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Abstract

Regression over a stream of data is challenging due to un-
bounded data size and non-stationary distribution over time.
Typically, a traditional supervised regression model over a
data stream is trained on data instances occurring within a
short time period by assuming a stationary distribution. This
model is later used to predict value of response-variable in
future instances. Over time, the model may degrade in per-
formance due to changes in data distribution among incom-
ing data instances. Updating the model for change adapta-
tion requires true value for every recent data instances, which
is scarce in practice. To overcome this issue, recent studies
have employed techniques that sample fewer instances to be
used for model re-training. Yet, this may introduce sampling
bias that adversely affects the model performance. In this pa-
per, we study the regression problem over data streams in a
novel setting. We consider two independent, yet related, non-
stationary data streams, which are referred to as the source
and the target stream. The target stream continuously gen-
erates data instances whose value of response variable is
unknown. The source stream, however, continuously gener-
ates data instances along with corresponding value for the
response-variable, and has a biased data distribution with re-
spect to the target stream. We refer to the problem of using
a model trained on the biased source stream to predict the
response-variable’s value in data instances occurring on the
target stream as Multistream Regression. In this paper, we de-
scribe a framework for multistream regression that simultane-
ously overcomes distribution bias and detects change in data
distribution represented by the two streams over time using a
Gaussian kernel model. We analyze the theoretical properties
of the proposed approach and empirically evaluate it on both
real-world and synthetic data sets. Importantly, our results in-
dicate superior performance by the framework compared to
other baseline regression methods.

Introduction

Distribution of data generated continuously from a non-
stationary domain may change over time due to vari-
ous internal or external factors. Examples of such non-
stationary domains include financial transactions, telephone
calls, readings from sensor networks, etc. A predictor over
streams of data should adapt to changes in distribution, for
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avoiding performance degradation, by appropriately adjust-
ing its target function. Moreover, traditional supervised pre-
dictors may require storage of all historical data. This is not
practical in a data stream due to limited memory.

Studies in data stream classification (Ikonomovska et al.
2009; Masud et al. 2011) have proposed multiple techniques
that adapt a predictor’s target function to changes in data
distribution over time. This change is referred to as Con-
cept Drift (Gama et al. 2014). In general, a sliding window-
based technique is used to detect a change over time. Ini-
tially, a predictor is trained in a supervised manner, using se-
quential data instances observed within a window of a finite
size. This predictor is used to evaluate the response value
of each new data instance occurring in subsequent windows
along the stream. When a change in data distribution is de-
tected, the target function is re-evaluated using a training set
formed by data instances in the current window. This tech-
nique can be applied to the regression problem as well. How-
ever, such a technique assumes availability of true target val-
ues for all recent data instances. Collecting true values often
require human effort, typically resulting in a costly and time
consuming process. Therefore, these techniques may not be
suitable in real-world scenarios under scarcity of true target
values, where data instances occur at a high velocity.

Instead of obtaining the true target value for each data
instance soon after prediction, active learning based mecha-
nisms selectively sample from recent data instances for truth
extraction (Haque, Khan, and Baron 2016; Fan et al. 2004).
However, a sampling technique may induce bias in sam-
pled data distribution. Such bias can be introduced due to
reasons such as availability and cost of obtaining truth val-
ues. For example, consider the scenario of predicting future
household electricity consumption for optimal distribution.
Data from each household only include the current power
consumption, and not a future estimate. Since it is an ex-
pensive process to require each household to continuously
provide an estimate of future power consumption, there is a
tendency to choose certain households to collect such esti-
mates for monitoring predictor performance and adapting to
distribution changes when necessary. However, such a set of
households may result in under-representative samples for
a good long-term prediction performance in the whole mar-
ket. Therefore, there is a need to correct bias before using
the data for predictor adaptation.
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In this paper, we perform regression in a setting involving
two types of non-stationary data streams. A source stream
continuously generates data instances containing both inde-
pendent and dependent variables, i.e., true response value
for each data instance is known. However, data distribution
of the source stream is biased compared to a target stream,
which generates data instances from the same domain but
whose true response values are unknown. The regression
problem is to predict response values of data instances in the
target stream utilizing information available in the source
stream. This problem is referred to as the Multistream Re-
gression. Importantly, the non-stationary nature of the two
independent streams result in asynchronous concept drifts.

The main challenge in multistream regression is to effec-
tively correct bias between the source and target streams,
whilst continuously address concept drifts along the stream.
Our goal is to efficiently use the available response values in
the source stream for evaluating a target function associated
with data instances in the target stream Naively combining
the two streams into a single stream for employing existing
prediction techniques may not be effective since the com-
bined stream results in an overall data distribution, which
attenuates the effect of individual drifts and adversely af-
fects prediction performance. The main contributions of our
work are as follows. (1) We perform regression in a multi-
stream setting by utilizing the bias-corrected source stream
data to train a prediction model, which is used over tar-
get stream data. (2) We propose an online regression model
which utilizes an efficient technique that simultaneously per-
forms bias correction and asynchronous concept drift detec-
tion between source and target stream data. Particularly, we
utilize a Gaussian kernel model for continuously estimating
density ratios, whose output is used to update our regression
model. (3) We analyze the theoretical properties of our ap-
proach to show its effectiveness in addressing the challenges
of multistream regression setting. (4) We evaluate our tech-
nique on both synthetic and real-world datasets, and com-
pare the results with baseline methods.

The paper is organized as follows. We first discuss related
studies and background in data stream mining and transfer
learning, and then list the set of challenges in the multi-
stream regression problem. Next, we present our framework
to address these challenges, and analyze its theoretical prop-
erties. Finally, we empirically evaluate the framework on nu-
merous data sets and conclude.

Related Work
Concept Drift Most data stream mining approaches in the
recent past have focused on addressing the concept drift
problem on a single stream while performing data classifica-
tion or regression. Essentially, data in the stream is viewed
within a finite time window wherein its distribution is sta-
tionary. Particularly with respect to regression, the target
function is obtained using a training data within a window,
and is used to evaluate future data instances in the stream.
A feedback mechanism using prediction error (Gama et al.
2004) or confidence (Haque et al. 2016) is used to detect
changes in distribution between two different time windows
by detecting change points in the process. An approach by

(Ikonomovska and Gama 2008) constructs regression trees
from streaming data by incrementally adding data items.
(Rosenthal et al. 2009) proposed an ensemble regression ap-
proach for drifting processes. (Nadungodage et al. 2014) in-
vestigated an approach called ESR (Ensemble Stream Re-
gression), which trained an ensemble of regression models
from sequential chunks of instances in a data stream and dy-
namically re-computed the regression function parameters.
Apart from working on a single stream, these methods ex-
plicitly detect change points.

Covariate Shift In traditional machine learning, the distri-
bution of training and test data instances are assumed to be
similar (Zadrozny 2004). Therefore, these techniques cannot
be directly employed when such an assumption is not valid.
Covariate shift or Sampling bias is one such case where the
training data is biased with respect to the test data set, result-
ing in dissimilar data distribution. Instance weighting is a
bias correction technique, where a weight is associated with
each training data by estimating the density ratios between
the test and the training distributions. Concretely, if Ptr and
Pte are the probability density functions of the training and
test distributions respectively, then for each training instance
x, a weight is given by β(x) = Pte(x)

Ptr(x)
. Often, popular tech-

niques such as Kernel Mean Matching (KMM) (Huang et al.
2007), and Kullback-Leibler Importance Estimation Proce-
dure (KLIEP) (Sugiyama et al. 2007) are used in the liter-
ature for directly estimating density ratio (β). These, along
with a recently proposed a robust regression model (Chen
et al. 2016), are known to work well on small datasets. In
the case of multistream setting, (Chandra et al. 2016) intro-
duced a framework that uses KMM for bias correction, with
explicit concept drift detection. This was further enhanced
by using a direct density ratio estimation method in (Haque
et al. 2017), inspired from the change detection technique in
(Kawahara and Sugiyama 2012). However, they are specific
to the classification problem. Instead, we adapt these tech-
niques for regression over a multistream setting using the
Importance Weighted Least Squared (IWLS) method.

Problem Formulation

In this section, we formalize our regression problem and dis-
cuss its challenges.

Problem A data instance is denoted by (x, y), where x ∈
Dv is a vector of v independent features, and y is its corre-
sponding output (or dependent response) value. We assume
that the streams are generated from two independent non-
stationary processes in the same domain (denoted by D).
We observe them through a window, denoted by W, of size
N . In the source stream, both x and y are observed in win-
dow WS . On the contrary, only x can be observed for each
instance in target stream’s window WT . Our goal is to use
(x, y) ∈ S and x ∈ T for learning a target function useful
for predicting y in T .

Challenges Since data is generated continuously from
non-stationary processes, it is impossible to train a regres-
sion model in the traditional manner that require storing the
entire data stream on the memory. Moreover, conditional
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Figure 1: Multistream Regression Overview

probability distribution of data may change over time, i.e.
P (o)(y|x) �= P (t)(y|x), where t > o are observation times.
This is typically known as concept drift. Moreover, in the
multistream setting, such a change may occur independently
over the streams. Existence of covariate shift between the
source and target data complicates this dynamic scenario. By
definition, the two streams have unequal covariate distribu-
tion, but equal conditional distribution, i.e., PS(x) �= PT (x)
and PS(y|x) = PT (y|x). Therefore, the combination of
concept drift and covariate shift in the multistream regres-
sion setting is challenging.

We address these challenges by performing regression
over finite-size sliding windows WS and WT . Particularly,
ordinary least square (OLS) regression uses a linear relation-
ship between the independent and dependent variables, i.e.,
y = bTx+a. Due to covariate shift, we use a weighted varia-
tion of least square regression, where an instance weight (de-
noted by β) indicates the influence of corresponding training
data for determining regression parameters (Natrella 2010).
The IWLS regression with n training instances is given by:

Q =

n∑
i=1

βi[yi − (bTx+ a)]2 (1)

The Proposed Approach

An overview of the proposed approach, referred to as Mul-
tiStream Regression (MSR), is illustrated in Figure 1. Data
instances in the source and target streams occur simultane-
ously. Initially, we perform bias correction by estimating the
density ratio β(x) for each incoming source data instance
x in the Density Ratio Estimation Module (DRM). Particu-
larly, we estimate the density ratio directly using a Gaussian
kernel model. As new instances arrive, we update the model
parameters online. The Drift Detection Module (DDM) de-
tects a change point if there is a significant difference be-
tween the weighted training and the test distribution. Once
a change point is detected, we train a new regression model
using data instances in the current WS and WT . The model
is used to perform regression for data instances in T . Whilst
we also learn a new β function for further density ratio esti-
mation. We now present each module in detail.

Density Ratio Estimation Module (DRM)

We model instance weights using Gaussian kernels, where
current instances in WT work as the Gaussian centers, sim-
ilar to (Sugiyama et al. 2007). Therefore, weight for any in-
stance x, denoted by β(x), can be approximated as:

β̂(x) =
N∑
j=1

αjKσ(x, x
(j)
T ) (2)

where ααα = {αj}Nj=1 are the set of parameters needed
to be learned, Kσ(·, ·) is the Gaussian kernel, i.e.,

Kσ(x
(i), x(j)) = exp

{
−‖x(i)−x(j)‖2

2σ2

}
, and σ is the ker-

nel width.

Algorithm 1 Density Ratio Estimation

Require: {x(i)
S }Ni=1: Source Window Instances; {x(j)

T }Nj=1:
Target Window Instances; Kσ(xS , xT ): Gaussian Ker-
nel Function;

Ensure: β̂(x
(i)
S )

1: Ki,j = Kσ(x
(i)
S , x

(j)
T );

2: bk = 1
N

∑N
i=1 Kσ(x

(i)
S , x

(j)
T ) ;

3: Initialize ααα(> 0) and ε(0 < ε << 1);
4: repeat
5: ααα ← ααα+ εKT(1/.ααα);
6: ααα ← ααα+ (1− bTααα)b \ (bT);
7: ααα ← max(0,ααα);
8: ααα ← ααα/(bTααα);
9: until Convergence

10: β̂(x
(i)
S ) ← ∑N

j=1 αjKσ(x
(i)
S , x

(j)
T )

The target distribution is estimated by the weighted train-
ing distribution, i.e., P̂T (x) = β̂(x)PS(x). The parame-
ters ααα = {αj}Nj=1 are learned by minimizing the Kullback-
Leibler divergence between P̂T (x) and PT (x). The concave
optimization version of this problem is given by:

maximize
{αj}Nj=1

⎡
⎣ N∑

i=1

log

⎛
⎝ N∑

j=1

αjKσ(x
(i)
T , x

(j)
T )

⎞
⎠
⎤
⎦

subject to
1

N

N∑
i=1

N∑
j=1

αjKσ(x
(i)
S , x

(j)
T ) = 1,

and α1, α2, ..., αN ≥ 0.

(3)

A pseudo-code for density ratio estimation is described
in Algorithm 1. It will be used for initialization and re-
initialization purpose when a drift is detected. We discuss
the drift detection technique later in this section. The kernel
width σ is determined from data samples using likelihood
cross validation. The optimum solution of the parameters
ααα = {αj}Nj=1 can be obtained by first performing gradient
ascent (line 5) and then feasibility satisfaction, iteratively.
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Updating Parameters Online

Numerous online techniques have been proposed for updat-
ing ααα. For example, (Kawahara and Sugiyama 2012) pro-
posed a nonparametric approach to detect changes in prob-
ability distribution of a data sequence by directly estimating
probability density ratios, rather than estimating the individ-
ual densities. We adapt and improve this approach for the
multistream regression setting.

A new instance arriving in S only affects the constraints
of the optimization problem. Whereas, a new instance in T
directly affects the objective function as well. Thus,ααα needs
to be updated along with constraint satisfaction under this
case. In MSR,ααα is updated based on an online learning tech-
nique for kernel methods proposed by (Kivinen, Smola, and
Williamson 2004).

Assuming that β(·) is searched within a reproducing ker-
nel Hilbert space H, 〈β(·),K(·, x′)〉 = β(x′) is true from
its reproducing property. Let Ei(β) be the regularized em-
pirical error for x(i)

T :

Ei(β) = −logβ(x
(i)
T ) +

λ

2
‖β‖2H (4)

where λ(> 0) is the regularization term, and ‖·‖H denotes
the norm in H. The density ratio β̂ can be updated online
using a new instance x

(N+1)
T by,

β̂′ = β̂ − η∂βE
′
N+1(β̂) (5)

where η(> 0) is the learning rate, and ∂β denotes partial
derivative with respect to β. This implies that the parameters
ααα are updated as follows.{

α̂t
j ← (1− ηλ)α̂t−1

j+1, j = 1, ..., N − 1

α̂t
j ← η

β(x̂
(N+1)
T )

, j = N (6)

where η and λ are user-defined parameters representing the
regularization term, and learning rate respectively. In MSR,
we use the above formula to updateααα every time an instance
arrives in T .

MSR can be used for any learning algorithm that incor-
porates importance weight of training instances. As new in-
stances continue to arrive in S and T , the regression model
is updated when a concept drift is detected between the two
distributions represented by the weighted source data stream
and target data stream. MSR predicts the target value of each
instance in T using the updated regression model.

Drift Detection Module (DDM)

The probability density function of target stream PT (x) is
estimated by P̂T = β(x)PS(x). A drift is detected if there
is a significant difference between PT (x) and β(x)PS(x).
Let ααα0 be the set of initial parameters. These parameters are
updated online as new instances arrive in S and T . Let αααt

represent the parameters at time t. The difference between
the distributions is quantized by taking the likelihood ratio.
A drift is detected if it is more than a user-defined threshold
μ, as follows.

S =
N∑
j=1

ln
PT (x

(j)
T )

β̂0PS(x
(j)
T )

=
N∑
j=1

ln
β̂t(x

(j)
T )

β̂0(x
(j)
T )

> μ (7)

Algorithm 2 Drift Detection.
1: Set t = 0;
2: Run Density Ratio Estimation (Algorithm 1) to get ini-

tial set of parameter ααα0;
3: while not at the end of streams do
4: t ← t+ 1;
5: Online update αααt−1 to αααt;
6: Calculate change score S;
7: if S > μ then
8: Re-evaluate parameter set ααα0;

9: β̂(xxx) =
∑N

j=1 α
t
jKσ(xxx, x

(j)
T ), xxx = {x(i)

S }Ni=1 ;
10: Train regression model using Eq.1 .
11: end if
12: end while

where β̂0 and β̂t are density ratios defined by ααα0 and αααt

respectively.

Regression Module

Initially, we train a regression model using a small set of
data instances from both S and T . Here, we estimate the
importance weight for each source data instance using DRM
to overcome covariate shift between the two streams.

The regression model needs to be updated over time if
there is any asynchronous concept drift in the source or tar-
get stream. Algorithm 2 shows the drift detection and param-
eter update process in MSR. As new data instances arrive in
S and T , concept drifts are detected by DDM. After detect-
ing a drift, we compute β(·) for instances in WS using the
updated ααα from DRM in Line 9. Then, we train a new re-
gression model according to Eq. 1 using weighted WS and
WT in Line 10.

Theoretical Analysis

We now derive the convergence rate of the proposed solu-
tion, and its computational complexity.

Convergence Rate

In order to derive convergence rate, we first prove that the
empirical error Ei(β) is a strongly convex function over β
(lemma 1). Then, we use induction (in lemmas 2-3) to obtain
the convergence rate for updating ααα.

Lemma 1 Ei(β) is strongly convex function, i.e., ∀λ > 0,
Ei(β)− λ ‖β‖2 is convex.

Proof 1 In Eq. 4, the log term is concave by definition, and
hence the negative log is convex. Combining the regulariza-
tion term and λ ‖β‖2, the result is a convex function. Using
the additive property of convexity, Ei(β) is strongly convex.

From Lemma 1, we know Ei(β) is λ-strongly convex.
We assume Ei(β) is μ-smooth in the neighborhood of (op-
timum) β∗, which means for all β ∈ β (where β is a set of
all instance weights), the following inequality holds (Ying
2007).

E[Ei(β)− Ei(β
∗)] ≤ μ

2
E[‖β − β∗‖2] (8)

3152



Lemma 2 Let f1 be an arbitrary point on ∂βEi(β). f̂1 be
the gradient at f1 and β1 its corresponding importance
weight. For a constant G > 0, if E[‖f̂1‖2] ≤ G2, then
E[‖β1 − β∗‖2] ≤ 4G2

λ2 .
Proof 2 Due to strong convexity of Ei(β),

〈f1, β1 − β∗〉 ≥ λ

2
‖β1 − β∗‖2 (9)

where 〈·, ·〉 denotes a dot product. Based on the Cauchy-
Schwartz inequality,

‖f1‖2 ≥ λ2

4
‖β1 − β∗‖2 (10)

and

E

[
‖f̂1‖2

]
= E

[
‖f1 + (f̂1 − f1)‖2

]
≥ E[‖f1‖2] (11)

Based on the inequality in Eqs. 9, 10 and 11, we get

E
[‖β1 − β∗‖2] ≤ 4

λ2
E

[
‖f̂1‖2

]
≤ 4G2

λ2
(12)

Lemma 3 Let Ei(β) be λ-strongly convex over the convex
set β ∈ β, and E[‖f̂n‖2] ≤ G2, where G is a constant.
Then, with a learning rate ηn = 1

λn , the following inequality
holds,

E
[‖βn − β∗‖2] ≤ 4G2

λ2n
(13)

Proof 3 We prove by induction. Lemma 2 provides the base
case. Since Ei(β) is λ-strongly convex, we have

〈fn, βn − β∗〉 ≥ E(βn)− E(β∗) +
λ

2
‖βn − β∗‖2 (14)

and,

E(βn)− E(β∗) ≥ λ

2
‖βn − β∗‖2 (15)

Let us assume E[‖βn − β∗‖2] ≤ 4G2

nλ2 . For any point V and
β ∈ β, ‖∏β(V )− β‖ ≤ ‖V − β‖. Based on the inequality
in Eqs. 14 and 15,

E
[‖βn+1 − β∗‖2] = E

⎡
⎢⎣
∥∥∥∥∥∥
∏
β

(βn − ηnf̂n)− β∗

∥∥∥∥∥∥
2
⎤
⎥⎦

≤ E

[
‖βn − ηnf̂n − β∗‖2

]
≤ E

[‖βn − β∗‖2]− 2ηnE
[
λ‖βn − β∗‖2]+ η2nG

2

= (1− 2ηnλ)E
[‖βn − β∗‖2]+ η2nG

2

≤
(

n

n+ 1
− 1

n

)
4G2

nλ2
+

G2

n2λ2

≤ 4G2

(n+ 1)λ2

(16)
Therefore,

E
[‖βn − β∗‖2] ≤ 4G2

nλ2
(17)

So the convergence rate for updating ααα is O (
1
N

)
.

data set Feature Size

PowerConsumption 4 97,966
CASP 9 45,603
AirlineDelay 6 91672
SynGlobalAbrupt 5 100,975
SynGlobalGradual 5 102,162
SynLocalAbrupt 5 101,486

Table 1: Characteristics of data sets

Figure 2: Illustration of synthetic data generation. Here, P (·)
represents sampling probability.

In MSR, we perform online updates with batch training
whenever a change point is detected. For batch training, the
convergence rate is O( 1

N ). Combining Lemma 3 with batch
update, the overall convergence rate is O( 1

N ).

Complexity Analysis

DRM learns ααα only when a change is detected. This mainly
involves 2 operations. One is to learn ααα (according to Al-
gorithm 1), and the other is to update them (according to
Eq. 6). It takes O(N2) time to learn ααα, and O(N) to up-
date ααα, where N is the size of the sliding windows. In the
case of DDM, the time complexity is O(N) as described in
Algorithm 2. For linear regression, the time complexity is
O(v2N), where v is feature dimension. Therefore, the total
time complexity of MSR is O(N2).

The space complexity of DRM is O(N2), dominating the
space complexity of other modules. Therefore, the overall
space complexity of MSR is O(N2). Moreover, both the
time and space complexity of MSR are functions of N . In
real world applications, N can be adjusted to execute the
MSR with available resource.

Empirical Evaluation

Data Sets

We use 3 real-world and 3 synthetic data sets to evaluate the
proposed framework. Table 1 lists them with corresponding
properties.

Real-World Data Sets The task in PowerConsump-
tion (Lichman 2013) data set is to predict the total power
to be consumed by households in 2006 from readings such
as reactive and active power, voltage, and intensity. In CASP
((Lichman 2013)) data set, the task is to predict the size of
residue, given physiochemical properties of protein tertiary
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Figure 3: Average Error: MSR; LR; uLR; uMSR; tLR

structure. Finally, the task in AirlineDelay (Data Expo 2009)
data set is to predict the arrival time delay of flights using
features such as scheduled departure and arrival time, depar-
ture delay, and distance. Particularly the original AirlineDe-
lay data set contains nearly 120M records. For simplicity,
we choose to use data only from a single airline (chosen
uniformly at random), totaling about 100k records.

Following the strategy in (Kurlej and Woźniak 2011), we
simulate concept drifts in these data sets as follows. We first
normalize all features within the range of [0, 1]. Then, at
a time instance, which is probabilistically selected between
every 1000 to 2000 instances, we choose two features at ran-
dom. We then rotate them by 90 degrees clockwise, i.e., if

X1 ×X2-space is selected, then (x1, x2)
R(π

2 )−−−→ (−x2, x1).

Synthetic Data sets We create the SynX data sets with in-
duced concept drift using a method similar to (Ikonomovska
et al. 2009). Here, X is either GlobalAbrupt, GlobalGradual
or LocalAbrupt.

We synthesize the data in a 5 dimensional unit hypercube.
Initially, we define two constrained regions in the hypercube.
The first region (denoted by R1) is with 0 < x0 < 1, x1 <
0.3, x2 < 0.3, x3 > 0.7, and x4 < 0.3, and the second
region (denoted by R2) is 0 < x0 < 1, x1 > 0.7, x2 > 0.7,
x3 < 0.3, and x4 > 0.7. We sample instances from these
regions for generating synthetic data sets. Furthermore, we
use two different target functions for inducing concept drift.

These functions are as follows.

f1(x) = 10sin(πx0x1) + 20(x2 − 0.5)2 + 10x3 + 5x4 + σ(0, 1)

f2(x) = 10sin(πx3x4) + 20(x1 − 0.5)2 + 10x0 + 5x2 + σ(0, 1)

Particularly, we sample data instances from one function
for a short period of time, and then switch to sample from
a different function. This switch to induce concept drift is
illustrated in Figure 2. For generating SynGlobalAbrupt and
SynGlobalGradual data sets, we sample data from both the
regions. But, they differ in the way the target functions are
utilized. In the SynGlobalAbrupt, we abruptly switch sam-
pling process from one target function to another after ev-
ery 1000 to 2000 instances. This simulates the concept drift,
similar to the real-world data set. Whereas, in SynGlobal-
Gradual, we first gradually (probabilistically) increase the
sampling of instances using one function, while decrease the
sampling from the other function.

In the case of SynLocalAbrupt data set, we sample in-
stances from both regions, but only change the target func-
tion within a one region at a time. Concretely, we use the
target function f1 in both the regions to generate data. At
the first change point, we replace f1 with f2 in the first re-
gion only, while maintaining f1 in the second region. At the
next change point, we replace f1 with f2 for the first region,
and replace f2 with f1 for the second region. Finally, at the
last change point, we replace f2 with f1 for the first region
and retain f2 for the second region.
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Figure 4: Sensitivity of MSR to difference window size
(N): SynGlobalAbrupt; SynGlobalGradual;
SynLocalAbrupt; CASP; PowerConsumption;
AirlineDelay

Multistream We generate a biased source stream in each
data set following (Sugiyama et al. 2008). We randomly
choose one sample from the data pool between two consec-
utive change points, and accept this as source sample with
probability min(1, 4(xd

i )), where xd
i is the d-th feature of

xi; then we remove xi from the pool regardless of its rejec-
tion or acceptance. Once 10% of data instances are selected
as source, we choose the rest as target. Here, d is randomly
determined for real-world dataset. However, we fix d = 0
for synthetic data set since only x0

i is located in the region
[0, 1]. Finally, we concatenate the source and target data to
simulate the respective streams.

Experiments

Baseline Since no previous methods on multistream re-
gression exist, we devise four baseline methods based on
our problem framework.

The first baseline method, we call LR, trains a simple
weighted linear regression model on the initial set of source
instances and then predicts the target values of data instances
in T . For the second baseline method, we extend the sim-
ple linear regression model by periodically re-training on
the latest data instances occurring in S after every 1000
target instances. This method is denoted by updated-LR or
uLR. Next, we train the third baseline regression method di-
rectly on the target stream and update every 1000 instances.
We denote it by target-LR or tLR. Note that this supervised
periodic training uses the true response value at the target
stream, and therefore should result in the least average error
among all competing methods. Finally, to demonstrate the
effect of covariate shift correction, we employ MSR without
the drift detection module. Instead, we periodically update
the regression model after every 1000 instances, similar to
uLR and tLR. We call this baseline method as update-MSR
or uMSR.

Setup The MSR approach involves multiple parameters.
We use N = 300 as our default setting in the experi-
ments. Also, λ = 0.01 and η = 1 following (Kawahara
and Sugiyama 2012).
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Figure 5: Sensitivity of MSR to difference threshold (μ):
SynGlobalAbrupt; SynGlobalGradual; Syn-

LocalAbrupt; CASP; PowerConsumption;
AirlineDelay

Result

Performance Figure 3 shows the progress of average er-
ror as instances arrive in the target stream T . The average er-
ror of MSR asymptotically outperforms all competing meth-
ods (except tLR) on each data sets. Since tLR uses the truth
values directly on target instances, it achieves the highest
performance. Moreover, uLR has a much lower error on all
data sets compared to LR. This indicates that the regression
model needs to be updated to overcome concept drift. Yet,
a better performance of MSR indicates that drift detection
provides a better frequency of updates rather than simple pe-
riodic updates. Moreover, uMSR performs better than uLR
despite them having the same periodic update frequency.
This demonstrates the existence of covariate shift between
the source and target streams, and also the effect of correct-
ing the same.

Sensitivity In the next set of experiments, we measure pa-
rameter sensitivity of the proposed approach. First, we study
the sensitivity of MSR to window size or N . Figure 4 shows
the average error and execution time when using different
values of N . It can be observed that MSR is marginally
sensitive to the window size with respect to average error.
However, the execution time increases with N since the time
complexity of MSR depends on the window size. It should
be noted that the execution time of MSR is greater than uLR
or tLR due to DRM and DDM. Nevertheless, MSR achieves
greater prediction performance at the cost of execution time.

Figure 5 shows sensitivity of MSR to different threshold
(μ) values for all the data sets. It can be observed that chang-
ing the drift detection threshold does not affect the average
error and execution time significantly. Overall the experi-
ment results indicate that MSR is not too much sensitive to
the parameters.

Conclusion

In this paper, we perform regression in the multistream set-
ting involving two independent, yet related data streams.
We address the main challenges of covariate shift and asyn-
chronous concept drift simultaneously by estimating proba-
bility density ratio using a Gaussian kernel model that uti-
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lizes available truth value on the source stream to predict the
response-variable value on the target stream. Particularly, we
present an online mechanism to update its parameters, and
utilize them for drift detection. We also study its theoretical
properties. Our empirical evaluation on real-world and syn-
thetic data sets demonstrate that our method performs sig-
nificantly better than the baseline approaches.
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