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Abstract

Search task success rate is a crucial metric based on the
search experience of users to measure the performance of
search systems. Modeling search action sequence would
help to capture the latent search patterns of users in success-
ful and unsuccessful search tasks. Existing approaches use
aggregated features to describe the user behavior in search
action sequences, which depend on heuristic hand-crafted
feature design and ignore a lot of information inherent in the
user behavior. In this paper, we employ Long Short-Term
Memory (LSTM) that performs end-to-end fine-tuning dur-
ing the training to learn search action sequence representa-
tion for search task success evaluation. Concretely, we nor-
malize the search action sequences by introducing a dummy
idle action, which guarantees that the time intervals between
contiguous actions are fixed. Simultaneously, we propose a
novel data augmentation strategy to increase the pattern var-
iations on search action sequence data to improve the gener-
alization ability of LSTM. We evaluate the proposed ap-
proach on open datasets with two different definitions of
search task success. The experimental results show that the
proposed approach achieves significant performance im-
provement compared with several excellent search task suc-
cess evaluation approaches.

Introduction

Search task success rate is one of the prime metrics based
on the search experience of users to measure the perfor-
mance of search systems, which has received considerable
attention in recent years (Ageev et al. 2011; Odijk et al.
2015). A search task is an atomic information need, which
results in one or more queries (Hassan 2012). From the
aspect of search log data used, existing studies working on
search task success evaluation could be roughly classified
into two categories, i.e., modeling search task success with
pure activity logs (e.g., issue a query and click a document)
(Hassan, Jones, and Klinkner 2010; Hassan 2012) and
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modeling search task success with activity and text logs
(e.g., the content of queries and web pages) (Ageev et al.
2011; Wang et al. 2014; Jiang et al. 2015). Compared with
the latter approaches, the former approaches that model
search task success via using pure activity logs could pre-
serve the privacy of users at a higher level. In this paper,
we focus on search task success evaluation by using pure
activity logs.

A search task could be represented as an action sequence,
which consists of search actions and times between two
contiguous actions (Hassan 2012). Modeling search action
sequence would help to capture the latent search patterns
of users in successful and unsuccessful search tasks (Has-
san, Jones, and Klinkner 2010). Existing researches work-
ing on modeling search action sequence with pure activity
logs for search task success evaluation could be roughly
classified into two categories, i.c., static model and Markov
chain models (Hassan, Jones, and Klinkner 2010; Hassan
2012). Static model uses aggregated features to describe
the user behavior and leverages general classifiers in eval-
uation. However, static model depends on heuristic hand-
crafted feature design and ignores a lot of information in-
herent in the user behavior. Markov chain models provide
a more accurate picture of the user behavior by modeling
the transitions between search actions, which strongly re-
lies on the conditional independence assumption (i.e., in a
search action sequence, the probability of moving to the
next action only depends on the present action and not on
the previous actions). However, the conditional independ-
ence assumption cannot be satisfied in all search tasks. In a
search process, the user learns and filters information con-
stantly. She would consider all the information that has
been collected to determine the next search action. There-
fore, the factors that affect the next search action of users
should not only take into account the current search action,
but also consider the previous search actions. All these
weaknesses motivate us to find a more complete represen-
tation of search action sequences to effectively characterize
the multifarious search behavior patterns of users.



In this paper, we employ Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber 1997) that performs
end-to-end fine-tuning during the training to learn search
action sequence representation for search task success
evaluation. Though LSTM has shown the remarkable abil-
ity recently in modeling sequential data in image caption-
ing (Chen et al. 2017), sentiment classification (Yang et al.
2017), action recognition (Zhu et al. 2016), etc., it has not
been exploited in the field of search task success evalua-
tion. This might be attributed to two challenges: First,
search action sequence is a temporal event (each action
could be considered as an event) sequence (Luo et al.
2015), and the lengths of dwell times between contiguous
actions are not equal. Since LSTM considers by default
that the time intervals between contiguous events are fixed
in the sequential data, performing LSTM directly on raw
datasets of search action sequences would lose the charac-
teristics of time. Second, the amount of human-labeling
search tasks is limited due to the expensive and time con-
suming collection process, which is more inclined to make
the model over-fitting.

To cope with the first challenge, we assign each action a
fixed length of dwell time ¢,4., and then introduce a dummy
idle action with time 4, to split the residual dwell times
into small pieces. Therefore, the time intervals between
contiguous actions are fixed and the characteristics of time
are incorporated into the sequential data as well.

To address the second challenge, we propose the Dwell
Time Perturbation (DTP), a novel form of data augmenta-
tion on search action sequence data. Data augmentation is a
crucial way to reduce over-fitting by artificially enlarging
datasets with label-preserving transformations, which has
been widely used in neural network based pattern recogni-
tion tasks. Typically for computer vision (Ciresan et al.
2011) and image recognition (Krizhevsky, Sutskever, and
Hinton 2012), the transformations (e.g., translating, rescal-
ing, and distorting) have led to significant improvement in
recognition performance. Different from the above strate-
gies, DTP introduces a fluctuation factor 7, to slightly dis-
turb the dwell times and then generates new search action
sequences.

Our contributions can be summarized as follows:

* Introduce a dummy idle action to represent dwell times
in search action sequences, which guarantees that the
time intervals between contiguous actions are fixed;

* Propose a novel data augmentation strategy DTP to in-
crease the pattern variations on search action sequence
data to improve the generalization ability of LSTM,;

* Employ LSTM to learn search action sequence represen-
tation for search task success evaluation and achieve sig-
nificant performance improvement compared with sever-
al excellent approaches on open datasets.
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Related Work

In this section, we review related work in two major areas,
i.e., search task success evaluation and data augmentation.

Search Task Success Evaluation

Search task success is defined as the fulfillment of an
atomic information need during interactions with search
engines (Field, Allan, and Jones 2010). Some work in this
area focuses on designing features and employs general
classifiers in evaluation. Ageev et al. (2011) exploited a
Conditional Random Field (CRF) model with a set of addi-
tional querying and browsing features to evaluation search
task success. Feild et al. (2010) combined search interac-
tion features as well as information from other sensors to
predict frustration. Wang et al. (2014) established a latent
structural learning framework with well-designed struc-
tured features to model action-level satisfaction for search-
task satisfaction prediction. Guo et al. (2012) tried to cap-
ture the patterns of fine-grained interactions (e.g., mouse
cursor movements and scrolling) to help evaluating search
satisfaction. However, features used in these pervious re-
searches are all designed by human knowledge, which
need the effort of domain experts and might miss some
useful information that has not been developed yet. In ad-
dition, well-designed features rely on more search infor-
mation recorded in search logs, which would touch the
deeper privacy of users.

Other work focuses on modeling search action sequence
by using pure activity logs. Hassan et al. (2010) utilized
Markov chain to model search action sequence and showed
that modeling action transitions is better than using simple
statistical features to evaluate search task success. Later,
Hassan (2012) improved the Markov chain model by tak-
ing the prior distribution into consideration. However, the-
se models strongly rely on the conditional independence
assumption, which cannot be met in all search tasks. In this
paper, we concerned on modeling search action sequence
by taking full advantage of search action and dwell time
data.

Data Augmentation

Data augmentation is essential to teach the network the
desired invariance and robustness properties, when only
few training samples are available. Data augmentation us-
ing label-preserving transformations has been widely used
in neural network based tasks in computer vision, image
recognition, speech recognition, etc. In computer vision
and image recognition, the label-preserving transfor-
mations are easy to conceive, e.g., translation, deformation,
and reflection (Krizhevsky, Sutskever, and Hinton 2012;
Chatfield et al. 2014). In the area of speech recognition,
Jaitly et al. (2013) proposed VTLP that generates addition-



al samples via perturbing the spectral data. Later, VTLP
with both random (Ragni et al. 2014) and deterministic
(Tuske et al. 2014) perturbation has been used in different
systems and both have improved performance.

Although the methodology of data augmentation has not
been developed in search task success evaluation, inspired
by the work of Jaitly and Hinton (2013), we consider dis-
turbing the dwell times of search action sequences slightly
to obtain additional training data.

Problem Definition

The aim of search task success evaluation is to estimate
whether the search task ended up being successful or not.
In the rest of this section, we give the definitions of terms
that are used throughout this paper.

Definition 1. Action: An action a is an interaction that a
user performs with a search engine, e.g., committing a que-
ry string to a search engine and clicking an interested doc-
ument in the returned search engine result page.

Definition 2. Dwell time: A dwell time, denoted by ¢, is a
time interval between each two contiguous search actions.
Definition 3. Search action sequence: A search action se-
quence S of a search task is an ordered sequence of search
actions along with the dwell time between these actions.
Given a search task with » actions, the search action se-
quence could be expressed as S =<ay, #}, ay, ty, ..., Ay, Lot
a, >. Specifically, a, is a pre-defined dummy action that
indicates the end of a search task.

Definition 4. Search task success: Given a search task,
search task success is a binary label y. If the information
need of the user has been met, the search task is successful
and y = 1. Otherwise, the search task is unsuccessful and
y=0.

Various approaches have been proposed to identify the
boundaries of search tasks from search logs (Boldi et al.
2008; Wang et al. 2013; Li et al. 2016). In this work, we
consider the search task identification has been performed
in a pre-processing step.

Methodology

In this section, we show the details of the proposed ap-
proach.

Overall Framework

The framework of the proposed approach is illustrated in
Figure 1. White circles are search actions. Since the avail-
able labeled search tasks are sparse, we use the DTP based
data augmentation strategy to obtain more labeled search
tasks. After that, a dummy idle action (denoted as /) is in-
troduced to represent dwell times in search action sequenc-
es. The black circle represents the idle action /. Then, the

2202

time intervals between contiguous actions in search action
sequences are fixed. Since the length of each search action
sequence is ragged, we pad the sequences with 0 (the grey
circles) in the front of each sequence. Afterwards, the
search action sequence representation could be produced
along with the pre-trained action embeddings that generate
the representation of each search action. In the end, the
LSTM network is employed for sequence classification.
The output layer is a dense layer with one mode, and the
activation function is sigmoid.
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Figure 1. The Framework of the Proposed Approach.

Data Augmentation with Dwell Time Perturbation

Data augmentation based on label-preserving transfor-
mations can help to alleviate the sparse data issue. Label-
preserving transformations artificially generate more train-
ing samples by transforming the existing training samples
using certain forms of transformations that preserve the
class labels. The aim of this paradigm is to increase the
pattern variations through the transformations to improve
the classification invariance and the generalization ability
of the neural networks. In spired by the work of Jaitly and
Hinton (2013) that used a warping factor randomly chosen
at a fixed range to warp the frequency axis, we consider to



introduce a fluctuation factor f;, to slightly disturb the
dwell times and then generate new search action sequences.
The choice of g, is based on the following hypothesis:
Hypothesis 1. Given a fluctuation factor #5,€ (0, 1) and a
search action sequence S =<ay, ti, as, by, ..., Ay1, tyt, Ay >,
we have §'= < a, (1 * lﬂu)ll: ay, (1 * fﬂu)fz, ceey Ayoty (1 t
L)t ay > If y(S) =label , then y(S") =label , where y
is the success label of a search action sequence and label €
{0, 1}.

The idea behind this hypothesis is that transforming a
raw search action sequence in the way of slightly disturb
the dwell times would not change the label. Imagine that
when a user issues a query to a search engine, and stays in
the search engine result page for 2 seconds, i.e., 1, =2, if #g,
=0.2, then #, = #,', t,' € {1.8, 2.2}. Practically, users could
not feel significant difference among staying 2, 1.8, and
2.2 seconds.

Data augmentation could be applied at training processes,
test processes, or both (Chatfield et al. 2014). We try to
apply DTP at both training and test processes. At the test
process, for each test sample, the multiple probabilistic
predictions of the variants generated from the same test
sample were combined by averaging the class probabili-
ties', and the final classification result of a search task S is
computed as:

Vs :[h#(f’s +iP,-S>J (1)

2 m+l1 p
where m is the number of variants generated from S via
DTP, P° is the class probability of S, and P’ is the class
probability of the ith variant.

Sequence Normalization with Dummy Idle Action

Since the dwell times in a search action sequence are not
equal in general, we need to normalize the raw search ac-
tion sequence data to guarantee that the sequence could
retain the characteristics of time as much as possible. Spe-
cifically, a fixed length of dwell time 7, is assigned to
each search action in a sequence beforehand. After that, a
dummy idle action / with time ¢4, is introduced to replace
the residual dwell times with a certain amount of action /.
Given a search action sequence with » actions, the number
of action / between each two contiguous actions is:

N = |—ti /tidle -| -1, ie(l,n-1) (2)

According to the alphabet in Table 1, we show an exam-
ple of search action sequence normalization in Table 2. In
the original search action sequence, the user issues a query
to the search engine, and then she examines the search en-
gine result page for 5 seconds. After that, she clicks a re-

! We also tried to combine the predictions by geometrically averaging the
class probabilities. The experimental results show that the gap between
the two combination strategies is extremely small.
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sult and stays on that page for 14 seconds. Afterwards, she
clicks a result again and stays for 2 seconds. Finally, she
ends her search. The pure-action version of the original
sequence does not take dwell times into consideration. The
normalized version of the original sequence replaces the
dwell times with a certain amount of action / according to
Formula 2.

Action Description
(0] submit a query to a search engine
R click on a returned document in search engine result
page
It stay in the current action for a fix time (a dummy
action proposed in this paper)
I click on a hyperlink in the current clicked document
(not in a search result page)
E end the search task
Table 1. An Alphabet of Action Types Used to Encode Search
Actions.
Sequence Form Detail
Original sequence OssRius R E
Original sequence without time QRRE
Sequence normalization QIRIIIIRE

Table 2. An Example of Search Action Sequence Normalization
(tiare = 3)-

Search Action Sequence Representation

Word embeddings (Mikolov et al. 2013; Pennington, So-
cher, and Manning 2014) are a family of natural language
processing techniques designed to map semantic meaning
to a geometric space, i.e., each word in a dictionary could
be represented by a numeric vector; to a certain extent, the
distance between any two vectors would characterize the
semantic relationship between the two words. In this paper,
we consider each action (Q, R, I, L, E) as a word, and use
the entire labeled search action sequences as the training
text. We employ word2vec (Mikolov et al. 2013) to obtain
the semantic relationship of each action pair.

Overview of LSTM

The LSTM model is proposed to solve the problem of van-
ishing gradient in conventional recurrent neural networks
(Hochreiter and Schmidhuber 1997; Hu et al. 2017). A
LSTM is a sequence of units that share the same set of pa-
rameters. There are three sigmoid gates that control the
reading, writing, and memory updating: input gate i,, forget
gates f;, and output gate o,, respectively. Each LSTM unit
has a memory cell ¢,. The memory is updated through read-
ing a new input x, and the previous output %.;. Then an
output states 4, is written based on ¢,. The gates and states
are computed as follows:



i =c(Wx,+Uh,_ +b,) 3)

/= o-(fo, +Uth +bf) 4)
o,=c(W x,+U,h_ +b) %)

¢, =f0c_ +i,Otanh(Wx, +U.h_ +b,) (6)
h, =0, © tanh(c,) @)

where o denotes sigmoid function, © denotes element-
wise product, W, is the transformation matrix from the
input to LSTM states, U, is the recurrent transformation
matrix between the recurrent states 4, and b, is the bias
vector.

In this paper, we treat LSTM as a black box technique
that receives search action sequence data as input sequen-
tial data.

Experiments and Results

In this section, we present the experiments to empirically
evaluate the proposed approach.

Data

We perform experiments using the dataset described in the
work of Ageev et al. (2011). They designed a game-like
online contest for crowdsourcing search behavior studies’.
In their study, 156 participants were asked to perform sev-
eral predefined informational tasks via a search game inter-
face, and submit the answers they found to the system.
Search behaviors of all the participants were logged (in-
cluding the player ID, query string, timestamp, and the
corresponding clicks) and annotated by the authors accord-
ing to different success criteria. The data were collected in
four different game rounds. According to our search task
success definition, we treat the following two kinds of
tasks as success:
* Answer correct: the user believed she found (and then
submitted) the answer and the answer was correct;
* Answer sent: the user believed she found (and then sub-
mitted) the answer and the answer could be correct or not.
Basic statistics of these datasets are given in Table 3.

Success Definition  # Taskgceessiul ~ # TaSKunsuccessul
Answer correct 971 516
Answer sent 1294 193

Table 3. Basic Statistics of Evaluation Datasets.

Baselines

We compare the proposed approach with three best-
performing approaches. The first baseline (Field, Allan,
and Jones 2010) poses the problem as a classic machine

2 http://ir-ub.mathcs.emory.edu/uFindIt/
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learning problem and uses a logistic regression model to
predict search frustration. We built a logistic regression
model based on the search action and time features adopted
from previous researches (Ageev et al. 2011; Hassan 2012;
Jiang et al. 2015). The features we used in this paper are
listed in Table 4. We refer to this approach as “Logis-
tRegress”.

Descriptions of Features

Number of query-related search actions

Number of click-related search actions

Number of algorithmic results clicks

Number of hyperlink clicks

Numbers of transitions between each two consecutive actions®
Time span of a search task

Average dwell time

Average time to the first click-related search action
Average time between clicks-related search actions
Average number of query-related search actions per second
Average number of click-related search actions per second

Table 4. The Features of Search Action Sequences for Search
Task Success Evaluation.

The second baseline (Hassan 2012) trains two Markov
Chain models to describe the search patterns of users in
successful and unsuccessful search tasks, respectively. To
concatenate action transitions and dwell time, Hassan
(2012) replaced every query and click action with one of
two different actions based on the dwell time in the current
state of action. We use the same setting in our experiments
and denote this baseline as “ImpMML”.

The last baseline (Ageev et al. 2011) employs CRF to
evaluate search task success based on a set of behavior
features. Strictly speaking, it is not fair to compare the pro-
posed approach with CRF. Because CRF not only use the
search action sequence data, but also introduce some text
information, e.g., query features (query word length, stop
words, etc.), engine name (google, bing, and yahoo), and
search engine result page features (click position, domain
name, etc.). Since Hassan (2012) found the performance of
CRF and the ImpMML depends on the success definition,
i.e., for some definitions the ImpMML performs better and
for others CRF wins better performance, we would like to
explore the performance difference between CRF and the
proposed approach.

Experimental Setup

We consider the successful and unsuccessful classes as the
positive and negative classes, respectively. We use the
proposed DTP to augment each dataset by 10 times, and

3 For example, given a search task “Q R E”, we can extract the following
two transitions: Q — Rand R — E . Generally, we get (‘A‘—l)z features
where A is the set of possible actions. According to the experimental
datasets, we have 4 = {Q, R, L, E}.



then we have 14870 (1487 x 10) search tasks. We take
accuracy and F, score as the evaluation metrics. Concretely,
we use macro-averaged (Manning et al. 2009) accuracy,
Fi* (F, score for the successful class), F{"™"(F, score for
the unsuccessful class), and F{*° (the arithmetic mean of
Fi' and F{™"°) as the evaluation metrics to measure the
performance of each approach. We utilize Leave-One-
Subject-Group-Out (LOSGO) cross-validation (Schuller et
al. 2010) employed in the work of Ageev et al. (2011)
(they denoted LOSGO cross-validation as a conditional A-
fold cross-validation) to evaluate the results. LOSGO
cross-validation can guarantee subject independent in the
evaluation process (Steidl et al. 2005). In detail, for each of
the four game rounds, we use search tasks from the other
three game rounds as the training data (We use 25% of the
training data as a validation set), and use the current game
round as the test data. Therefore, we get four groups. For
each group, neither the users nor the predefined informa-
tional tasks intersect. In each group, we further random
split the test data to 8 subsets with equal size, and use the
same model learned from the corresponding training data
to test these subsets. Finally, for each approach, we have
32 test results (8 results per group x 4 groups). We use 2-
tailed paired t-test to compute the statistical significance of
any observed differences.

We set window = 3, size = 128, and sg = 1 for action
embeddings. For the configuration of LSTM on each da-
taset, we use sigmoid for activation function, bina-
ry_crossentropy for loss function, adam with batch size of
128 for optimization, and dropout rate 0.35 for hidden lay-
ers. During the 1000 epochs, we use early stopping when
the loss of the validation set starts to increase with patience
=10. We report results for 128 embedding dimensions and
16 hidden units. We fix the seed on each dataset for repro-
duction.

Influence of Parameter Setting

In the proposed approach, finding an appropriate fixed
length of dwell time 7, is vital. Empirically, we vary the
value 74, from 1 to 5. To avoid introducing additional
noise, we limit the fluctuation of dwell time to a small
range (g, = 0.1).

Figure 2 shows the performance of the proposed ap-
proach (we denote the proposed approach as DTP+LSTM)
with different 7,4, on two datasets. We find that the worst
results always appear when ¢4, = lor t;y, = 5. On the one
hand, as ¢, decreases, the amount of actions increases and
the lengths of sequences extend. It makes the representa-
tion of search action sequences become complicated and
might ask more labeled data to help learning. On the other
hand, as #,4, increases, the benefits of time characteristics
would diminish. When #,4, is large enough, the dummy idle
action would be removed from search action sequences,
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and DTP degenerates to replicate the raw sequence data.
Eventually, the best 4, for Answer correct is 2, and for
Answer sent the best t,4, is 3, which are fixed in the follow-
ing experiments.

0.70 0.75
0.70

0.65
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& 0.60
0.55
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12 3 4 s 12 3 4 5
tidte Lidte
(a) Answer correct (b) Answer sent

Figure 2. The Performance of DTP+LSTM with Different t,y,.

Convergence Process

Figure 3 shows the convergence processes of the proposed
approach on two datasets. Since we employ the strategy of
early stopping to avoid over-fitting, for each dataset, the
proposed approach terminates learning on a different epoch.
On the two datasets, the losses on the training set and the
validation set are extremely close to each other, and the
losses decrease as the epoch grows until the stopping crite-
rion has been met, which shows the stability and effective-
ness of the proposed approach.

1.0
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Figure 3. The Losses of DTP+LSTM on the Training Set and the
Validation Set.

Results

The Impact of Performing DTP.
Figure 4 shows the performance of LogistRegress,
ImpMML, LSTM, and their DTP versions for search task
success evaluation on two datasets. We notice that by per-
forming the DTP process on raw search action sequence
data, the performance of LSTM for evaluating search task
success has been greatly improved on all datasets, which
implies that the proposed data augmentation program could
significantly reduce the generalization errors of LSTM.
Since the CRF (Ageev et al. 2011) employs additional
text information, the DTP strategy could not apply on these
data. We just investigate the impacts of DTP on Logis-
tRegress and ImpMML. The astonishing phenomenon is
that on the datasets of Answer correct and Answer Sent, we



cannot see any performance improvement. On the contrary,
the performance of the two baselines tends to slightly de-
cline. That might be because the additional sequence data
generated from DTP process contain slight noise of dwell
time, and the two baselines do not have enough learning
ability on the two datasets to discover additional represen-
tation from the corresponding augmentative data.

0.66

m with DTP
without DTP

0.73

mwith DTP
without DTP

0.63
g 060
= 057

0.54

0.51

(a) Answer correct (b) Answer sent

Figure 4. The Performance of LogistRegress, ImpMML, LSTM,
and Their DTP Versions for Search Task Success Evaluation.
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without  with dummy  with both
dummy idle idle action ~dummy idle
action action and
DTP

(a) Answer correct (b) Answer sent

Figure 5. The Performance of LSTM without Dummy Idle Action,
LSTM with Dummy Idle Action, and LSTM with both Dummy Idle
Action and DTP.

The Benefit of Introducing the Dummy Idle Action.

The dummy idle action is used to the transform dwell times
into actions in search action sequences. Since the amount
of original search action sequences is small compared with
that of the augmented datasets, the convergence speed of
LSTM is relatively slow. Therefore, we use early stopping
with patience = 50. Figure 5 shows the performance of
LSTM without dummy idle action, LSTM with dummy
idle action, and LSTM with both dummy idle action and
DTP (DTP cannot perform without introducing the dummy
idle action) on two datasets. We find that LSTM has the
worst performance on the sequence data without introduc-
ing dummy idle action. The reason is that without the
dummy idle action, the search action sequence data would
degenerate to the sequences with raw search actions, and
directly performing LSTM on these data would lose the
features of dwell time. In addition, the dummy idle action
is crucial for augmenting datasets. After a slight disturb-

2206

ance to dwell times, the dummy idle action with an appro-
priate fixed length #,;, would help generating new search
action sequences and thus enhance the generalization abil-
ity of LSTM. Therefore, LSTM wins the best performance
via the setting of both dummy idle action and DTP for
search task success evaluation.

Comparison with the Baselines.

When comparing the performance of different machine
learning algorithms, it should be ensured that these algo-
rithms perform on the same dataset (with or without data
augmentation) to guarantee the differences in performance
of these algorithms are not due to the gaps of data volume.
We have observed that the proposed strategy of data aug-
mentation cannot provide additional benefits to the base-
lines on certain datasets. Therefore, for LogistRegress and
ImpMML, we report the better results that are obtained
from each dataset with/without DTP.

Tables 5 and 6 show the performance (Fi"°, F{™", and
F1'®) of DTP+LSTM and the baselines on two datasets,
respectively. * indicates whether DTP+LSTM is statistical-
ly superior to the compared approach (for a significant
level of o = 0.05). We find that the proposed DTP+LSTM
exhibits significant performance improvement over other
baselines on all datasets, which implies LSTM could learn
more plentiful representations of search pattern by using
search actions and dwell times. The performance of Logis-
tRegress, InpMML, and CRF depends on the success defi-
nition, and the difference in performance is small in all
datasets.

Approach Accuracy F*° ) i i
LogistRegress 0.684 0.780  0.419* 0.599*
ImpMML 0.676%* 0.776 ~ 0.374* 0.575%
CRF 0.674%* 0.768* 0.433* 0.601*
DTP+LSTM 0.703 0.787  0.493 0.640

Table 5. The Accuracy, F', F{™"°, and F{"° of the Proposed
Approach and the Baselines on the Answer Correct Dataset.

Approach Accuracy F*° ) S i
LogistRegress  0.878 0932  0.362* 0.647*
ImpMML 0.870 0.926 0.347*  0.637*
CRF 0.864* 0.923* 0.326* 0.625%
DTP+LSTM 0.881 0.932 0.459  0.696

Table 6. The Accuracy, F*, F{™", and F{*¢ of the Proposed
Approach and the Baselines on the Answer Sent Dataset.

Conclusions and Future Work

To find a more effective representation of search task to
modeling search task success, we propose a search task
success evaluation approach based on LSTM. We embed
the dwell time representations in search action sequences
via introducing a dummy idle action, and propose a novel



strategy of data augmentation to make the best use of the
limited search action sequence data. This paper is the first
attempt to solve the search task success evaluation problem
with deep neural networks. Our findings suggest that deep
neural networks in general should be considered in the
future for this problem and other similar problems. The
proposed approach evaluates search task success by ex-
ploiting pure activity log data, which implies it is particu-
larly applicable to the areas where privacy requirements
are more stringent, e.g., evaluation in email search that
only activity log data are allowed to use (Kim et al. 2017).
In the future work, we will investigate how to incorporate
fine-grained behaviors (e.g. mouse hovering and scrolling)
into the proposed approach.
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