidirectional connections
(Schuster and Paliwal 1997).

Decoding by Conditional Skeleton Inpainting

The Dec receives both the learned representation and the
randomly corrupted input sequence. The goal of the Dec is
to fill the masked regions in the input sequence conditioned
on the learned representation. The decoder GRUs reads in
the learned representation as the first-frame data to initiate
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its states. From the second step, it reads in the masked (cor-
rupted) input sequence, of which a random number parts of
a human body are masked from the second frame (a hu-
man body is divided into five parts, namely four limbs and
a trunk). We observe that it is better to keep the first frame
unmasked so as to give an initial inpainting reference for
the Dec. The input value of the masked part of human body
is set to be zero. As shown in Figure 1, we mask the same
body parts for each frame of the input sequence, namely the
masked regions are unknown from the second frame till the
last frame. Otherwise, the Dec can do inpainting easily by
merely referring to the history values and copying these val-
ues when predicting masked regions of current frames. This
practice substantially increases the inpainting difficulty for
the Dec but at the same time enhances the importance of the
learned representation in inpainting. Meanwhile, we observe
that it is better for the Dec not to refer to future frames when
inpainting the current frame. Hence we use unidirectional
GRUs for the Dec.

Coherence Driven Discriminator

The Dec is trained to fill the masked regions with small
reconstruction errors. However, it does not ensure that the
filled regions are coherent with its contexts, namely other
unmasked human body parts of the current frame or the
neighboring frames. Consequently, the inpainted sequence
may look blurry and visually unrealistic. To encourage re-



alistic inpainting results, we adopt the Dis that serves as
a binary classifier to distinguish between real and fake se-
quences. The goal of the Dis is to point the Dec towards
coherent sequence inpainting by giving the adversarial loss.
The (Dis) shares a same bidirectional GRUs architecture as
the Enc.

Training Loss with Adversarial Regularization

Our model combines the encoder-decoder architecture
(Sutskever, Vinyals, and Le 2014) and the GAN model
(Goodfellow et al. 2014). The decoder network is shared by
both, acting as the generator of the GAN model. We train
our model with a joint objective function:

ey
where £.;. is the element-wise loss and /4, is the adversar-
ial loss. A,q, controls the weight of adversarial loss. We use
the Lo distance between the inpainted sequence and the orig-
inal sequence as the element-wise loss. The element-wise
loss can be interpreted as the content error of inpainting. It is
responsible for capturing the overall structure of the missing
regions but tends to point the model towards averaging the
multiple modes in inpainting predictions. Consequently, the
produced sequences tend to look blurry and visually unreal-
istic. The adversarial loss can be regarded as the style error
of inpainting, and has the effect of picking a particular one
from the multiple prediction modes and encourages the Dec
to produce sequences that look visually realistic, namely fit-
ting the distribution of the input sequences.

The Dec generates inpainted sequences, conditioned on
the learned representation F'. We observe better results when
the inpainting of Dec is also conditioned on a random vari-
able z, and the adversarial loss is:

Ejoint = Eele + )\ad'u(adva

Logw = log ((Dis(x)) 4 log (1 — Dis(Dec(F, T)))

+; log (1 — Dis(Dec(z,))), @

where z is sampled from the prior distribution N (0, I'). For
a masked input sequence x, Dec(F, %) has a much lower in-
painting loss than Dec(Z,z) which is not included in the
element-wise loss. Parameters A\, controls the weight of z
in the total adversarial loss. It is introduced to reduce the
coupling of the Enc and Dec, and improve the generaliza-
tion of the Dec as a generator of the GAN model and the
distinguishing ability of the Dis.

Important Issues in Training

Due to the mutual influence of the three networks, to learn a
non-trivial representation, the optimization is rather difficult.
We therefore provide three practical considerations in this
section. We refer to Figure 1 and Algorithm 1 for overviews
of the training procedure.

e Limit Error Signals to Relevant Networks. With the
joint loss function in Equation 1, we train both an
Encoder-Decoder model and a GAN. This is possible
because we do not update all network parameters wrt.
the joint loss. The Dis only minimizes the adversarial
loss, while the Dec receives error signals from both the
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Algorithm 1 Training the conditional inpainting model.

Require: Training dataset D;

Ensure: Optimal Enc, Dec, Dis;
1: Ogue,0pec,Opis < initialize network parameters;
2: repeat

X < random mini-batch from D;

F « Enc(x);

X < randomly masked x;

X < Dec(x, F);

eele — ||X - X |2;

z « samples from prior N (0, I);

X, < Dec(X,z);

Loy < log ((Dis(z))+log (1—Dis(X))+ A, log (1—

Dis(X.));

(98]

VRIS UNH

1

11:  // Update parameters according to gradients;
120 O <= = Vo, Letc

13 Opec = — Vo, (Lete + Aadoladv):

14 Op & — oy Ladvs

15: until deadline

element-wise loss and the adversarial loss. We observe
that the Enc should not try to minimize the adversarial
loss, otherwise the Enc tends to encode information use-
ful for producing visually realistic sequences instead of
encoding the motion dynamics for sequence inpainting.
As a result, the learned representation performs poorly in
classifying actions.

e Weighting Adversarial Loss. The Dec minimizes the
joint loss. We use a parameters A4, to weight the content
error vs. the style error. We find that smaller \,q4, helps
the Enc to learn a more effective representation, and we
set it 0.1 in experiments. Meanwhile, the capability of the
Dis network should also be small, otherwise it tends to
focus on some trivial distinctions between the inpainted
results and the original sequences.

e Weighting of Conditional Inpainting on A Random
Variable. Parameters ). controls the weight of z in the
total adversarial loss, which can be viewed as the weight
of the Dec as a general conditional Generator of the GAN
model. A, should not be set large, and in experiments, we
setit 0.1. Otherwise, the Dec fails to cooperate with Enc to
learn an effective representation for sequence inpainting.
Larger A, tends to induce the Enc to learn a representation
that only helps the Dec to deceive the Dis.

Experiments

The final goal of learning long-term motion dynamics is to
classify actions in skeleton sequences. We learn representa-
tions with our unsupervised learning approach. A final clas-
sification layer is added on the top of the learned represen-
tation to classify actions, as shown in Figure 2. To study
the effectiveness of our unsupervised learning approach, we
consider the following three scenarios:

e Unsupervised. Fix the learned encoder and only fine-tune
the last classifier layer with the available labels. This set-



ting is to verify the effectiveness of the learned represen-
tation on action recognition.

e Supervised+Pretraining. Initialize the encoder with our
learned weights and fine-tune the whole network with the
available labels. We aim to explore if the learned repre-
sentation is useful for supervised models.

e Supervised. Initialize the weight of our encoder ran-
domly and learn them with labels available for the super-
vision task. This is our baseline model for comparison.

UOLBOIJISSE[)

Figure 2: Detailed network architecture for action recogni-
tion. Each input skeleton sequence is encoded into a fixed-
dimensional representation with the learned encoder (with
the weights fixed) which is a two-layer bidirectional GRUs.
Then, a classification layer is trained to infer the action.

Datasets

We perform our experiments on the following three datasets:
the CMU dataset (CMU 2003), the HDMO5 dataset (Miiller
et al. 2007), and the Berkeley MHAD dataset (Ofli et al.
2013).

CMU Dataset. This dataset contains 2,235 sequences.
These sequences are performed by 144 non-professional ac-
tors. For each frame, the 3D coordinates of 31 joints are pro-
vided. The entire dataset has been categorized into 45 classes
(Zhu et al. 2016). The dataset is very challenging due to the
large sequence length variations and intra-class diversities.
As in (Zhu et al. 2016), the evaluation is conducted on both
the entire dataset and a selected subset of 664 sequences. For
the entire dataset, the testing protocol is 4-fold cross vali-
dation, and for the subset, it is evaluated with 3-fold cross
validation.

HDMOS5. This dataset contains 2,337 sequences for 130
actions. These sequences are performed by 5 actors. For
each frame, 31 skeleton joints coordinates are recorded. As
stated in (Cho and Chen 2014), some samples of these 130
actions should be classified into the same category. After
combination, the actions are reduced to 65 categories. We
follow the experimental protocol proposed in (Du, Wang,
and Wang 2015) and perform 10-fold cross validation on this
dataset.
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Berkeley MHAD. There are 659 valid samples in this
dataset, which consists of 11 actions performed by 12 sub-
jects with 5 repetitions of each action. For each frame in a
sequence, 35 joints coordinates are recorded. We follow the
experimental protocol proposed in (Ofli et al. 2013) on this
dataset.

Experiments Setup and Implementation Details

We firstly down-sample all datasets to /5 frames/s. For the
CMU dataset and Berkeley MHAD, to reduce the effects of
large sequence length variations and computation expenses,
sequences are sub-sampled again to ensure that the sequence
length is below 36 frames. We augment the original training
datasets by 25 times for unsupervised training. We sample an
average of 25 sub-sequences from each original sequence.
The length of these sub-subsequences randomly ranges from
7 frames to 35 frames. For all datasets, we scale the skeleton
joints so that their 3D coordinates are in the interval of [-1,
1].

We implement our model in Tensorflow (Abadi et al.
2016) and optimize it with ADAM (Kingma and Ba 2014).
Dropout regularization is used, and we only drop the acti-
vations that are communicated across layers, as proposed in
(Zaremba, Sutskever, and Vinyals 2014). We set dropout ra-
tio to be 0.2. Both the Enc and the Dis is a two-layer bidirec-
tional GRUs. The Dec is a two-layer unidirectional GRUs.
Each layer of the Enc and Dec has 800 hidden units. The Dis
network is smaller, with 200 hidden units each layer. The di-
mensionality of the learned representation, namely the num-
ber of the hidden units of the fully connected layer, is the
same as the input frames.

Comparisons to the State-of-the-Art

The aim of this set of experiments is to see if the repre-
sentations learned by unsupervised learning are useful for
action recognition. We compare our method with recently
proposed unsupervised learning approaches and supervised
models. The performances are summarized in Table 1 and
Table 2. The two tables are divided into three sets. The first
set shows the performances of the representations learned by
two different unsupervised learning approaches. The second
set presents the results of state-of-the-art supervised models.
The third set compares supervised models that are pretrained
with different unsupervised learning methods.

Supervised Models. Our unsupervised model achieves
considerable performances. On the CMU subset, it achieves
an accuracy of 84.57% which even beats the supervised
HBRNN model by 1.44%. On Berkeley MHAD, it shows an
advantage over the supervised RNN-based baseline model
DBRNN, and achieves an accuracy of 100.00%. On the en-
tire CMU dataset and CMU subset, the pretrained supervised
model performs much better than the unsupervised model
with an improvement of 15.19% and 6.62%, respectively.
The performance gaps show the necessity of fine-tuning the
whole network with labeled data to achieve further improve-
ments. This is due to the fact that our model targets at only
learning the global motion dynamics, ignoring the body pos-
tures. Fine-tuning the whole network with labeled data helps



to learn more discriminative body poses and hence boost the
performances.

Our baseline model, namely the supervised model with-
out pretraining, achieves better performances than the Deep
LSTM and is comparable with the state-of-the-art model. It
shows that it is a very strong baseline. On the entire CMU
dataset, CMU subset and HDMOS5 dataset, the learned rep-
resentation by unsupervised learning succeeds in giving a
further improvement of 1.53%, 3.36% and 0.63%, respec-
tively. Our pretrained model achieves the best performances
on all datasets comparing to the recently proposed super-
vised models.

Table 1: Comparisons on the CMU dataset in accuracy (%).
The first group reports unsupervised (U) methods; the sec-
ond group presents state-of-the-art supervised (S) methods;
the third shows pretrained supervised methods(S+P). We re-
port results averaged over 10 different samples of training
sets.

Methods Subset CMU

U: Ours 84.57  66.23

U: Autoencoder!!] 77.03  61.43

S: HBRNN!?/ 83.13  75.02

S: Deep LSTM (Zhu et al. 2016) 86.00  79.53
S: Co-deep LSTM (Zhu et al. 2016)  88.40  81.04
S: Ours 87.83  79.89

S+P: Unsupervised LSTM [!] 88.89  78.63
S+P: Ours 91.19 81.42

(1 (Srivastava, Mansimov, and Salakhudinov 2015)

(2 (Du, Wang, and Wang 2015)

Unsupervised Approaches. We compare to the state-of-
the-art unsupervised learning approach Unsupervised LSTM
(Srivastava, Mansimov, and Salakhudinov 2015) and the re-
lated model Autoencoder. We re-implement the two models
and achieve better performances with GRUs cells. Mean-
while, since the Unsupervised LSTM only works on fixed-
length input sequences, hence we report the performances
of models initiated with it, as the authors did in the paper.
Both models share the same baseline network and parame-
ter settings with our model. The only difference lies in dif-
ferent learning approaches. As shown in Table 1 and Table
2, the representations learned with the Unsupervised LSTM
does not necessarily help to boost the performances of super-
vised models. The performance even deteriorates on CMU
dataset when pretrained on it. Our unsupervised approach
consistently gives further improvements over the supervised
models. The Unsupervised LSTM model and the Autonen-
coder do learn some semantic features, such as body pos-
tures or short-term motions, through reconstruction or pre-
diction. However, these features can be easily obtained by
the supervised models even with a small set of labeled data.
The better performances verify the effectiveness of learning
long-term global motion dynamics which needs plenty of
examples to be captured.

Comparing to the Autoencoder, our unsupervised learning
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approach also performs much better. On the CMU subset,
CMU dataset and HDMOS dataset , the performance gaps
are 7.54%, 4.80%, and 0.72%, respectively. The advantages
of our approach are more distinct on the challenging CMU
dataset. Actually, due to the larger sequence length varia-
tions and intra-class diversities in the CMU dataset, mod-
elling the long-term global temporal dependencies is critical
for distinguishing some confusing actions and boost the per-
formances. For example, the actions “basketball”,*“run”, and
“jump” are often misclassified by the Autoencoder, as they
share some basic short-term motions, such as raising and
lowering of legs. The performance of the generative model
proposed in (Ranzato et al. 2014) is not reported due to the
fact that it is heavily dependent on the quantization of inputs
into a large dictionary and can’t work with our loss function.

Table 2: Comparisons on the HDMOS and Berkeley MHAD
(B-MHAD) datasets in accuracy (%). The first group reports
unsupervised (U) methods; the second group presents state-
of-the-art supervised (S) methods; the third shows pretrained
supervised methods(S+P). We report results averaged over
10 different samples of training sets.

Methods HDMO05 B-MHAD
U: Ours 93.47 100.00
U: Autoencoder!!! 92.75 99.56
S: SMIJ (Ofli et al. 2014) - 95.40
S: MLP (Cho and Chen 2014) 95.59 -
S: DBRNN?Z 96.70 99.64
S: HBRNNZ 96.92 100.00
S: Deep LSTML?! 96.80 100.00
S: Co-deep LSTMF! 97.25 100.00
S: Ours 96.89 100.00
S+P: Unsupervised LSTMY  97.05 100.00
S+P: Our method 97.52 100.00

m(Srivastava, Mansimov, and Salakhudinov 2015)
2l(Du, Wang, and Wang 2015)
BJ(Zhu et al. 2016)

Varying Size of Labeled Dataset

The aim of this set of experiments is to see the effects of
the representations learned by unsupervised learning on the
performances of supervised models with varying size of la-
beled training sets. The results are shown in Figure 3. We
can see that for the case of very few training examples, un-
supervised learning can give substantial improvements. For
example, for the CMU dataset, the performance improves
from 45.8% to 49.73% when trained with only 2 examples
per category on average. On the CMU subset, the improve-
ment is from 55.89% to 60.51%. As the size of the labelled
dataset grows, the improvements gradually reduce. We be-
lieve that the decreasing improvement is due to the fact that
the long-term motion dynamics learned by the unsupervised
learning approach need plenty of data to be captured. When
the labeled dataset is small, it is difficult for supervised mod-
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Figure 3: Effectiveness of the learned representations with changes in the size of labelled training set. The results are averaged

over 10 different samples of training sets.

els to capture the long-term motion dynamics, hence the im-
provements bringed by the unsupervised learning is larger.
As the size of the labelled dataset grows, the advantages of
unsupervised learning weaken.

Ablation Study

In this section, we aim to explore the importance of incorpo-
rating the GAN model for conditional sequence inpainting.
We experiment with the CMU dataset with two different loss
functions: the element-wise loss and the joint loss. The re-
sults are evaluated in two aspects: the inpainting error, mea-
sured with the mean square root (MSE), and the effective-
ness of the learned representation, evaluated in classification
accuracy and clustering accuracy. The clustering accuracy
is evaluated with ACC (Xie, Girshick, and Farhadi 2016),
which ranges in [0, 1] and larger value indicates better clus-
tering performance. The results are summarized in Table 3.
The table is divided into two sets. The first set shows re-
sults of the inpainting model conditioned on the learned rep-
resentation, Ours (w/ F), while the second set conditioned
on zeros, Ours (w/o F). It shows that adding the adversar-
ial loss consistently reduces inpainting errors irrespective of
the using of the learned representation. Adding the adversar-
ial loss reduces the inpainting error from 0.20 to 0.16 when
conditioned on the learned representation. Meanwhile, the
adversarial loss improves the classification accuracy from
62.56% to 66.23% and the clustering accuracy from 45.27%
to 51.35%, respectively.

Table 3: Ablation study on the CMU dataset. The last two
columns report supervised accuracy, Acc.(S), and unsuper-
vised accuracy, Acc.(U).

Method Objective MSE Acc.(S) Acc.(U)
Ours (w/ F) lele 0.20 62.56 45.27
Ours (w/ F) Lioint 0.16 66.23 51.35
Ours (w/o F) lele 0.26 - -
Ours (w/o F) Cioint 0.23 - -

In this section, we verify the effectiveness of the learned
representation on helping the Dec with inpaining. The re-
sults are summarized in Table 3. It shows that when con-
ditioned on the learned representation, Ours (w/ F), the in-
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painting error is consistently much lower irrespective of the
loss functions. Even without the learned representation, our
basic model, Ours (w/o F), can work well in inpainting, and
the mean square root (MSE) is only 0.23 when trained with
the joint loss. When conditioned on F', the inpainting er-
ror reduces from 0.23 to 0.16. The much lower MSE proves
the effectiveness of the learned representation on helping the
Dec with inpainting.

Conclusions

We presents a general framework for unsupervised learn-
ing of long-term motion dynamics in skeleton sequences of
varying length. By combining the Encoder-Decoder model
and the GAN model, we use the inpainting error as the super-
vision to learn a discriminative representation. We prove the
effectiveness of our learned representation from multiple as-
pects on three well-established action recognition datasets,
and achieve better performances than recently proposed un-
supervised and supervised models.

For future work, we aim to explore the performances of
our method on more challenging skeleton datasets and gen-
eralize it to multiple persons. Further, we aim to explore
its performances on noisy datasets as the element-wise con-
struction loss can be sensitive to the noise of skeleton co-
ordinates. We also want to explore its effectiveness on RGB
based datasets such as the UCF-101, ActivityNet or other su-
pervised tasks beyond action recognition, and exploit other
free labels from sequences such as the smooth constraints.
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