
Cooperative Learning of Energy-Based Model
and Latent Variable Model via MCMC Teaching

Jianwen Xie,1,2 Yang Lu,1,3 Ruiqi Gao,1 Ying Nian Wu1

1Department of Statistics, University of California, Los Angeles, USA
2Hikvision Research America

3Amazon RSML (Retail System Machine Learning) Group

Abstract

This paper proposes a cooperative learning algorithm to train
both the undirected energy-based model and the directed latent
variable model jointly. The learning algorithm interweaves the
maximum likelihood algorithms for learning the two models,
and each iteration consists of the following two steps: (1)
Modified contrastive divergence for energy-based model: The
learning of the energy-based model is based on the contrastive
divergence, but the finite-step MCMC sampling of the model
is initialized from the synthesized examples generated by the
latent variable model instead of being initialized from the
observed examples. (2) MCMC teaching of the latent variable
model: The learning of the latent variable model is based
on how the MCMC in (1) changes the initial synthesized
examples generated by the latent variable model, where the
latent variables that generate the initial synthesized examples
are known so that the learning is essentially supervised. Our
experiments show that the cooperative learning algorithm can
learn realistic models of images.

1 Introduction

1.1 Student and teacher nets

We begin with an analogy. A student writes up an initial draft
of a paper. Her advisor then revises it. After that they submit
the revised paper for review. The student then learns from her
advisor’s revision, while the advisor learns from the outside
review. In this analogy, the advisor guides the student, but
the student does most of the work.

This paper is about cooperative learning of two probabilis-
tic generative models of signals such as images. These two
models play the roles of student and teacher as described
above. The first model is an energy-based model (LeCun et
al. 2006) or undirected graphical model or Markov random
field model (Zhu, Wu, and Mumford 1997) that plays the role
of the teacher. The second model is a latent variable model
or directed graphical model that plays the role of the student.
In this paper, we focus on models that are parametrized by
convolutional neural networks (ConvNets or CNNs)(LeCun
et al., 1998; Krizhevsky, Sutskever, and Hinton, 2012), as
illustrated by (1). Specifically, in the latent variable model,
the mapping from the latent variables to the signal is parame-
terized by a top-down ConvNet (Dosovitskiy, Springenberg,

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Brox, 2015). This is the well-known generator network
(Goodfellow et al. 2014). In the energy-based model, the
energy function is parametrized by a bottom-up ConvNet
that maps the signal to the energy (Ngiam et al. 2011), (Xie
et al. 2016). For ease of reference, we call it the descriptor
network, following the terminology of (Zhu 2003).

Bottom-up ConvNet Top-down ConvNet
energy latent variables

⇑ ⇓
signal signal

(a) Descriptor Net (b) Generator Net
(teacher) (student)

(1)

The likelihoods of both models involve intractable inte-
grals, and the gradients of both log-likelihoods involve in-
tractable expectations that have to be approximated by expen-
sive Markov chain Monte Carlo (MCMC). We notice that the
maximum likelihood algorithms for learning the two models
can be interwoven into a cooperative learning algorithm in or-
der to speed up the learning of both models. Each iteration of
the cooperative learning algorithm consists of the following
two steps: (1) Modified contrastive divergence for energy-
based model (descriptor): The learning of the energy-based
model is based on the contrastive divergence (Hinton 2002),
but the finite-step MCMC sampling of the model is initial-
ized from the synthesized examples generated by the latent
variable model instead of being initialized from the observed
examples. Within each iteration of the modified contrastive
divergence, the latent variable model supplies a fresh and
independent batch of synthesized examples to initialize the
MCMC sampling of the energy-based model. (2) MCMC
teaching of the latent variable model (generator): The learn-
ing of the latent variable model is based on how the MCMC
in (1) changes the initial synthesized examples generated by
the latent variable model. That is, the energy-based model
(teacher) distills its knowledge to the latent variable model
(student) via MCMC, and we call it MCMC teaching. In
MCMC teaching, the latent variables that generate the initial
synthesized examples are known so that the learning is essen-
tially supervised. Our experiments show that the cooperative
learning algorithm can learn realistic models of images.

1.2 Motivations, advantages and contributions

The main motivation for our work is that we find it very
challenging to learn the two models separately, when the

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

4292

training images are highly varied. We find it much easier for
the cooperative algorithm to learn realistic models from such
data. Another motivation is to develop an alternative system
to the generative adversarial networks (GAN) (Goodfellow et
al., 2014; Denton et al., 2015; Radford, Metz, and Chintala,
2015), where in our system both models are learned gen-
eratively by maximum likelihood. Our experiences suggest
that the cooperative learning is stable and does not encounter
mode collapsing issue.

The advantages of the cooperative learning versus separate
learning are as follows. (1) The generator (latent variable
model) jump-starts the finite-step MCMC of the descriptor
(energy-based model) by supplying fresh and independent
examples via ancestral sampling in each iteration. Thus the
generator serves as a direct approximate sampler of the de-
scriptor. (2) The generator learns from how the finite-step
MCMC changes the synthesized examples it generates, where
the values of the latent variables are known, thus they do not
need to be inferred (or can be easily inferred), and the learn-
ing is much easier than learning from the observed examples,
for which it is difficult to infer the latent variables. In MCMC
teaching in (2), the generator model seeks to approximate the
descriptor model, so that the modified contrastive divergence
in (1) is close to maximum likelihood. With repeated teaching
by finite-step MCMC in (2), the generator accumulates the
MCMC transitions and reproduces them by direct ancestral
sampling.

The contributions of our work are as follows. We propose
a cooperative learning algorithm to train the energy-based
model (descriptor) and the latent variable model (generator)
simultaneously. Our work connects the undirected model (de-
scriptor) and the directed model (generator). It also connects
the ancestral sampling (generator) and the MCMC sampling
(descriptor).

2 Related work
Our work is related to the contrastive divergence (Hinton
2002) for training the energy-based model. The contrastive
divergence initializes the finite-step MCMC sampling from
the observed examples. Our method initializes the MCMC
sampling from the generator that seeks to approximate the
descriptor, so that the learning is closer to maximum likeli-
hood.

Our work is similar to the recent work of (Kim and Bengio
2016). In fact, the settings of the two nets are the same. In
(Kim and Bengio 2016), the generator learns from the de-
scriptor by minimizing the Kullback-Leibler divergence from
the generator to the descriptor, which can be decomposed
into an energy term and an entropy term. In our work, the
descriptor teaches the generator via MCMC teaching. Our
method does not need to approximate the intractable entropy
term.

Another method for training the generator network is
variational auto-encoder (VAE) (Kingma and Welling 2014;
Rezende, Mohamed, and Wierstra 2014; Mnih and Gregor
2014), which learns an inferential or recognition network.
The MCMC teaching in our work avoids the challenging
problem of inferring the latent variables from the observed
examples. Whereas the learned inferential model in VAE

serves as a direct and approximate sampler of the posterior
distribution of the latent variables, in the cooperative learning,
the learned generator model serves as a direct and approxi-
mate sampler of the energy-based descriptor model.

The connection between the descriptor net and the discrim-
inator net has been explored by (Xie et al. 2016), where the
descriptor can be derived from the discriminator.

Our work appears to be related to knowledge distilling
(Hinton, Vinyals, and Dean 2015). In our work, the descrip-
tor distills its knowledge to the generator through MCMC
teaching, but the distillation is done in an on-line fashion.

Our work bears similarity to the co-training method of
(Blum and Mitchell 1998). The two learners in our work are
of different directions, and they feed each other the synthetic
data, instead of class labels.

3 Two models and their maximum likelihood

learning algorithms

(pθ, qα) notation. Let Y be the D-dimensional signal, such
as an image. We use p(Y ; θ) or pθ to denote the probability
distribution of the descriptor net (energy-based model), where
θ denotes the parameters of the bottom-up ConvNet. We use
q(Y ;α) or qα to denote the probability distribution of the
generator net (latent variable model), where α denotes the
parameters of the top-down ConvNet.

3.1 Energy-based model and maximum likelihood
learning

The descriptor model is in the form of exponential tilting of
a reference distribution (Xie et al. 2016):

p(Y ; θ) =
1

Z(θ)
exp [f(Y ; θ)] p0(Y), (2)

where p0(Y) is the reference distribution such as Gaus-
sian white noise p0(Y) ∝ exp

(−‖Y ‖2/2s2) (or a uniform
distribution), f(Y ; θ) is defined by a bottom-up ConvNet
whose parameters are denoted by θ. The energy function is
E(Y ; θ) = ‖Y ‖2/(2s2) − f(Y ; θ). See the diagram in (1).
Z(θ) =

∫
exp [f(Y ; θ)] p0(Y)dY is the normalizing con-

stant that is analytically intractable.
Suppose we observe training examples {Yi, i = 1, ..., n}

from an unknown data distribution Pdata(Y). The maximum
likelihood learning seeks to maximize the log-likelihood
function Lp(θ) = 1

n

∑n
i=1 log p(Yi; θ). If the sample size

n is large, the maximum likelihood estimator minimizes
KL(Pdata|pθ), the Kullback-Leibler divergence from the
data distribution Pdata to the model distribution pθ. The gra-
dient of Lp(θ) is

L′
p(θ) =

1

n

n∑
i=1

∂

∂θ
f(Yi; θ)− Eθ

[
∂

∂θ
f(Y ; θ)

]
, (3)

where Eθ denotes the expectation with respect to p(Y ; θ).
The key to the above identity is that ∂

∂θ logZ(θ) =

Eθ[
∂
∂θf(Y ; θ)].

The expectation in equation (3) is analytically intractable
and has to be approximated by MCMC, such as Langevin

4293

dynamics, which iterates the following step:

Yτ+1 = Yτ − δ2

2

[
Yτ

s2
− ∂

∂Y
f(Yτ ; θ)

]
+ δUτ , (4)

where τ indexes the time steps of the Langevin dynamics, δ is
the step size, and Uτ ∼ N(0, ID) is the Gaussian white noise
term. A Metropolis-Hastings step can be added to correct for
the finite δ.

We can run ñ parallel chains of Langevin dynamics ac-
cording to (4) to obtain the synthesized examples {Ỹi, i =
1, ..., ñ}. The Monte Carlo approximation to L′

p(θ) is

L′
p(θ) ≈

1

n

n∑
i=1

∂

∂θ
f(Yi; θ)− 1

ñ

ñ∑
i=1

∂

∂θ
f(Ỹi; θ), (5)

which is used to update θ. We call the learning algorithm for
the descriptor model the algorithm D.

Algorithm D (Xie et al. 2016) iterates the following two
steps after initializing θ and {Ỹi, i = 1, ..., ñ}. Step D1: Run
lp steps of Langevin from the current {Ỹi} according to (4).
Step D2: update θ(t+1) = θ(t) + γtL

′
p(θ

(t)) with learning
rate γt. The convergence of such an algorithm is studied by
(Younes 1999).

Because the parameter θ keeps changing in the learning
process, the energy landscape and the local energy minima
also keep changing. This may help the Langevin dynamics
avoid being trapped by the local energy minima.

Contrastive divergence. If we initialize the synthesized
examples {Ỹi} from the observed examples {Yi}, the learn-
ing algorithm becomes persistent contrastive divergence
(Tieleman 2008).

3.2 Latent variable model and maximum
likelihood learning

The generator net (Goodfellow et al. 2014) has its root in
factor analysis in statistics and in latent variable model or
directed graphical model in machine learning. The generator
net seeks to explain the signal Y of dimension D by a vector
of latent variables X of dimension d, and usually d � D.
The model is of the following form:

X ∼ N(0, Id), Y = g(X;α) + ε, ε ∼ N(0, σ2ID). (6)

g(X;α) is a top-down ConvNet defined by the parameters α.
The ConvNet g maps the latent variables X to the signal Y .
See the diagram in (1).

Model (6) is a directed graphical model, where Y can be
readily generated by first sampling X from its known prior
distribution N(0, Id) and then transforming X to Y via g. The
joint density of model (6) is q(X,Y ;α) = q(X)q(Y |X;α),
and

log q(X,Y ;α) = − 1

2σ2
‖Y − g(X;α)‖2

−1

2
‖X‖2 + constant, (7)

where the constant term is independent of X , Y and α. The
marginal density is obtained by integrating out the latent

variables X , i.e., q(Y ;α) =
∫
q(X,Y ;α)dX , which is ana-

lytically intractable. The inference of X given Y is based on
the posterior density q(X|Y ;α) = q(X,Y ;α)/q(Y ;α) ∝
q(X,Y ;α) as a function of X .

For the training data {Yi, i = 1, ..., n}, the generator net
can be trained by maximizing the log-likelihood Lq(α) =
1
n

∑n
i=1 log q(Yi;α). For large sample, the learned α mini-

mizes the Kullback-Leibler divergence KL(Pdata|qα) from
the data distribution Pdata to the model distribution qα. The
gradient of Lq(α) is obtained according to the following
identity

∂

∂α
log q(Y ;α) =

1

q(Y ;α)

∂

∂α

∫
q(Y,X;α)dX

= Eq(X|Y ;α)

[
∂

∂α
log q(X,Y ;α)

]
,(8)

which underlies the EM algorithm. The usefulness of identify
(8) lies in the fact that the derivative of the complete-data
log-likelihood log q(X,Y ;α) on the right hand side can be
obtained in closed form. However, the expectation in (8)
is analytically intractable, and has to be approximated by
MCMC that samples from the posterior q(X|Y ;α), such as
Langevin dynamics, which iterates

Xτ+1 = Xτ +
δ2

2

∂

∂X
log q(Xτ , Y ;α) + δUτ , (9)

where Uτ ∼ N(0, Id). With Xi sampled from q(Xi | Yi, α)
for each observation Yi, the Monte Carlo approximation to
L′
q(α) is

L′
q(α) ≈ 1

n

n∑
i=1

∂

∂α
log q(Xi, Yi;α)

=
1

n

n∑
i=1

1

σ2
(Yi − g(Xi;α))

∂

∂α
g(Xi;α),(10)

which is used to update α. We call the learning algorithm for
the generator model the algorithm G.

Algorithm G (Han et al. 2017) iterates the following two
steps after initializing α and {Xi, i = 1, ..., n}. Step G1: run
lq steps of Langevin from the current {Xi} according to (9).
Step G2: update α(t+1) = α(t) + γtL

′
q(α

(t)) with learning
rate γt. The convergence of such an algorithm is studied by
(Younes 1999).

4 Cooperative learning

4.1 Learning algorithm

In Algorithms D and G, both steps D1 and G1 require MCMC,
which can be time consuming. We notice that the two algo-
rithms can cooperate with each other to speed up the learning
of both models by jump-starting each other’s MCMC sam-
pling. In the resulting cooperative learning algorithm, the
generator serves as an approximated sampler of the descrip-
tor. Meanwhile the generator seeks to absorb and accumulate
the MCMC transitions for sampling the descriptor in order to
reproduce them by one step direct ancestral sampling.

Specifically, in Step D1, we can initialize the synthe-
sized examples by generating examples from the generator

4294

net. We first generate X̂i ∼ N(0, Id), and then generate
Ŷi = g(X̂i;α) + εi, for i = 1, ..., ñ. If the current genera-
tor qα is close to the current descriptor pθ, then the gener-
ated {Ŷi} should be a good initialization for sampling from
the descriptor net, i.e., starting from the {Ŷi, i = 1, ..., ñ},
we run Langevin dynamics in Step D1 for lp steps to get
{Ỹi, i = 1, ..., ñ}, which are revised versions of {Ŷi}. These
{Ỹi} can be used as the synthesized examples from the de-
scriptor pθ. We can then update θ according to Step D2 of
Algorithm D. It is important to notice that in each learning
iteration, the generator supplies a fresh independent batch
of {Ŷi, i = 1, ..., ñ} to initialize the MCMC of the descrip-
tor. This amounts to running infinite many parallel chains of
MCMC for sampling from the descriptor.

In order to update α of the generator qα, we treat the
{Ỹi, i = 1, ..., ñ} produced by the above Step D1 as the train-
ing data for the generator. Since these {Ỹi} are obtained by
the finite-step MCMC initialized from the {Ŷi, i = 1, ..., ñ}
produced by the generator net with known latent variables
{X̂i, i = 1, ..., ñ}, we can update α by learning from
{(Ỹi, X̂i), i = 1, ..., ñ}, which is a supervised learning prob-
lem, or more specifically, a non-linear regression of Ỹi on X̂i.
At α(t), the known X̂i generates and thus reconstructs the
initial example Ŷi. After updating α, we want X̂i to recon-
struct the revised example Ỹi. That is, we revise α to absorb
the revision from Ŷi to Ỹi, so that the generator qα shifts
its density from {Ŷi} to {Ỹi}, and reproduces the effect of
all the past MCMC transitions by one step direct ancestral
sampling.

The left diagram in (11) illustrates the basic idea.

X̂i

Ŷi Ỹi

α(t) α(t+1)

θ(t)

X̂i Xi

Ŷi Ỹi

α(t)

α(t) α(t+1)

θ(t) (11)
In the two diagrams in (11), the double-line arrows indicate
generation and reconstruction by the generator qα, while the
dashed-line arrows indicate Langevin dynamics in the two
nets. The diagram on the right in (11) illustrates a more rigor-
ous method, where we initialize the Langevin dynamics for
infering {Xi, i = 1, ..., ñ} in Step G1 from {X̂i}, and then
update α in Step G2 based on {(Ỹi, Xi), i = 1, ..., ñ}. Since
X̂i is expected to be close to the posterior mode of Xi, the
convergence of the Langevin inference initialized from X̂i

should be very fast. If the residual variance σ2 of the genera-
tor model is assumed to be small, then the Langevin inference
process is close to gradient descent on the reconstruction error.
The diagram on the right shows how the two nets jump-start
each other’s MCMC. The generator jump-starts the Langevin
dynamics for sampling from the descriptor, while the descrip-
tor jump-starts the Langevin dynamics for inferring the latent
variables of the generator. It is important to notice that by let-
ting the generator learn from the synthesized data, the latent

variables are essentially known, so that the learning becomes
a much simpler supervised learning problem.

Algorithm 1 CoopNets Algorithm
Input:

1: (1) training examples {Yi, i = 1, ..., n}, (2) numbers of
Langevin steps lp ad lq , (3) number of learning iterations
T

Output:
2: (1) estimated parameters θ and α, (2) synthetic examples

{Ŷi, Ỹi, i = 1, ..., ñ}

3: Let t ← 0, initialize θ and α.
4: repeat

5: Step G0: For i = 1, ..., ñ, generate X̂i ∼ N(0, Id),
and generate Ŷi = g(X̂i;α

(t)) + εi.
6: Step D1: For i = 1, ..., ñ, starting from Ŷi, Run lp

steps of Langevin revision dynamics to obtain Ỹi, each
step following equation (4).

7: Step G1: Treat the current {Ỹi, i = 1, ..., ñ} as the
training data, for each i, infer Xi = X̂i. Or more
rigorously, starting from Xi = X̂i, run lq steps of
Langevin inference dynamics to update Xi, each step
following equation (9).

8: Step D2: Update θ(t+1) = θ(t) + γtL
′
p(θ

(t)), where
L′
p(θ

(t)) is computed according to (5).
9: Step G2: Update α(t+1) = α(t) + γtLq

′(α(t)), where
Lq

′(α(t)) is computed according to equation (10), ex-
cept that Yi is replaced by Ỹi, and n by ñ. We can
run multiple iterations of Step G2 to learn from and
reconstruct {Ỹi}, and to allow the generator to catch
up with the descriptor.

10: Let t ← t+ 1
11: until t = T

Algorithm 1 describes the cooperative learning algorithm
that we call the CoopNets algorithm for ease of reference.
It interweaves Algorithm D and Algorithm G.

4.2 Theoretical understanding

In the CoopNets algorithm, Steps G0, D1, and D2 are mod-
ified contrastive divergence, and Steps G0, G1, and G2 are
MCMC teaching.

(1) Modified contrastive divergence for the descriptor
(energy-based model). In the traditional contrastive diver-
gence (Hinton 2002), Ŷi in Step D1 is taken to be the observed
Yi. In cooperative learning, Ŷi is generated by q(Y ;α(t)). Let
Mθ be the Markov transition kernel of lp steps of Langevin
dynamics that samples pθ. For any distribution p and any
Markov transition kernel M, let Mp be the marginal distri-
bution obtained by running the Markov transition M from
p. Then similar to the traditional contrastive divergence, the
learning gradient of the descriptor θ at iteration t is the gra-
dient of KL(Pdata|pθ)−KL(Mθ(t)qα(t) |pθ) with respect to
θ. In the traditional contrastive divergence, Pdata takes the
place of qα(t) in the second KL-divergence.

4295

Markov
transition

projection

Figure 1: The MCMC teaching of the generator alternates
between Markov transition and projection. The family of the
generator models G is illustrated by the black curve. Each
distribution is illustrated by a point.

(2) MCMC teaching of the generator (latent variable
model). The learning gradient of the generator α in the
right diagram of (11) is the gradient of KL(Mθ(t)qα(t) |qα)
with respect to α. Here p(t+1) = Mθ(t)qα(t) takes the
place of Pdata as the data to train the generator model. It
is much easier to minimize KL(Mθ(t)qα(t) |qα) than mini-
mizing KL(Pdata|qα) because the latent variables are essen-
tially known in the former, so that the learning is supervised.
The MCMC teaching alternates between Markov transition
from qα(t) to p(t+1), and projection from p(t+1) to qα(t+1) , as
illustrated by Figure 1.

Assume the learning algorithm converges to a fixed point
(θ̂, α̂), then

θ̂ = argmin
θ

[
KL(Pdata|pθ)−KL(Mθ̂qα̂|pθ)

]
,(12)

α̂ = argmin
α

KL(Mθ̂qα̂|qα). (13)

(assuming θ̂ and α̂ are local minima). Equation (13) tells us
that qα̂ seeks to be the stationary distribution of Mθ̂, and
the stationary distribution is nothing but pθ̂. In the idealized
scenario where the generator qα has infinite capacity, so that
minα KL(Mθ̂qα̂|qα) = 0, then qα̂ = Mθ̂qα̂, so that qα̂ is
the stationary distribution of Mθ̂, which is pθ̂, thus qα̂ = pθ̂.
As a consequence, the second divergence in (12) vanishes,
i.e., KL(Mθ̂qα̂|pθ̂) = 0, so that θ̂ becomes the maximum
likelihood estimate that minimizes the first KL-divergence
KL(Pdata|pθ).

To further understand the dynamics of MCMC teach-
ing in this idealized scenario, suppose the descriptor pθ
is fixed, and it teaches the generator qα by MCMC teach-
ing such that α(t+1) = argminα KL(Mθqα(t) |qα), then
qα(t+1) = Mθqα(t) , so that qα(t) = Mt

θqα(0) → pθ, i.e.,
qα accumulates the MCMC transitions and convergences to
the stationary distribution pθ.

As is the case with the traditional contrastive divergence,
the analysis of the finite capacity situation can be rather
involved. We leave it to future investigation, while relying on
empirical evaluations in this paper.

(Kim and Bengio 2016) learned the generator model by gra-
dient descent on KL(qα|pθ(t)) over α. The objective function
is KL(qα|pθ(t)) = Eqα [log q(Y ;α)] − Eqα [log p(Y ; θ(t))],
where the first term is the negative entropy that is intractable,
and the second term is the expected energy that is tractable.

Figure 2: Generating texture patterns. Each row displays
one texture experiment, where the first image is the training
image, and the rest are 3 of the images generated by the
CoopNets algorithm.

Our MCMC teaching of the generator is consistent with the
learning objective KL(qα|pθ(t)), because

KL(p(t+1)|pθ(t)) ≤ KL(qα(t) |pθ(t)). (14)

In fact, KL(p(t+1)|pθ(t)) → 0 monotonically as lp → ∞ due
to the second law of thermodynamics (Cover and Thomas
2012). The reduction of the Kullback-Leibler divergence in
(14) in the transition from qα(t) to p(t+1) and the projection
from p(t+1) to qα(t+1) in the MCMC teaching are consistent
with the learning objective of reducing KL(qα|pθ(t)) in (Kim
and Bengio 2016). But the Monte Carlo implementation of
M in our work avoids the need to approximate the intractable
entropy term.

For MCMC teaching, the right diagram in (11) leads
to the update α(t+1) = argminα KL(Mθqα(t) |qα), where
{Ỹi} ∼ Mθqα(t) serve as the training data, and the latent
vector Xi is inferred by Langevin dynamics initialized from
X̂i. The left diagram in (11) can be viewed as a simpli-
fied approximation to the right diagram by fixing the la-
tent vector at X̂i. It minimizes a variational upper bound
KL(Mθqα(t) |qα)+KL(q(X̂i|Ỹi, α

(t))|q(Xi|Ỹi, α)). Our ex-
periments suggest that the variational learning step in the left
diagram works as well as the maximum likelihood learning

4296

(a) Training images.

(b) Synthesized images.

Figure 3: Images generated by CoopNets learned from 10
Imagenet scene categories. The training set consists of 1100
images randomly sampled from each category. The total num-
ber of training images is 11,000.

Figure 4: Interpolation between latent vectors of the images
on the two ends.

step in the right diagram.

5 Experiments

We use the MatConvNet of (Vedaldi and Lenc 2015) for
coding. For the descriptor net, we adopt the structure of
(Xie et al. 2016), where the bottom-up network consists of
multiple layers of convolution by linear filtering, ReLU non-
linearity, and down-sampling. We adopt the structure of the
generator network of (Radford, Metz, and Chintala, 2015;
Dosovitskiy, Springenberg, and Brox, 2015), where the top-
down network consists of multiple layers of deconvolution by
linear superposition, ReLU non-linearity, and up-sampling,
with tanh non-linearity at the bottom-layer (Radford, Metz,
and Chintala 2015) to make the signals fall within [−1, 1]. In
our experiments, we set lq = 0 and infer Xi = X̂i, i.e., we
follow the left diagram in (11). We have also experimented
with lq > 0, i.e., the right diagram, but did not observe
significant improvement.

5.1 Experiment on texture synthesis

We first conduct qualitative experiments on generating tex-
ture patterns. We learn a separate model from each texture
image. The training images are collected from the Internet,
and resized to 224 × 224. The synthesized images are of the
same size as the training images.

We use a 3-layer descriptor net, where the first layer has
100 15 × 15 filters with sub-sampling rate of 3 pixels, the
second layer has 70 9 × 9 filters with sub-sampling of 1, and
the third layer has 30 7 × 7 filters with sub-sampling of 1.
We fix the standard deviation of the reference distribution of
the descriptor net to be s = 0.012. We use lp = 20 or 30
steps of Langevin revision dynamics within each learning
iteration, and the Langevin step size is set at 0.003. The
learning rate is 0.01. Starting from 7 × 7 latent factors, the
generator net has 5 layers of deconvolution with 5 × 5 kernels
(basis functions), with an up-sampling factor of 2 at each
layer. The standard deviation of the noise vector is σ = 0.3.
The learning rate is 10−6. The number of generator learning
steps is 1 at each cooperative learning iteration. We run 104

cooperative learning iterations to train the models. Figure 2
displays the results of generating texture patterns. For each
category, the first image is the training image, and the rest
are 3 of the images generated by the learning algorithm. We
run ñ = 6 parallel chains for the first example, where images
from 3 of them are presented. We run a single chain for
the rest of the examples, where the synthesized images are
generated at different iterations. Even though we run a single
chain, it is as if we run an infinite number of chains, because
in each learning iteration, we run Langevin dynamics from a
new image sampled from the generator.

5.2 Experiment on scene and object synthesis

We conduct experiments on synthesizing images of categories
from Imagenet ILSVRC2012 dataset (Deng et al. 2009). We
adopt a 4-layer descriptor net. The first layer has 64 5 × 5
filters with sub-sampling of 2 pixels, the second layers has
128 3× 3 filters with sub-sampling of 2, the third layer has
256 3× 3 filters with sub-sampling of 1, and the final layer is

4297

Table 1: Inception scores of different methods on learning from 10 Imagenet scene categories. n is the number of training images
randomly sampled from each category.

n = 50 n = 100 n = 300 n = 500 n = 700 n = 900 n = 1100
CoopNets 2.66±.13 3.04±.13 3.41±.13 3.48±.08 3.59±.11 3.65±.07 3.79±.15

DCGAN (Radford, Metz, and Chintala 2015) 2.26±.16 2.50±.15 3.16±.15 3.05±.12 3.13±.09 3.34±.05 3.47±.06
EBGAN (Zhao, Mathieu, and LeCun 2016) 2.23±.17 2.40±.14 2.62±.08 2.46±.09 2.65±.04 2.64±.04 2.75±.08

W-GAN (Arjovsky, Chintala, and Bottou 2017) 1.80±.09 2.19±.12 2.34±.06 2.62±.08 2.86±.10 2.88±.07 3.14±.06
VAE (Kingma and Welling 2014) 1.62±.09 1.63±.06 1.65±.05 1.73±.04 1.67±.03 1.72±.02 1.73±.02

InfoGAN (Chen et al. 2016) 2.21±.04 1.73±.01 2.15±.03 2.42±.05 2.47±.05 2.29±.03 2.08±.04
DDGM (Kim and Bengio 2016) 2.65±.17 1.05±.03 3.27±.14 3.42±.09 3.47±.13 3.41±.08 3.34±.11
Algorithm G (Han et al. 2017) 1.72±.07 1.94±.09 2.32±.09 2.40±.06 2.45±.05 2.54±.05 2.61±.06
Persistent CD (Tieleman 2008) 1.30±.08 1.94±.03 1.80±.02 1.53±.02 1.45±.04 1.35±.02 1.51±.02

Table 2: Comparison of recovery performances of different methods in 3 experiments
task CoopNets DCGAN MRF-�1 MRF-�2 inter-1 inter-2 inter-3 inter-4 inter-5
M30 0.115 0.211 0.132 0.134 0.120 0.120 0.265 0.120 0.120

error M40 0.124 0.212 0.148 0.149 0.135 0.135 0.314 0.135 0.135
M50 0.136 0.214 0.178 0.179 0.170 0.166 0.353 0.164 0.164
M30 16.893 12.116 15.739 15.692 16.203 16.635 9.524 16.665 16.648

PSNR M40 16.098 11.984 14.834 14.785 15.065 15.644 8.178 15.698 15.688
M50 15.105 11.890 13.313 13.309 13.220 14.009 7.327 14.164 14.161

100 300 500 700 1000
number of training images

0

0.05

0.1

0.15

av
er

ag
e

pr
ob

ab
ili

ty

CoopNets
DCGAN
VAE
Algorithm G

100 300 500 700 1000
number of training images

0.5

0.6

0.7

0.8

0.9

1

av
er

ag
e

to
p5

 e
rr

or

CoopNets
DCGAN
VAE
Algorithm G

100 300 500 700 1000
number of training images

0.1

0.2

0.3

0.4

0.5

0.6

0.7

av
er

ag
e

st
ru

ct
ua

l s
im

ila
rit

y CoopNets
DCGAN
VAE
Algorithm G

Figure 5: Left: Average softmax class probability on single
Imagenet category versus the number of training images.
Middle: Top 5 classification error. Right: Average pairwise
structural similarity.

a fully connected layer with 100 channels. We set the number
of Langevin dynamics steps in each learning iteration to
lp=10 and the step size to 0.002. The learning rate is 0.07. The
number of learning iterations is about 1, 000. After learning
the models, we synthesize images using the learned models.
As in the CoopNet algorithm, we sample from the learned
descriptor model by running 10 to 50 steps of Langevin
dynamics initialized from the examples generated by the
learned generator model.

In our first experiment, we learn from images that are ran-
domly sampled from 10 Imagenet scene categories (alp, cliff
drop, cliff dwelling, geyser, lakeside, promontory, sandbar,
seashore, valley, and volcano). We conduct 7 runs. The num-
bers of images sampled from each category are 50, 100, 300,
500, 700, 900, and 1100 respectively in these 7 runs. Figure 3
displays the observed examples randomly sampled from the
training set, and the synthesized examples generated by the
CoopNets, where the number of training images from each
category is 1100. The synthesized examples are randomly
sampled from the learned models without cheery picking.

Figure 4 shows 4 examples of interpolating between two
latent X vectors. For each row, the images at the two ends are

generated from X vectors randomly sampled from N(0, Id).
Each image in the middle is obtained by first interpolating
the X vectors of the two end images, and then generating the
image using the generator, followed by 10 steps of Langevin
dynamics. This experiment shows that we learn smooth gen-
erator model that traces the manifold of the data distribution.

We evaluate the synthesis quality by the Inception score
(Salimans et al. 2016). Table 1 displays the Inception scores
of the CoopNets, DCGAN (Radford, Metz, and Chintala
2015), EBGAN (Zhao, Mathieu, and LeCun 2016), Wasser-
stein GAN (Arjovsky, Chintala, and Bottou 2017), InfoGAN
(Chen et al. 2016), VAE (Kingma and Welling 2014), DDGM
(Kim and Bengio 2016), and separate training by Algorithm
G and Algorithm D. For Algorithm D, we initialize the synthe-
sized examples from the observed examples, so it is persistent
contrastive divergence (Tieleman 2008).

In our second experiment, we learn from images randomly
sampled from a single Imagenet object category. We then
evaluate the synthesis quality using three criteria: (1) average
softmax class probability that the Inception network (Szegedy
et al. 2016) assigns to the synthesized images for the under-
lying category. (2) top-5 classification error by the Inception
network, i.e., the probability that the underlying category
does not belong to the categories with the top 5 softmax prob-
abilities. (3) Average pairwise structural similarity (Wang
et al. 2004) between two randomly sampled synthesized im-
ages. We conduct this experiment on 5 Imagenet categories:
lemon, lifeboat, strawberry, school bus and zebra. Figure 5
displays the average results for the 5 categories. It can be seen
that CoopNets generates images with higher softmax class
probability, lower classification error, and higher variability
than DCGAN and VAE. The advantage may be due to the
fact that both models in CoopNets are learned generatively
by maximum likelihood. Our experiences suggest that the
CoopNets learning method is stable, and does not encounter

4298

(a) Original images

(b) Synthesized images

Figure 6: Generating forest road images. The category is
from MIT places205 dataset.

mode collapsing issue.

5.3 Experiment on pattern completion

We conduct an experiment on learning from training images
of human faces, and then testing the learned model on com-
pleting the occluded testing images. The structure of the
generator network is the same as in (Radford, Metz, and
Chintala, 2015; Dosovitskiy, Springenberg, and Brox, 2015).
We adopt a 4-layer descriptor net. The first layer has 96 5× 5
filters with sub-sampling of 2, the second layers has 128
5× 5 filters with sub-sampling of 2, the third layer has 256
5× 5 filters with sub-sampling of 2, and the final layer is a
fully connected layer with 50 channels. We use lp=10 steps
of Langevin dynamics within each learning iteration, and
the Langevin step size is set at 0.002. The learning rate is
0.07. The training data are 10, 000 human faces randomly
sampled from CelebA dataset (Liu et al. 2015). We run 600
cooperative learning iterations.

To quantitatively test whether we have learned a good gen-
erator net g(X;α) even though it has never seen the training
images directly in the training stage, we apply it to the task
of recovering the occluded pixels of testing images. For each
occluded testing image Y , we use Step G1 of Algorithm G to
infer the latent vector X . The only change is with respect to
the term ‖Y − g(X;α)‖2, where the sum of squares is over
all the observed pixels of Y in back-propagation computa-
tion. We run 1000 Langevin steps for inferring X , initializing
X from N(0, Id). After inferring X , the completed image
g(X;α) is automatically obtained. We design 3 experiments,
where we randomly place a 30 × 30, 40 × 40, or 50 × 50
mask on each 64×64 testing image. These 3 experiments are
denoted by M30, M40, and M50 respectively (M for mask).

(a) Original images

(b) Synthesized images

Figure 7: Generating hotel room images. The category is
from MIT places205 dataset.

We report the recovery errors and compare our method
with 7 different image inpainting methods as well as the
DCGAN (Radford, Metz, and Chintala 2015). For DCGAN,
we use the parameter setting in (Radford, Metz, and Chintala
2015) with the number of learning iterations increased to 600.
We use the same 10, 000 training images to learn DCGAN.
After the model is learned, we keep the generator and use
the same method as ours to infer the latent vector X , and
recover the unobserved pixels. In the 7 inpainting methods,
Methods MRF-
1 and MRF-
2 are based on Markov random
field prior where the nearest neighbor potential terms are

1 and
2 differences respectively. Methods inter-1 to 5 are
interpolation methods. Please refer to (D’Errico 2004) for
details.

Table 2 displays the recovery errors of the 3 experiments,
where the error is measured by per pixel difference (relative
to the range of pixel values) between the original image and
the recovered image on the occluded region, averaged over
1,000 testing images. We also measure the error by PSNR.
Figure 8 (a) displays some recovery results by our method.
The first row shows the original images as the ground truth.
The second row displays the testing images with occluded
pixels. The third row displays the recovered images by the
learned generator net.

We also apply the same method to MIT forest road cat-
egory and hotel room category (Zhou et al. 2014). Figures
6 and 7 display randomly sampled training images and syn-
thesized images. Figure 8 (b) and (c) display examples of
pattern completion.

4299

(a) face

(b) forest road

(c) hotel room

Figure 8: Pattern completion. First row: original images. Sec-
ond row: occluded images. Third row: recovered images by
CoopNets. (a) face. (b) forest road. (c) hotel room

6 Conclusion

This paper proposes a cooperative learning method to train
both the energy-based model and the latent variable model
simultaneously, and demonstrates its performances by a vari-
ety of experiments. Because both models in our method are
learned generatively, our learning algorithm is stable, and can
be statistically efficient, especially when learning from small
or moderate training data.

The most unique feature of our system is that the two net-
works feed each other the synthesized data in the learning
process, including initial, revised, and reconstructed synthe-
sized data. Another unique feature is that the learning process
interweaves the existing maximum likelihood learning algo-
rithms for the two networks. A third unique feature is that
the MCMC transitions for the descriptor are memorized and
reproduced by the generator via ancestral sampling. Power-
ing the MCMC sampling of the descriptor model in (Lu, Zhu,
and Wu, 2016; Xie et al., 2016) is a main motivation of this
paper, with the bonus of turning the unsupervised learning of
the generator (Han et al. 2017) into supervised learning.

Project page

The code and more results can be found at http://www.stat.
ucla.edu/~ywu/CoopNets/main.html

Acknowledgment

We acknowledge Dr. Song-Chun Zhu’s important contribu-
tions to the work presented in this paper.

We thank a reviewer for his or her insightful comments.

We thank Hansheng Jiang for her work on this project as a
summer visiting student. We thank Tengyu Liu and Zilong
Zheng for assistance with the inception score comparison
experiments.

The work is supported by NSF DMS 1310391, DARPA
SIMPLEX N66001-15-C-4035, ONR MURI N00014-16-1-
2007, and DARPA ARO W911NF-16-1-0579.

References

Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
gan. arXiv preprint arXiv:1701.07875.
Blum, A., and Mitchell, T. 1998. Combining labeled and un-
labeled data with co-training. In Proceedings of the eleventh
annual conference on Computational learning theory, 92–
100. ACM.
Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever,
I.; and Abbeel, P. 2016. Infogan: Interpretable representation
learning by information maximizing generative adversarial
nets. In Advances in Neural Information Processing Systems,
2172–2180.
Cover, T. M., and Thomas, J. A. 2012. Elements of informa-
tion theory. John Wiley & Sons.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-Fei,
L. 2009. Imagenet: A large-scale hierarchical image database.
In IEEE International Conference on Computer Vision and
Pattern Recognition, 248–255.
Denton, E. L.; Chintala, S.; Fergus, R.; et al. 2015. Deep gen-
erative image models using a laplacian pyramid of adversarial
networks. In Advances in Neural Information Processing
Systems, 1486–1494.
D’Errico, J. 2004. Interpolation inpainting. In https:
//www.mathworks.com/matlabcentral/fileexchange/4551-
inpaint-nans.
Dosovitskiy, E.; Springenberg, J. T.; and Brox, T. 2015.
Learning to generate chairs with convolutional neural net-
works. In IEEE International Conference on Computer Vision
and Pattern Recognition.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014.
Generative adversarial nets. In Advances in Neural Informa-
tion Processing Systems, 2672–2680.
Han, T.; Lu, Y.; Zhu, S.-C.; and Wu, Y. N. 2017. Alternat-
ing back-propagation for generator network. In 31st AAAI
Conference on Artificial Intelligence.
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531.
Hinton, G. E. 2002. Training products of experts by minimiz-
ing contrastive divergence. Neural Computation 14(8):1771–
1800.
Kim, T., and Bengio, Y. 2016. Deep directed generative mod-
els with energy-based probability estimation. arXiv preprint
arXiv:1606.03439.
Kingma, D. P., and Welling, M. 2014. Auto-encoding varia-
tional bayes. ICLR.

4300

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Ima-
genet classification with deep convolutional neural networks.
In NIPS, 1097–1105.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.
LeCun, Y.; Chopra, S.; Hadsell, R.; Ranzato, M.; and Huang,
F. J. 2006. A tutorial on energy-based learning. In Predicting
Structured Data. MIT Press.
Liu, Z.; Luo, P.; Wang, X.; and Tang, X. 2015. Deep learn-
ing face attributes in the wild. In Proceedings of the IEEE
International Conference on Computer Vision, 3730–3738.
Lu, Y.; Zhu, S.-C.; and Wu, Y. N. 2016. Learning FRAME
models using CNN filters. In Thirtieth AAAI Conference on
Artificial Intelligence.
Mnih, A., and Gregor, K. 2014. Neural variational inference
and learning in belief networks. In International Conference
on Machine Learning.
Ngiam, J.; Chen, Z.; Koh, P. W.; and Ng, A. Y. 2011. Learning
deep energy models. In International Conference on Machine
Learning.
Radford, A.; Metz, L.; and Chintala, S. 2015. Unsupervised
representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434.
Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014. Stochas-
tic backpropagation and approximate inference in deep gener-
ative models. In Jebara, T., and Xing, E. P., eds., International
Conference on Machine Learning, 1278–1286.
Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Rad-
ford, A.; and Chen, X. 2016. Improved techniques for
training gans. In Advances in Neural Information Processing
Systems, 2226–2234.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna,
Z. 2016. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2818–2826.
Tieleman, T. 2008. Training restricted boltzmann machines
using approximations to the likelihood gradient. In Pro-
ceedings of the 25th international conference on Machine
learning, 1064–1071. ACM.
Vedaldi, A., and Lenc, K. 2015. Matconvnet – convolutional
neural networks for matlab. In Proceeding of the ACM Int.
Conf. on Multimedia.
Wang, Z.; Bovik, A. C.; Sheikh, H. R.; and Simoncelli, E. P.
2004. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing
13(4):600–612.
Xie, J.; Lu, Y.; Zhu, S.-C.; and Wu, Y. N. 2016. A theory of
generative convnet. In International Conference on Machine
Learning.
Younes, L. 1999. On the convergence of markovian stochastic
algorithms with rapidly decreasing ergodicity rates. Stochas-
tics: An International Journal of Probability and Stochastic
Processes 65(3-4):177–228.

Zhao, J.; Mathieu, M.; and LeCun, Y. 2016. Energy-
based generative adversarial network. arXiv preprint
arXiv:1609.03126.
Zhou, B.; Lapedriza, A.; Xiao, J.; Torralba, A.; and Oliva,
A. 2014. Learning deep features for scene recognition using
places database. In Advances in neural information process-
ing systems, 487–495.
Zhu, S.-C.; Wu, Y. N.; and Mumford, D. 1997. Minimax
entropy principle and its application to texture modeling.
Neural Computation 9(8):1627–1660.
Zhu, S.-C. 2003. Statistical modeling and conceptualization
of visual patterns. IEEE Transactions on Pattern Analysis
and Machine Intelligence 25(6):691–712.

4301

