
Sequence-to-Sequence Learning via Shared Latent Representation

Xu Shen,† Xinmei Tian,† Jun Xing,� Yong Rui,‡ Dacheng Tao�

†CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application Systems,
University of Science and Technology of China, China

� Institute for Creative Technologies, University of Southern California
‡ Lenovo Research

� UBTECH Sydney Artificial Intelligence Institute, SIT, FEIT, University of Sydney, Australia
shenxu@mail.ustc.edu.cn, xinmei@ustc.edu.cn, junxnui@gmail.com,

yongrui@lenovo.com, dacheng.tao@sydney.edu.au

Abstract

Sequence-to-sequence learning is a popular research area in
deep learning, such as video captioning and speech recog-
nition. Existing methods model this learning as a mapping
process by first encoding the input sequence to a fixed-sized
vector, followed by decoding the target sequence from the
vector. Although simple and intuitive, such mapping model is
task-specific, unable to be directly used for different tasks. In
this paper, we propose a star-like framework for general and
flexible sequence-to-sequence learning, where different types
of media contents (the peripheral nodes) could be encoded
to and decoded from a shared latent representation (SLR)
(the central node). This is inspired by the fact that human
brain could learn and express an abstract concept in different
ways. The media-invariant property of SLR could be seen as
a high-level regularization on the intermediate vector, enforc-
ing it to not only capture the latent representation intra each
individual media like the auto-encoders, but also their tran-
sitions like the mapping models. Moreover, the SLR model
is content-specific, which means it only needs to be trained
once for a dataset, while used for different tasks. We show
how to train a SLR model via dropout and use it for differ-
ent sequence-to-sequence tasks. Our SLR model is validated
on the Youtube2Text and MSR-VTT datasets, achieving su-
perior performance on video-to-sentence task, and the first
sentence-to-video results.

Introduction

Sequence-to-sequence learning recently gains enormous at-
tention both academically and commercially, and has been
successfully used to develop various practical and pow-
erful applications, such as machine translation (Sutskever,
Vinyals, and Le 2014), speech recognition (Graves, Mo-
hamed, and Hinton 2013) and video captioning (Venu-
gopalan et al. 2015a). This has been greatly advanced with
the increasing power of recurrent neural networks, espe-
cially the LSTM (Hochreiter and Schmidhuber 1997), for
sequential processing. Despite the diversity of sequences,
existing methods share a common mapping framework (Fig-
ure 1a), where the input sequence is first encoded to a fixed-
sized vector, then the vector is decoded to the output se-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

video

sentence

vector

(a) mapping

video sentence

sentencevideo

SLR

i1
i2

o1 o2

(b) star-like

Figure 1: Concept illustration of different models. (a) the
mapping model first encodes the video into a fixed-sized
vector, followed by decoding a sentence from the vector.
(b) the star-like model learns a shared latent representation
(SLR) among the video and sentence, and could reconstruct
them from the SLR. The star-like mode could be used for
different learning tasks, such as video-to-sentence learning
when activating the video input (i1) and sentence output
(o2).

quence. However, these mapping models are task-specific,
which means we need to train different models separately
(e.g. English-to-Chinese and Chinese-to-English). It may
bring more computation and time cost and deployment dif-
ficulty as the model number increases.

In human brain, information collected and extracted from
different channels (e.g. visual and auditory information) are
first mapped to a common inferior front cortex area, then
this cortex area sends signals to the control cortex for further
processing to drive various motor controls (Bear, Conners,
and Paradiso 1996). This motivates us to propose a star-like
framework for sequence-to-sequence learning (Figure 1b).
In the framework, the peripheral nodes are the various media
sequences (e.g. text, audio and video) that could be encoded
to and decoded from the central node called the shared la-
tent representation (SLR). In particular, the SLR could be
learned from a single or multiple media sources, and gener-
ate the same (e.g. sentence-to-sentence) or different (video-
to-sentence) medias. The star structure decouples the in-
put from output, enabling a general and flexible framework
for various sequence learning applications. Different from

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

2395

the task-specific models, the SLR-based model is content-
specific. It only needs to be trained once on a dataset, while
used for different tasks by specifying the target input and
output sequences.

The star framework contains three components: multi-
source encoding, SLR learning and multi-source decoding.
The media sources are first processed independently to ex-
tract their high-level features, which are then concatenated
and encoded to get the SLR distribution via variational auto-
encoder (Kingma and Welling 2013). From the distribution,
a random SLR is sampled and decoded to reconstruct differ-
ent media sequences separately. In particular, the input and
output source channels could be manually turned on or off
according to the target task, e.g. turn on the input video and
output sentence channel for video captioning.

The goal is to train the SLR to be media-invariant. For
instance, we should get close SLRs from either a video
or its captions. To train such a model, we extend the
dropout technique on unit-level (Srivastava et al. 2014) to
channel-level to gradually reduce the dependency on each
input source when inferring the SLR. Structure-wise, a SLR
model combines multiple sequence-to-sequence variational
auto-encoders. Thus, the dropout could also be interpreted
as performing model averaging.

In this paper, we focus on the study of video and sentence
sequences, particularly the video captioning task (Venu-
gopalan et al. 2015a; Pan et al. 2016; Yao et al. 2015), to
validate our SLR model. In summary, this paper makes the
following contributions:

• We present a star-like model for general and flexi-
ble sequence-to-sequence learnings. It only needs to be
trained once on a dataset, while used for different tasks.

• We propose the novel concept of shared latent repre-
sentation that captures the high-level information shared
among different media sources.

• We show how to train a SLR model via channel-level
dropout.

• Our proposed model is evaluated on the Youtube2Text
and MSR-VTT datasets, achieving state-of-the-art perfor-
mance on video-to-sentence task, and the first sentence-
to-video results.

Related Work

Although Deep Neural Networks work well whenever large
labeled training sets are available, they cannot be used to
map sequences to sequences. With the advance of recur-
rent neural networks (RNNs), especially LSTMs, a large
amount of work on applications of sequence-to-sequence
learning came up. Sutskever et al. (Sutskever, Vinyals, and
Le 2014) presented a general end-to-end approach to se-
quence learning, which uses a multilayered LSTM to en-
code the input sequence to a vector of a fixed dimension-
ality, and then another deep LSTM to decode the target
sequence from the vector. Following this approach, vari-
ous applications were developed, such as conversation mod-
eling (Vinyals and Le 2015) and video captioning (Venu-
gopalan et al. 2015a). Most recently, Ha and Eck (Ha and

Eck) exploited the sequence learning approach to design
the sketch-rnn, a RNN able to construct stroke-based draw-
ings of common objects. With the use of variational auto-
encoder (Kingma and Welling 2013), the sketch-rnn could
generate various drawings. Instead of encoding the input se-
quence with LSTMs like (Venugopalan et al. 2015a), (Pan
et al. 2016) adopted a 3D-CNN to extract the high-level fea-
tures of each video frame, followed by mean pooling them to
get the global information. In particular, when the input and
output sequences are synchronized, such as speech recogni-
tion (Graves et al. 2006) and lipreading (Assael et al. 2016)
tasks, the learning could be conducted locally in real-time
(e.g. via connectionist temporal classification) without en-
coding the whole input sequence in advance.

Attention (Bahdanau, Cho, and Bengio 2014) is an ef-
fective mechanism to enhance the sequence processing by
selectively focusing on parts of the input sequence, as ex-
emplied by the neural machine translation (Luong, Pham,
and Manning 2015) and video description (Yao et al. 2015).
It has been shown particularly powerful to handle long se-
quence, such as the question answering task (Hermann et
al. 2015). Besides, attention could also be used to transform
the fix-sized inputs or outputs into sequences. By mimick-
ing the foveation of the human eye, (Gregor et al. 2015;
Xu et al. 2015) used the spatial attention mechanism to gen-
erate and captioning images.

Multimodal studies learning from multiple sources, such
as speech recognition from the visual and audio inputs
(Ngiam et al. 2011), and video description based on the au-
dio and broad topic (category) information (Ramanishka et
al. 2016). With more clues from different sources, the mul-
timodal learning usually achieves better performance than a
single-modal. Instead of learning from multiple sources, we
explore the shared high-level concept among them.

Preliminaries

Variational Auto-Encoder

A VAE consists of two networks that encode a data sample
x to a latent representation z and decode the latent represen-
tation back to data space, respectively:

z ∼ encoder(x) = q(z|x)
x̃ ∼ decoder(z) = p(x|z) (1)

The VAE regularizes the encoder by imposing a prior over
the latent distribution p(z), typically z ∼ N (0, I), where I
is the identity matrix. The VAE loss is defined as:

LV AE = −Eq(z|x)

[
log

p(x|z)p(z)
q(z|x)

]
= Llike + Lprior

Llike = −Eq(z|x)[log p(x|z)]
Lprior = DKL(q(z|x)||p(z)),

(2)

where Llike measures the expected negative reconstruction
error, andLprior (the KL divergence of the approximate pos-
terior from the prior) acts as a prior regularizer.

2396

Long Short Term Memory

Recurrent neural networks (RNNs) are able to process in-
put sequences of arbitrary length via the recursive applica-
tion of a transition function. However, it suffers from the
exploding or vanishing gradients problem (Bengio, Simard,
and Frasconi 1994). The LSTM architecture (Hochreiter and
Schmidhuber 1997) addresses this problem of learning long-
term dependencies by introducing a memory cell ct that is
able to preserve state over long periods of time, and an input
gate it, a forget gate ft and an output gate ot to control the
information flow (Zaremba and Sutskever 2014):

it = σ
(
W (i)xt + U (i)ht−1 + b(i)

)

ft = σ
(
W (f)xt + U (f)ht−1 + b(f)

)

ot = σ
(
W (o)xt + U (o)ht−1 + b(o)

)

ut = tanh
(
W (u)xt + U (u)ht−1 + b(u)

)
ct = it � ut + ft � ct−1

ht = ot � tanh(ct),

(3)

where xt and ht are the input and hidden state at the current
time step, σ is the logistic sigmoid function and � is ele-
mentwise multiplication. Intuitively, the forget gate controls
the extent to which the previous memory cell is forgotten,
the input gate controls how much each unit is updated, and
the output gate controls the exposure of the internal mem-
ory state. The model can learn to represent information over
multiple time scales by controlling the gating variables.

Dropout

Dropout is a recently introduced algorithm for training neu-
ral networks (Srivastava et al. 2014). In its simplest form,
on each presentation of each training example, each feature
detector unit is deleted randomly with probability 0.5. The
remaining weights are trained by backpropagation. The pro-
cedure is repeated for each example and each training epoch,
sharing the weights at each iteration. After the training phase
is completed, predictions are produced by halving all the
weights. The motivation and intuition behind the algorithm
is to prevent overfitting associated with the coadaptation of
feature detectors. By randomly dropping out neurons, the
procedure prevents any neuron from relying excessively on
the output of any other neuron, forcing it instead to rely on
the population behavior of its inputs.

Method

We elaborate the general SLR model and its learning method
in this section. For simplicity, we only discuss the common
case of two different media sources like video and sentence
shown in Figure 1b. Both the model and learning method
could be easily generalized to other cases.

Framework

As illustrated in Figure 2, the SLR model mainly consists
of 3 stages: multi-source encoding, SLR learning and multi-
source decoding, and could be manually configured to han-

dle different target tasks. We elaborate these components be-
low.

Multi-source Encoding During the first stage, we extract
the high-level feature xi of each media source Si separately,
and concatenate them into a hidden state x:

xi = encoderi(Si), i ∈ {1, 2}
x = [x1;x2]

(4)

where each encoderi of media source Si may differ from
one another, such as encoding the videos via mean pooling
of the high level CNN features (Pan et al. 2016) and the sen-
tences via LSTMs (Sutskever, Vinyals, and Le 2014).

SLR Learning We use a variational auto-encoder
(Kingma and Welling 2013) to learn the distribution of the
SLR. Specifically, the concatenated hidden state x is pro-
jected into two vectors μ and σ̂, each of size Nz , using a
fully connected layer (Wμ,Wσ ∈ RNz×Nx

). We convert σ̂
into a non-negative standard deviation parameter σ using an
exponential operation. We use μ and σ, along with N (0, I),
a vector of IID Gaussian variables of size Nz , to construct a
random vector, z ∈ R

Nz :

μ = Wμx+ bμ
σ̂ = Wσx+ bσ

σ = exp(
σ̂

2
)

z = μ+ σ �N (0, I)

(5)

Under this encoding scheme, the SLR vector z is not a de-
terministic output, but a random vector conditioned on the
input media sources.

Multi-source Decoding In the last stage, we adopt a
LSTM structure to decode each target sequence from the
sampled SLR:

[hi
0; c

i
0] = tanh(W i

zz + biz)

[hi
t; c

i
t] = LSTMi(Si

t−1, [h
i
t−1; c

i
t−1])

Si
t = decoderi(h

i
t)

(6)

where the initial hidden and cell states [hi
0; c

i
0] of the

LSTMs are the output of a single layer network condi-
tional on z, the LSTM is defined in Equation 3, and i rep-
resents the identity of different target sequences. Similarly,
each decoderi are also media-dependent, such as a softmax
layer to predict the probabilites of each word in sentence and
a non-linear mapping layer (f(Wht + b)) mapping to the
pixels of each frame for a video sequence.

Model Configuration The input and output source chan-
nels could be manually turned on or off to achieve different
applications (at least one input channel is active). In partic-
ular, when an input channel Si is inactive, we set its high-
level feature xi in Equation 4 to all zeros. The configuration

2397

Figure 2: The SLR model overview.The sentence and video sources are first processed independently to get their high-level
features (blue and green boxes in the middle) via LSTM and mean pooling methods. The features are then concatenated and
encoded to get the SLR distribution via a variational auto-encoder. Finally, a random SLR, sampled from the distribution,
is decoded via LSTMs to reconstruct different media sequences separately. The input and output media channels could be
manually turned on or off (green circles) to handle different tasks, such as turning on the input video and output sentence for
video captioning.

could also be made adaptive based on the context. For ex-
ample, trained on a Chinese-English language dataset, our
model could be used for bi-directional translations, and the
channels could be dynamically turned on or off as people
talk to each other.

Learning

The overall learning could be divided into three phases −
full-model learning (FL), partial-model learning (PL), and
testing. In the FL phase, all the input and output media
channels are active, while in the PL phase, only part of the
input and output channels are available. Both the learning
phases could be trained end-to-end, similar to the traditional
sequence-to-sequence variational auto-encoders. In the test-
ing phase, the states of input and output channels are config-
ured according to the target task(s) of the dataset.

Suppose Sa = {Sa
i } and Sb = {Sb

i } are two different
media sources in a dataset, and their matching correspon-
dences are known. In particular, such correspondences may
be inter-media (e.g. Sa

i is similar to Sb
j) and intra-media (e.g.

Sa
i is similar to Sa

j). For example, in Youtube2Text dataset, a
video could be described by multiple similar sentences (e.g.
Figure 2).

Loss This whole SLR model could be trained end-to-end.
The training loss is similar as the variational auto-encoder
described in Equation 2, except that the reconstruction error
Llike is composed of multiple output channels:

Llike = λaLa + λbLb (7)

where λa and λb are weighting parameters of reconstruction
error La and Lb, respectively. Please refer to the experiment
for the detailed examples.

Full-model Learning In the FL phase, we randomly input
a sequence-pair (Sa

i ,Sb
j), and train the model by decoding

loss from both Sa
i′ and Sb

j′ , where Sa
i′ and Sb

j′ are the intra-
media matching of Sa

i and Sb
j , respectively, subject to avail-

ability. If there is no matching sequence of Sa
i or Sb

j , we
simply set Sa

i′ = Sa
i or Sb

j′ = Sb
j . Using a similar, instead

of same, output sequence for loss calculation could prevent
overfitting and enhance the distribution learning capability.

Partial-model Learning In order to train the SLR model
for general-purpose, we randomly dropout the input and out-
put channels. To keep a smooth transition from the FL to PL
phase, we select input from (Sa

i ,Sb
j), (Sa

i ,0) or (0,Sb
j) with

probabilities of 0.5, 0.25 and 0.25, respectively, and keep all
the output channels. After enough training steps, we config-
ure the input and output channels based on the testing task(s)
for target training, which helps achieve better performance
in testing.

Testing Finally, we input the given media sequence(s)
(e.g. Sa

i) to the SLR model, and decode the target output
sequence(s) (e.g. Sb

j) from the sampled SLR.

Experiments

In this section, we apply our SLR framework mainly on
video and sentence generation task (shown in Fig. 2). Mod-
els are tested on the Microsoft Research Video Description
Corpus (YouTube2Text) (Guadarrama et al. 2013) and the
MSRVTT dataset (Xu et al. 2016). In video to sentence and
sentence to sentence tasks, generated sentences are evalu-
ated by BLEU@N (Papineni et al. 2001) and METEOR
(Lavie and Agarwal 2005). In video to video and sentence to
video tasks, generated videos are evaluated by mean squared
error (MSE) between ground truth video frames and pre-
dicted video frames. All the examples presented in the fol-
lowing sections are randomly drawn from YouTube2Text
dataset. We will detail the experimental settings, compared
models and results in the following sections.

2398

Experimental Settings

Data The YouTube2Text dataset contains 1, 970 videos and
about 40 English sentences for each video. Following pre-
vious works, we randomly split 1, 200 videos for training,
100 for validation and 670 videos for testing as in (Yao et
al. 2015). The MSRVTT dataset contains 6, 513 videos for
training, 497 videos for validation and 2, 990 videos for test-
ing and each video corresponds to 20 descriptions. On both
datasets, we take the output of 4096-way fc6 layer from the
19-layer VGG (Simonyan and Zisserman 2014) and 4096-
way fc6 layer output of C3D(Tran et al. 2015) as a 2D/3D
CNN representation of the frames, respectively. Each video
is split into clips with 16 continuous frames and with a max-
imum of 45 clips. Each sentence is represented by a vec-
tor of words (at most 35 words), and each word is prepro-
cessed by lowercasing and encoded by a one-hot vector. In
our experiments, we use all the words of the training set to
build the vocabulary. Specifically, we have 9855 words for
YouTube2Text and 23668 words for MSRVTT.

Model As shown in Fig. 2, sentence features (hs) are en-
coded by LSTMs with 512 hidden units. The mean-pooling
of the concatenated 2D/3D CNN features (9216D) of input
video are first embedded into 512D by a fully-connected
layer with tanh activation:

hv = tanh(Wembhconcat + bemb) (8)
i.e. x1 = hs ∈ R512, x2 = hv ∈ R512 and x ∈ R1024 in
Eq. 4. Additionally, in order to avoid the scale imbalance be-
tween video representation and sentence representation, we
apply L2 normalization on x1 and x2 before concatenation.
Then x is mapped to a 512D vector by variational autoen-
coder in Eq. 5 (μ, σ, z ∈ R512). We use LSTM with 512
hidden units (hi

t, c
i
t ∈ R512 in Eq. 6) as decoders for both

sentence and video. Specifically, decode LSTM for video
are required to reconstruct the down sampled frames (target
frames are down sampled to 36 × 64 on Youtube2Text and
64 × 48 on MSRVTT), and decode LSTM for sentence are
required to predict the corresponding probabilities of each
word in the vocabulary.

Learning As aforementioned, we first do full-model
learning, then do partial-model learning, and finally comes
to testing. We use an initial learning rate 0.0001 on the
YouTube2Text and 0.001 learning rate on the MSRVTT
dataset for the full-model learning stage, and decay the
learning rate by 10 in the partial-model learning stage. The
full model learning stage is trained for 20 epochs on the
YouTube2Text and 60 epochs on the MSRVTT dataset. The
partial model learning stage is trained for 80/40 epochs on
the YouTube2Text and the MSRVTT dataset, respectively.
Finally, we fine-tune the learned model on the specific task
(i.e. video-to-sentence) for 20 epochs. We train the model
by Adam optimizer with 100 mini batch size. Gradients of
parameters are clipped to maximum 35 L2 norm. In the full
model learning stage, we use a weighted sum of sentence
generation loss, video generation loss, and latent loss of the
variational auto-encoder:

L = λvLvideo + λsLsentence + λpLprior (9)
where λv = 1, λs = 1, λp = 0.01, Lvideo is computed by
average Euclidean distance between predicted frames and

ground truth frames; Lsentence is computed by softmax loss
of predicted probabilities; Lprior is computed by the KL di-
vergence between latent vector and the normal distribution
(Eq. 2). In the partial learning stage, we randomly dropout
the input video/sentence feature. In the testing stage, we set
λv = 0 for sentence generation tasks and λs = 0 for video
generation tasks.

Compared models

• Long-Short Term Memory(LSTM): Directly decode tar-
get videos/sentences from the representation of input
videos/ sentences by LSTM.

• Soft Attention (SA)(Yao et al. 2015): A weighted atten-
tion mechanism is used to determine the focused frames
when decoding sentences from input videos.

• Sequence-to-Sequence - Video to Text (S2VT) (Venu-
gopalan et al. 2015b): Encoding and decoding of inputs
and word representations are learned jointly via a single
LSTM.

• Long Short Term Memory with visual semantic embed-
ding (LSTM-E)(Pan et al. 2016): A relevance loss be-
tween embedded video and sentence representation is in-
troduced and then is jointly learned with the coherence
loss.

• Sequence-to-Sequence Learning with variational auto-
encoder (S2S+VAE): A distribution is learned from input
representation by variational auto-encoder first, then tar-
get videos/ sentences are decoded from that distribution.

• Sequence-to-Sequence Learning via shared latent repre-
sentation (S2S+SLR): A shared latent representation is
learned from both videos and sentences first, then both
videos and sentences are decoded from the latent repre-
sentation.

Model METEOR BLEU BLEU BLEU BLEU
@1 @2 @3 @4

LSTM 26.9 69.8 53.3 42.1 31.2
SA 29.6 80.0 64.7 52.6 42.2

S2VT 29.8 - - - -
LSTM-E 31.0 78.8 66.0 55.4 45.3
S2S+VAE 30.2 75.3 63.3 53.9 43.5
S2S+SLR 33.4 79.8 67.9 57.8 47.2

Table 1: METEOR and BLEU@N scores for video caption-
ing (video-to-sentence) models on Youtube2Text. All values
are reported as percentage.

Video-to-Sentence

In this section, we compare different models for the video to
sentence task. The results on Youtube2Text and MSRVTT
are summarized in Table 1 and Table 2. Results of com-
pared models are copied from published literatures (Venu-
gopalan et al. 2015b; Yao et al. 2015; Pan et al. 2016;
Xu et al. 2016). The improvement of S2S+SLR method
compared with LSTM-E indicates that an explicitly shared

2399

Model METEOR BLEU BLEU BLEU BLEU
@1 @2 @3 @4

LSTM 29.5 79.9 64.9 52.1 40.1
SA 29.9 81.5 65.0 52.5 40.5

S2S+VAE 30.3 79.3 65.0 52.9 41.5
S2S+SLR 32.8 80.8 66.1 54.3 44.1

Table 2: METEOR and BLEU@N scores for video caption-
ing (video-to-sentence) models on MSRVTT. All values are
reported as percentage.

latent representation is better for inferring descriptions. Ad-
ditionally, we can see that S2S+VAE also outperforms map-
ping models, e.g. LSTM, SA and S2VT. This phenomenon
shows that a generative model is better for modelling the
description diversity among different persons. Fig. 3 shows
some examples. The interesting point of the results is that
S2S+SLR tends to generate more abstract concepts in the de-
scriptions. Specifically, the outputs of SLR model are not re-
stricted to the content and the ground truth descriptions, but
some interesting inference and more general perceptions.

Video-to-Video

The mean squared error (MSE) between ground truth video
frames and predicted video frames generated by different
models are shown in Table 3. Because all other models
are designed for video to sentence task only, we only con-
sider LSTM model as an baseline here. As generating video
frames from a fixed representation only is quite challenging
and the results divers a lot. We feed the first ground truth
frame into the decoding LSTM to ensure reasonable and
consistent predictions are generated. The results in these two
tables show that shared latent representation learned from
both video and sentence representations can help to solve
this challenging task.

Model MSE(YouTube2Text) MSE(MSRVTT)
LSTM 460.5 471.2

S2S+VAE 450.3 462.3
S2S+SLR 398.9 423.4

Table 3: MSE scores for video reconstruction (video-to-
video) models on Youtube2Text and MSRVTT.

Sentence-to-Sentence

For the sentence to sentence task, sentences are encoded by
an encoding LSTM and decoded by another LSTM. The
encoding, decoding and embedding are learned jointly. For
each target sentence, the input sentence is randomly sam-
pled from other descriptions of the same video. Quantitative
results are presented in Table 4 and Table 5. As all other
models are designed for video to sentence task only, we only
consider LSTM model as an baseline here. We can see that
shared latent representation learned from video channel also
helps to decode similar sentences. Some examples of LSTM
and our model are presented in Fig. 4. We can see that model

tends to generate more brief and more abstract sentences
with shared latent representation learning.

Model METEOR BLEU BLEU BLEU BLEU
@1 @2 @3 @4

LSTM 36.3 82.0 71.5 61.5 49.9
S2S+VAE 37.2 83.2 73.1 62.8 52.4
S2S+SLR 39.4 84.6 75.4 64.9 54.5

Table 4: BLEU@N and METEOR scores for sentence-to-
sentence models on Youtube2Text. All values are reported
as percentage.

Model METEOR BLEU BLEU BLEU BLEU
@1 @2 @3 @4

LSTM 33.5 80.9 69.2 56.3 46.1
S2S+VAE 34.8 81.3 70.6 57.8 47.5
S2S+SLR 35.7 82.3 71.4 58.9 48.6

Table 5: BLEU@N and METEOR scores for sentence-to-
sentence models on MSRVTT. All values are reported as
percentage.

Sentence-to-Video

Since all other models are designed for video to sentence
task only, we only consider LSTM model as an baseline
here. Sentence to video is the most challenging task among
video and sentence learning tasks, because sentence only
contains much less information compared with video. In this
situation, latent shared representation from both video and
sentence helps a lot compared with other models, achiev-
ing more than 10% improvement as shown in Table 6. Con-
sequently, latent shared representation learning provides a
promising way to solve the sentence to video problem. Some
examples on YouTube2Text are shown in Fig. 5. Though the
predicted video frames are a little bit blur, we can still see
that the SLR model begin to learn some general things in the
sentence.

Model MSE(YouTube2Text) MSE(MSRVTT)
LSTM 481.4 490.6

S2S+VAE 472.3 481.0
S2S+SLR 417.6 431.2

Table 6: MSE scores for sentence-to-video models on
Youtube2Text and MSRVTT.

Conclusion

This paper proposed a novel sequence-to-sequence learning
method. Instead of formulating the learning as a one-to-one
mapping process, we learned the shared latent representation
among multiple sources and how each media source could
be encoded to and decoded from it. This was inspired by
the fact that human brain could learn and express an abstract

2400

Figure 3: Examples of video to sentence samples. The videos are represented by sampled frames. The output sentences are
generated by LSTM and our S2S+SLR model. Ground truth sentences are randomly selected.

Figure 4: Examples of generating sentences from given sentences. The input sentences are randomly sampled from descriptions
of the same video. The output sentences are generated by LSTM and our S2S+SLR model. Ground truth sentences are randomly
selected from descriptions of the same video.

Figure 5: Examples of sentence-to-video samples on YouTube2Text. The first row shows ground truth video frames. The second
and third rows present video frames predicted by S2S+SLR and LSTM models. As this task is too challenging, the generated
frames are a little blur. We will keep working on this challenging topic in the future.

2401

concept in different ways. In contrast to task-specific map-
ping models, our star-like model could be used for different
tasks with only one training. Thus, it could be manually con-
figured to handle a specific task, or set adaptive in a chang-
ing environment, e.g. multi-directional translation during a
conversation. Our model was validated on the challenging
video-sentence dataset, and achieved superior results in dif-
ferent tasks. We believe our model could be directly applied
to other media sources, including both sequence (e.g. audio)
and fix-sized vectors (e.g. images).

Acknowledgments

This work was supported by National Key Research and
Development Program of China 2017YFB1002203, NSFC
No.61572451, No.61390514, and No. 61632019, Youth
Innovation Promotion Association CAS CX2100060016,
Fok Ying Tung Education Foundation WF2100060004, and
Australian Research Council Projects FL-170100117, DP-
180103424, DP-140102164, LP-150100671.

References

Assael, Y. M.; Shillingford, B.; Whiteson, S.; and de Fre-
itas, N. 2016. Lipnet: Sentence-level lipreading. CoRR
abs/1611.01599.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
CoRR abs/1409.0473.
Bear, M. F.; Conners, B. W.; and Paradiso, M. A. 1996.
Neuroscience: Exploring the Brain. Williams & Wilkins.
Bengio, Y.; Simard, P.; and Frasconi, P. 1994. Learning
long-term dependencies with gradient descent is difficult.
Trans. Neur. Netw. 157–166.
Graves, A.; Fernández, S.; Gomez, F.; and Schmidhuber, J.
2006. Connectionist temporal classification: Labelling un-
segmented sequence data with recurrent neural networks. In
ICML, 369–376.
Graves, A.; Mohamed, A.; and Hinton, G. E. 2013. Speech
recognition with deep recurrent neural networks. CoRR
abs/1303.5778.
Gregor, K.; Danihelka, I.; Graves, A.; and Wierstra, D. 2015.
DRAW: A recurrent neural network for image generation.
CoRR abs/1502.04623.
Guadarrama, S.; Krishnamoorthy, N.; Malkarnenkar, G.;
Venugopalan, S.; Mooney, R.; Darrell, T.; and Saenko, K.
2013. Youtube2text: Recognizing and describing arbitrary
activities using semantic hierarchies and zero-shot recogni-
tion. In ICCV.
Ha, D., and Eck, D. A neural representation of sketch draw-
ings. arxiv preprint.
Hermann, K. M.; Kociský, T.; Grefenstette, E.; Espeholt, L.;
Kay, W.; Suleyman, M.; and Blunsom, P. 2015. Teaching
machines to read and comprehend. CoRR abs/1506.03340.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Comput. 1735–1780.
Kingma, D. P., and Welling, M. 2013. Auto-Encoding Vari-
ational Bayes. ArXiv e-prints.

Lavie, A., and Agarwal, A. 2005. Meteor: An automatic
metric for mt evaluation with improved correlation with hu-
man judgments. In Proceedings of ACL Workshop, 65–72.
Luong, M.; Pham, H.; and Manning, C. D. 2015. Effec-
tive approaches to attention-based neural machine transla-
tion. CoRR abs/1508.04025.
Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; and Ng,
A. Y. 2011. Multimodal deep learning. In ICML, 689–696.
Pan, Y.; Mei, T.; Yao, T.; Li, H.; and Rui, Y. 2016. Jointly
modeling embedding and translation to bridge video and
language. CVPR.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2001.
Bleu: A method for automatic evaluation of machine trans-
lation. In ACL, 311–318. Association for Computational
Linguistics.
Ramanishka, V.; Das, A.; Park, D. H.; Venugopalan, S.; Hen-
dricks, L. A.; Rohrbach, M.; and Saenko, K. 2016. Multi-
modal video description. In ACM MM, 1092–1096.
Simonyan, K., and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. CoRR
abs/1409.1556.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A simple way to pre-
vent neural networks from overfitting. J. Mach. Learn. Res.
1929–1958.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Se-
quence to sequence learning with neural networks. CoRR
abs/1409.3215.
Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; and Paluri,
M. 2015. Learning spatiotemporal features with 3d convo-
lutional networks. ICCV.
Venugopalan, S.; Rohrbach, M.; Donahue, J.; Mooney, R. J.;
Darrell, T.; and Saenko, K. 2015a. Sequence to sequence -
video to text. CoRR abs/1505.00487.
Venugopalan, S.; Rohrbach, M.; Donahue, J.; Mooney, R. J.;
Darrell, T.; and Saenko, K. 2015b. Sequence to sequence -
video to text. In ICCV, 4534–4542.
Vinyals, O., and Le, Q. V. 2015. A neural conversational
model. CoRR abs/1506.05869.
Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A. C.;
Salakhutdinov, R.; Zemel, R. S.; and Bengio, Y. 2015. Show,
attend and tell: Neural image caption generation with visual
attention. CoRR abs/1502.03044.
Xu, J.; Mei, T.; Yao, T.; and Rui, Y. 2016. Msr-vtt: A large
video description dataset for bridging video and language.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).
Yao, L.; Torabi, A.; Cho, K.; Ballas, N.; Pal, C.; Larochelle,
H.; and Courville, A. 2015. Describing videos by exploiting
temporal structure. In Computer Vision (ICCV), 2015 IEEE
International Conference on. IEEE.
Zaremba, W., and Sutskever, I. 2014. Learning to execute.
CoRR abs/1410.4615.

2402

