
ARC: Adversarial Robust Cuts for
Semi-Supervised and Multi-Label Classification

Sima Behpour, Wei Xing, Brian D. Ziebart
Department of Computer Science
University Of Illinois at Chicago

{sbehpo2,wxing3,bziebart}@uic.edu

Abstract

Many structured prediction tasks arising in computer vision
and natural language processing tractably reduce to making
minimum cost cuts in graphs with edge weights learned us-
ing maximum margin methods. Unfortunately, the hinge loss
used to construct these methods often provides a particularly
loose bound on the loss function of interest (e.g., the Ham-
ming loss). We develop Adversarial Robust Cuts (ARC), an
approach that poses the learning task as a minimax game
between predictor and “label approximator” based on min-
imum cost graph cuts. Unlike maximum margin methods,
this game-theoretic perspective always provides meaningful
bounds on the Hamming loss. We conduct multi-label and
semi-supervised binary prediction experiments that demon-
strate the benefits of our approach.

Introduction

Structured prediction—the task of predicting multiple in-
terrelated variables—is increasingly important for machine
learning applications in computer vision (Kolmogorov and
Zabin 2004), natural language processing (Flake, Tarjan, and
Tsioutsiouliklis 2004), computational biology, and other ar-
eas (Blum and Chawla 2001; Blum et al. 2004). Though
intractable in general (even when only pairwise relation-
ships exist (Wainwright and Jordan 2008)), certain restricted
relationships and structures (e.g., chains, trees, and other
low-treewidth structures) do have efficient inference algo-
rithms. The most general of these—binary-valued associa-
tive Markov networks (Taskar, Chatalbashev, and Koller
2004) and the special case of attractive pairwise relation-
ships (Boykov, Veksler, and Zabih 2001)—use minimum
graph cuts (Greig, Porteous, and Seheult 1989) for inference
and maximum margin methods (Tsochantaridis et al. 2004;
Joachims 2005) for training. Unfortunately, the hinge loss
surrogate employed by this approach can be quite loose, of-
ten providing meaningless performance guarantees in prac-
tice. For example, the surrogate loss may be worse than ran-
dom predictions or even the worst possible loss.

Seeking to tighten this gap between training objective
and evaluative loss function for structured prediction tasks,
we present Adversarial Robust Cuts (ARC), an approach to

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

learning for binary associative Markov networks and attrac-
tive pairwise relationships. ARC takes the form of a zero-
sum game between a predictor trying to minimize an addi-
tive loss over predicted variables and an adversarial training
label approximator that seeks to maximize this same loss.
It provides loss bounds that are always meaningful since
the game outcome is always within the range of the evalua-
tion loss function. Using the double oracle method (McMa-
han, Gordon, and Blum 2003), which is a constraint genera-
tion method for zero-sum games, inference reduces to solv-
ing a sequence of minimum-cut/linear programming prob-
lems. Learning corresponds to a convex optimization prob-
lem that we address using standard gradient-based methods.
We demonstrate the benefits of our approach on multi-label
and semi-supervised binary classification tasks. In the latter
tasks, our approach combines inductive parametric model-
ing with similarity-based reasoning.

Adversarial learning methods have seen a recent resur-
gence, particularly for deep generative models (Goodfellow
et al. 2014). Early methods sought to make predictors ro-
bust to manipulations of the training data (Dalvi et al. 2004).
Our work follows a line of research with a less powerful ad-
versary: the inherent uncertainty of true distributions in in-
ductive learning settings given limited training data (Topsøe
1979; Grünwald and Dawid 2004). We contribute an exten-
sion of structured prediction using this minimax perspec-
tive beyond the previous work on classification problems
with zero-one loss (Fathony et al. 2016), ordinal regression
(Fathony, Bashiri, and Ziebart 2017), more general cost-
sensitive losses (Asif et al. 2015), multivariate losses (Wang
et al. 2015), and chain structures (Li et al. 2016).

Background

Notation and Learning Task

We consider n predicted variables, y = (y1, . . . , yn), cho-
sen from a fixed set of labels yi ∈ Y, ∀i ∈ [n], where
[n] = {1, . . . , n}. We denote the corresponding random
variables for these label variables using capitalization, Y =
(Y1, . . . , Yn), and denote vectors and multivariate variables
in bold. We denote given information or side information
variables using a single vector, x ∈ X , with a correspond-
ing random variable denoted as X. (Strict sub-portions of x
may be relevant to each variable yi, but for notational sim-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

2704

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

0

0

1

1

0

0

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 1: An example image and its multilabel annotation
vector for label set: sky, clouds, trees, sunset, sea, ship,
mountains, desert, . . .

plicity, we do not denote such partitions in our formulation.)
Our task in this setting is to make predictions for y

given an input x and a set of m training example pairs,
(x(j),y(j))j∈[m], where we index training examples using
a parenthetical superscript notation whenever necessary to
disambiguate between different examples or denote this dis-
tribution as P̃ (X,Y). Aiding in this task are a set of features
relating the input variables to the predicted variables and to
one another. We generically denote these feature vectors as
φc(yc,x) for relationships over variables in some subset of
the y variables denoted by c ∈ C ⊆ 2[n]. For a subset c =
{c1, . . . , cl} which contains l variables, yc = {yc1 , . . . , ycl}
is the corresponding set of label values for the variables in
the subset. For pairwise relationships between yi and yj that
also incorporate input variables, this reduces to feature func-
tions denoted as φi,j(yi, yj ,x) and to φi(yi,x) for univari-
ate feature functions.

For many datasets, variables that are closely related to one
another tend to have the same label. For example, pixels with
similar characteristics in the same region of an image tend to
belong to the same image segment. To capture this property,
we define pairwise features that reflect the difference when
two variables have different labels, and use a generalized
Potts model (Potts 1952) to penalize assignments that do not
have the same label across the edges:

φi,j(yi, yj ,x) = I(yi �= yj)δi,j(yi, yj ,x), (1)

where I() is a indicator function whose value is 1 only if the
inner logical expression is true.

We consider the multilabel prediction task of annotating
images as a running example. Each training image, x, has
an associated vector of labels, y, corresponding to different
descriptors of the image, as illustrated in Figure 1. We define
unary and pairwise features for the labels as:

φsky(ysky,) = I(ysky=1) imgFeatures()

(2)
φsky,clouds(ysky, yclouds) = I(ysky �= yclouds) (3)

| word2vec(sky)− word2vec(clouds)|−1,

using features from the Mulan dataset (Tsoumakas et al.
2011) for image representations and a deeply learned word

Figure 2: The Markov network corresponding to the multil-
abel annotation prediction of Figure 1.

embedding1 for word semantics.2
In this paper, we focus on problems evaluated using the

Hamming loss:

loss(ŷ, y̌) =
1

n

∑
i

I(ŷi �= y̌i), (4)

which measures the fraction of the labels that are correctly
predicted in the multilabel annotation task.

Markov Networks and Intractability

Estimating the conditional probability of label variables us-
ing a Markov network is one powerful approach to this
structured prediction task. Markov networks can be writ-
ten as log-linear models when their densities are positive. A
Markov network has the following probability distribution:

P (y|x) = 1

Z(x)
eΨ(y,x), (5)

where the potential function Ψ decomposes into a set of po-
tential functions over subsets of the y variables, Ψ(y,x) =∑

c∈C ψc(yc,x), with these subset potentials defined as
ψc(yc,x) = θc · φc(yc,x) using a vector of estimated
weights θc that is specific to each c. Parameter sharing with
clique c′, φc = φc′ , can be employed to reduce the effective
number of learned parameters of the model. The structure
of these potentials corresponds to an undirected graphical
model in which the variables in set c are connected by undi-
rected edges, forming cliques in the graph.

In our running example, all unary and pair-
wise subsets of variables are inlcuded in C =
{{sky}, {clouds}, {trees}, . . . , {sky, clouds}, {sky, trees}},
and the corresponding Markov network is the complete
graph over all of these class labels (Figure 2). Unfor-
tunately, even when restricted to pairwise and unary
potential functions, the most probable assignment of values,
y∗ = argmaxy∈Y P (y|x), and the normalization term,
Z(x) =

∑
y∈Y e

∑
c∈C ψc(yc,x), are both intractable to

compute for Markov networks in general (Wainwright and

1https://code.google.com/p/word2vec/
2We use element-wise operations to compute and invert the dif-

ferences between each embedded dimension.

2705

Figure 3: A directed graph used to augment a Markov net-
work (left) so that the minimum cut (right) provides the most
probable assignment of each variable based on its connec-
tion to the source node (0) or target node (1).

Jordan 2008). Restrictions are often placed on the potential
functions so that the corresponding undirected graph has
low tree-width (e.g., chains, trees), which enables efficient
maximization and normalization computations (Wainwright
and Jordan 2008).

Minimum-Cuts and Associative Markov Networks

Another direction for realizing tractable Markov networks
exploits potential functions for which maximization can be
solved efficiently, even though normalization is intractable
due to the large tree-widths of their graphs. Binary-valued
Markov networks with non-negative pairwise potentials are
one example of this. Their maximum value assignments can
be obtained using minimum-cut/maximum-flow algorithms,
as shown in Figure 3. Edges from the source and to the sink
nodes are weighted based on unary feature potentials, and
edges between predicted variables are weighted based on
the pairwise feature potentials. Large potentials prevent cer-
tain edge cuts (and corresponding value assignments to the
connected sink or source) from the solution. In our running
example, for instance, two semantically related words (e.g.,
sky and clouds) are likely to have large learned potentials
that prevent one from being an included label without the
other. This class of models has been employed extensively in
computer vision applications for binary image denoising and
segmentations problems (Greig, Porteous, and Seheult 1989;
Boykov, Veksler, and Zabih 2001).

Associative Markov networks (AMNs) (Taskar, Chatal-
bashev, and Koller 2004) allow larger cliques with poten-
tial functions that are only non-zero if all variables in the
clique share the same value. This has the effect of “attract-
ing” the same values across the predicted variables. These
generalizations of binary structured prediction beyond pair-
wise potentials to arbitrary cliques can be solved using a lin-
ear program (Taskar et al. 2005) that is closely related to the
minimum-cut problem. Though multiclass inference prob-
lems are generally much more difficult than binary prob-
lems, there are also some classes of potential functions with
certain “convexity” properties (Ishikawa 2003) that can be
solved efficiently as min-cut problems.

Maximum Margin Learning and Loose Bounds

Maximum margin methods for learning, like the structured
support vector machine (Tsochantaridis et al. 2004; Taskar
et al. 2005), operate by introducing a hinge loss surrogate to
optimize in place of the loss function of interest, which is
generally non-convex and possibly not even continuous. For
structured prediction, this takes the following form:

min
θ,ε≥0

||θ||+ λ
∑
i

εi such that:

εi ≥ max
y′

loss(y′,y(i)) +Ψ(y′,x)−Ψ(y(i),x), (6)

where loss() can be any loss function of interest, θ is a
compact representation of all estimated potential function
parameters, λ is a fixed regularization parameter, and εi is
the amount of hinge loss incurred by the ith training ex-
ample. Conceptually, this optimization seeks to make the
potential of the true label vector Ψ(y(i),x) greater than
all alternatives Ψ(y′,x) by a margin that depends on the
(Hamming) loss between y′ and y(i). Since the objective of
this optimization is a convex function of the model parame-
ters, θ, standard gradient-based methods can be employed
to optimize θ. Achieving low εi ensures small amounts
of incurred loss on example i, since εi ≥ loss(ŷ =
argmaxy Ψ(y),y(i)).

Finding parameters θ that make the total hinge loss,∑
i εi, small can be difficult. When the size of the label

space |Y | is much larger than the number of parameters
being learned, there may not be any non-trivial choice of
θ �= 0 that makes the potential of y(i) optimal. When mul-
tiple training examples are considered, reducing the hinge
loss for one example tends to increase the hinge losses for
other examples. Due to these issues, the hinge loss for a par-
ticular example y(i) can be much greater than not only the
actual loss of the predicted labels, loss(ŷ,y(i)), but random
guessing and the worst possible loss, maxy loss(y,y(i)), as
well. When this is the case, the hinge loss bounds provide
no meaningful guarantees on the predictor’s performance.

Adversarial Robust Cuts (ARC)

The motivating idea of minimax robust learning is to ap-
proximate the training data labels with a worst-case distribu-
tion that must still resemble training data properties (Topsøe
1979; Grünwald and Dawid 2004; Asif et al. 2015). The ad-
vantage of this approach versus employing the hinge loss
or other convex surrogate is that: (1) the training error on
the actual loss function of interest (e.g., the Hamming loss)
is upper bounded by the game value; and (2) optimizing this
upper bound more closely aligns the predictor’s construction
with its predictive performance.

Minimax Game Formulation

We introduce the distribution P̌ (Y̌|X) controlled by the
adversary to produce worst-case approximations of the ac-
tual training example label, y(i). The adversary seeks to
maximize the loss subject to certain constraints based on

2706

the training data sample, while the predictor player chooses
P̂ (Ŷ|X) to minimize the expected loss:

min
P̂ (Ŷ|X)

max
P̌ (Y̌|X)

EX∼P̃ ;Ŷ|X∼P̂ ;Y̌|X∼P̌

[
loss(Ŷ, Y̌)

]
such that:

EX∼P̃ ;Y̌|X∼P̌

[
φi(Y̌i,X)

]
= EX,Y∼P̃ [φi(Yi,X)] , ∀i ∈ [n];

EX∼P̃ ;Y̌|X∼P̌

[
φi,j(Y̌i, Y̌j ,X)

] ≤ EX,Y∼P̃

[
φi,j(Yi, Yj ,X)

]
,

∀i, j ∈ [n], (7)

where P̃ is the empirical distribution of X [and Y] in the
training data set.

Conceptually, the adversary seeks to construct a label dis-
tribution that is as uncertain as possible, since this forces the
predictor to incur large amounts of expected loss. However,
the constraints placed on the adversary to match statistics φ
relating the actual training data labels to inputs x and one
another (such as mean or higher order moments) prevent the
adversary from doing this, and, when chosen carefully, can
restrict the adversary to be highly predictable.

We reduce and generalize the restrictions on the adver-
sary by redefining the constraints so that they share clique
features. For example, rather than having unique pairwise
constraints for each i �= j, we can have a single constraint:

EX∼P̃ ;Y̌|X∼P̌

⎡
⎣∑

i �=j

φi,j(Y̌i, Y̌j ,X)

⎤
⎦ (8)

≤ EX,Y∼P̃

⎡
⎣∑

i �=j

φi,j(Yi, Yj ,X)

⎤
⎦ .

Slack for the constraints can also be incorporated to deal
with the variance that results from having small amounts of
training data, leading to regularization in the resulting opti-
mization problems (Dudı́k and Schapire 2006).

Using the method of Lagrange multipliers and strong du-
ality (Boyd and Vandenberghe 2004), the constraints of this
formulation can be incorporated as Lagrangian potentials
with parameters {θc}:

min
{θi},{θi,j}≤0

min
P̂ (ŷ|x)

max
P̌ (y̌|x)

EX,Y ∼ P̃ ,

Ŷ|X ∼ P̂ ,
Y̌|X ∼ P̌

[
loss(Ŷ, Y̌) (9)

+
∑
i

θi · (φi(Y̌i,X)− φi(Y,X))

+
∑
i �=j

θi,j · (φi,j(Y̌i, Y̌j ,X)− φi,j(Yi, Yj ,X)

]
.

These Lagrangian potentials exactly match those of the
Markov random field (Equation (5)) in form, and can
similarly be written as Ψ(y̌,x) =

∑
i ψi(yi,x) +∑

i �=j ψi,j(yi, yj ,x), where ψi(yi,x) = θi · φi(yi,x) and
ψi,j(yi, yj ,x) = θi,j · φi(yi, yj ,x).

Under the Hamming loss (Equation (4)), the terms of this
optimization problem in Equation (9) involving P̂ and P̌ for
a specific input x can be re-written as a bilinear function of

the predictor’s distribution, the Lagrangian-augmented loss
function, and the adversary’s distribution,

⎡
⎢⎢⎢⎢⎢⎣

P̂ (000)

P̂ (001)

P̂ (010)

...

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
p̂x

T ⎡
⎢⎢⎢⎢⎢⎣

0 + Ψ(000,x) 1
3 + Ψ(001,x) · · ·

1
3 + Ψ(000,x) 0 + Ψ(001,x) · · ·
1
3 + Ψ(000,x) 2

3 + Ψ(001,x) · · ·
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Cθ,x={loss(ŷ,y̌)+Ψ(y̌,x)}

⎡
⎢⎢⎢⎢⎢⎣

P̌ (000)

P̌ (001)

P̌ (010)

...

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
p̌x

,

which can then be compactly denoted in terms of vectors of
conditional probabilities (p̂x and p̌x), and a payoff matrix
(Cθ,x) for each example x.

With the Lagrangian potentials incorporated into the pay-
off matrix Cθ,x, the joint game over all training instances
can be solved independently for each one:

min
{θi},{θi,j}≤0

EX,Y∼P̃

[(
max
p̌X

min
p̂X

p̂T
X Cθ1,X p̌X

)

−
∑
i

θi · φi(Yi,X)−
∑
i �=j

θi,j · φi,j(Yi, Yj ,X)

⎤
⎦ . (10)

Unfortunately, naı̈vely constructing the game in this man-
ner requires time and space that grow exponentially with the
number of predicted variables to include every possible vec-
tor of values. We address this computational bottleneck us-
ing the constraint generation methods in a later sections.

Double Oracle for ARC

Unlike traditional probabilistic treatments of Markov ran-
dom fields, which require computing the normalizing par-
tition function, Z(x), our approach obtains an equilibrium
over value assignments for the set of predicted variables
between the predictor and the adversary. Conceptually, this
game is played over the set of all possible label assignments
as strategies. However, in practice the game equilibria have
sparse support (i.e., P (y|x) = 0 for most y). We employ
the double oracle algorithm (McMahan, Gordon, and Blum
2003), a constraint generation approach, to uncover a set of
strategies for each player that support the equilibrium.

Algorithm 1 outlines the behavior of this procedure. It
operates by maintaining a set of label vectors Ŝ and Š for
each player that it greedily expands until the game’s equilib-
rium is supported by the label vectors of these sets. This is
accomplished by repeatedly finding the game’s equilibrium
for the current set of strategies and then alternatively adding
each player’s best response against the other player’s equi-
librium distribution as a new row or column for the game.
Within the algorithm, we denote the potentials for the la-
bel vectors of Š as Ψ(Š) � {Ψ(y̌,x)}y̌∈Š and denote the
loss matrix between all pairs of label vectors across sets as
lossHam(Ŝ, Š) � {HammingLoss(y̌, ŷ)}y̌∈Š,ŷ∈Ŝ .

We solve the zero-sum games (solveGame) as linear pro-
grams (von Neumann and Morgenstern 1947), which can be
solved in polynomial time. The key remaining challenge is
finding the best response for each player.

2707

Algorithm 1 Double Oracle Algorithm for ARC Equilibria
Require: Node features {φi(·,x)}; Pairwise features

{φi,j(·, ·,x)}; Parameters θ; Initial label yinitial

Ensure: Nash equilibrium, (P̂ , P̌)

1: Š ← Ŝ ← {yinitial}
2: repeat

3: (P̂ , P̌ , V̌) ← solveGame(Ψ(Š), lossHam(Š, Ŝ))
4: (y̌new, Vmax) ←maxy̌EŶ∼P̂ [lossHam(y̌, Ŷ)+ Ψ(y̌)]

5: if (V̌ �= Vmax) then

6: Š ← Š ∪ y̌new

7: end if
8: (P̂ , P̌ , V̂) ← solveGame(Ψ(Š), lossHam(Š, Ŝ))
9: (ŷnew, Vmin) ← minŷ EY̌∼P̌ [lossHam(Y̌, ŷ)]

10: if (V̂ �= Vmin) then

11: Ŝ ← Ŝ ∪ ŷnew

12: end if
13: until V̌ = Vmax = V̂ = Vmin

14: return (P̂ , P̌)

Adversary’s best responses: Given the predictor’s distri-
bution over value vectors, P̂ (ŷ|x), over ŷ ∈ Ŝ the adver-
sary’s best response is a single vector of values y̌new with
the largest possible expected value under P̂ . It is determined
both by the expected loss against the predictor’s distribution
and the Lagrangian potential terms:

argmax
y̌

EŶ|x∼P̂

[
1

n

∑
i

I(Ŷi �= y̌i)

]
+
∑
i

ψi(y̌i) (11)

+
∑
i �=j

ψi,j(y̌i, y̌j ,x).

This is similar to loss-augmented potential maximization
problems addressed in maximum margin methods (Taskar
et al. 2005). When there are only binary labels, the problem
can be transformed into a min-cut problem by expanding the
expectation as:

argmin
y̌

∑
i

−
⎛
⎝ 1

n

∑
ŷ

P̂ (ŷ|x) · I(ŷi �= y̌i) +ψi(y̌i)

⎞
⎠

+
∑
i �=j

−ψi,j(y̌i, y̌j ,x). (12)

If we use values 0 and 1 as binary labels, we can separate
the formula by the values of y̌ and apply Eq. (1), obtaining:

argmin
y̌

∑
{i:y̌i=1}

⎛
⎝− 1

n

∑
ŷ

P̂ (ŷ|x) ·
[
I(ŷi = 0)−ψi(1,x)

]⎞⎠

+
∑

{i:y̌i=0}

⎛
⎝− 1

n

∑
ŷ

P̂ (ŷ|x) ·
[
I(ŷi = 1)−ψi(0,x)

]⎞⎠

+
∑
i �=j

I(yi �= yj)− θi,jδi,j(yi, yj ,x). (13)

We construct a directed graph G that contains nodes repre-
senting each variable, along with two special nodes: source
(Src) and target (Trg). Solving Eq. (13) is equivalent to the
min-cut problem on G if the following weights (capacities)
are all non-negative: edges from the source node to each pre-
dicted variable are weighted by

wSrc,i = − 1

n

∑
ŷ

P̂ (ŷ|x) · I(ŷi = 1)−ψi(0,x), (14)

directed edges from each predicted variable to the target
node are similarly weighted by:

wi,Trg = − 1

n

∑
ŷ

P̂ (ŷ|x) · I(ŷi = 0)−ψi(1,x), (15)

and each pair of different nodes except source and target are
weighted by:

wi,j = wj,i = −θi,j · δi,j(y̌i, y̌j ,x). (16)

After removing edges in the cut-set, nodes connected to Src
have label 0 and the other nodes have label 1.

To make the weights non-negative, we first consider
weights for edges connected to either Src or Trg nodes. One
important property is that we can add the same constant to
both the capacity from Src to node i and the capacity from
node i to Trg without changing the cut-set. That is because
one and only one of the two edges will be in the cut-set.
Based on this property, we can simply subtract the smaller of
wSrc,i and wi,Trg from each one’s pairwise weights. Next, for
the pairwise weights, from Eq. (9) we know that θi,j ≤ 0.
So as long as we choose non-negative δi,j(yi, yj ,x), wi,j

will be non-negative.

Predictor’s best response: Given the adversary’s distri-
bution of value vectors P̌ (y̌|x) from y̌ ∈ Š , the predictor’s
best response is a single vector of values with the small-
est expected value against P̌ . Since the Lagrangian potential
does not rely on predictor’s strategy, and the Hamming loss
is additively decomposable, we have:

min
ŷ

EY̌|x∼P̌

[
1

n

∑
i

I(ŷi �= Y̌i)

]

=
1

n

∑
i

min
ŷi

∑
y̌

P̌ (y̌|x)I(ŷi �= y̌i). (17)

Thus, the predictor’s best responses can be independently
made for each variable: ŷi = argmaxy P̌ (Y̌i = y|x).

Using these best response subroutines, the double oracle
algorithm can be applied to obtain a compact equilibrium
distribution for the robust min-cut game.

Parameter Learning

The final aspect of our approach is optimizing the model
parameters θi and θi,j , that incentivize the adversary. We
accomplish this using standard tools from convex optimiza-
tion. Specifically, we employ AdaGrad (Duchi, Hazan, and
Singer 2011) and compute the gradients gi and gi,j for a
single example (x(k),y(k)) as the difference between the

2708

Table 1: Semi-supervised classification dataset characteristics; training/testing hinge loss and testing Hamming loss for SSVM;
number of testing-time cuts, training/testing game value and testing Hamming loss for our ARC approach.

Dataset Information SSVM ARC
Name #training #testing #features Hingetr Hingete Hammingte #cuts Valuetr Valuete Hammingte

Diabetes 600 168 8 1.27 1.22 0.37 9 0.39 0.35 0.31
Breast Cancer 500 183 10 0.44 0.58 0.12 8 0.42 0.23 0.10
Gisette 800 200 4971 1.26 0.54 0.21 17 0.45 0.29 0.16
Spect 187 80 22 1.30 1.28 0.29 10 0.38 0.34 0.26

expected features under the adversary’s distribution and the
empirical features calculated from the training data:{

EY̌|x(k)∼P̌ [φi(Y̌i,x
(k))]− φi(y

(k)
i ,x(k))

}
and (18){

EY̌|x(k)∼P̌ [φi,j(Y̌i, Y̌j ,x
(k))]− φi,j(y

(k)
i , y

(k)
j ,x(k))

}
. (19)

Extension to Associative Features

Following associative Markov network formulations
(Taskar, Guestrin, and Koller 2004), we can also incorporate
higher-order features of the variables rather than unary and
pairwise features, transforming Eq. (7) to:

min
P̂ (Ŷ|X)

max
P̌ (Y̌|X)

EX∼P̃ ;Ŷ|X∼P̂ ;Y̌|X∼P̌

[
loss(Ŷ, Y̌)

]
such that:

EX∼P̃ ;Y̌|X∼P̌

[
φi(Y̌i,X)

]
= EX,Y∼P̃ [φi(Yi,X)] , ∀i ∈ [n]

EX∼P̃ ;Y̌|X∼P̌

[
φc(Y̌c,X)

] ≤ EX,Y∼P̃ [φc(Yc,X)] ,

∀c ∈ C, |c| > 1. (20)

We define the higher order features on clique c as:

φc(yc,x) =
∑
k

⎛
⎝∏

j

I(ycj = k)

⎞
⎠ δc(k,x). (21)

Different from the pairwise setting, we assign non-zero
feature values only to cases where all the labels of the vari-
ables in the subset are the same (i.e., δc(k,x) is the feature
when the labels of all the variables in subset c are k). Finding
the adversary’s best response now becomes:

argmax
y̌

EŶ|x∼P̂

[∑
i

I(Ŷi �= y̌i)

]
+
∑
i

ψi(Y̌i) (22)

+
∑

c:|c|>1

ψc(y̌c,x).

To solve Eq. (22), we introduce indicator variables ui,yi
′ and

uk
c ∈ {0, 1}. ui,yi

′ is 1 only if yi = yi
′, and uk

c is 1 only if
the labels of the variables in c are all k. Combining them
all into a single vector u of size q, the problem (22) can be
formulated as an integer linear programming (ILP) problem:

argmax
u∈{0,1}q

∑
i

∑
y̌′
i

ui,y̌′
i
· αi(y̌

′
i) +

∑
c:|c|>1

∑
k∈

uk
c · αc(y̌

′
c,x)

such that:
∑
y̌′
i

ui,y̌′
i
= 1, ∀i ∈ [n]

uk
c ≤ ui,k, ∀|c| > 1, i ∈ c, k, (23)

where αi and αc are defined as:

αi(y̌i,x) =
1

n

∑
ŷ

P̂ (ŷ|x)I(ŷi �= y̌i) +ψi(y̌i,x), ∀i ∈ [n]

αc(y̌c,x) =
∑
k

⎛
⎝∏

j

I(ycj = k)

⎞
⎠θc · δc(k,x), ∀|c| > 1.

Eq. (23) can be approximated by Linear Programming relax-
ation. For binary classification problems, when δc(k,x) is
non-positive, it can be optimized as a normal linear program-
ming problem (without integer constraints) and will provide
the integer solution (Taskar, Chatalbashev, and Koller 2004),
which means it can be solved in polynomial time.

Applications

We focus our attention on binary-valued structured predic-
tion tasks for which inference can be efficiently performed
without extremely restrictive limitations on the potential
functions or using approximation.

Semi-Supervised Classification

We first consider cut-based semi-supervised classification
(Blum and Chawla 2001) using four datasets from the UCI
repository (Lichman 2013). The characteristics of these
datasets are summarized in Table 1. The vector y corre-
sponds to the examples of each dataset. Following previous
work, we seek to leverage the relationships between each
example, in terms of input values xi, and its label, yi, along
with relationships between pairs of labels (yi, yj) (and their
inputs (xi,xj)). We construct unary features directly from
each example’s input vector xi and pairwise features as the
inverse of the absolute difference of the two correspond-
ing nodes features. We share the same unary and pairwise
parameters across all edges so that these potentials can be
applied to previously unseen examples at test time. During
training time, we only incorporate labeled training exam-
ples. At testing time, we incorporate both the training set and
the unlabeled testing set on which predictions are desired.

We compare our ARC approach with a structured sup-
port vector machine (Taskar et al. 2005; Tsochantaridis et
al. 2004) on the same feature representation. Thus, the only
difference between these methods is the learner’s objective
function being optimized. We evaluate performance using
the Hamming loss on unlabeled testing datapoints, which
corresponds to the misclassification rate for semi-supervised
learning. We see from the results in Table 1 that the hinge

2709

Table 2: Multi-label dataset information and average testing Hamming loss for binary relevance (BR), multi-label KNN (ML-
KNN), and Rank-based support vector machines (Rank SVM), and our ARC approach (with average number of cuts).

Dataset Information Test Hamming Loss
Name Domain #Instances #Features #Labels BR MLKNN Rank SVM ARC #cuts

Bibtex text 7395 1836 159 0.015 ± 0.001 0.017 ± 0.001 0.120 ± 0.014 0.015 ± 0.001 20.8
Bookmarks text 87856 2150 202 0.238 ± 0.018 0.149 ± 0.011 0.176 ± 0.016 0.141 ± 0.014 19.3
Birds audio 645 260 19 0.156 ± 0.106 0.063 ± 0.001 0.124 ± 0.106 0.062 ± 0.010 7.4
CAL500 music 502 68 174 0.159 ± 0.016 0.113 ± 0.012 0.124 ± 0.016 0.102 ± 0.018 14.9
Emotions music 593 72 6 0.261 ± 0.018 0.198 ± 0.016 0.183 ± 0.012 0.174 ± 0.010 13.7
Flags images 194 19 7 0.271 ± 0.220 0.236 ± 0.014 0.234 ± 0.011 0.212 ± 0.010 18.5
Scene images 2407 294 6 0.139 ± 0.010 0.144 ± 0.012 0.241 ± 0.015 0.110 ± 0.016 12.1
Yeast biology 2417 103 14 0.238 ± 0.015 0.195 ± 0.110 0.210 ± 0.090 0.186 ± 0.014 11.6
NUS-WIDE images 269648 128 81 0.120 0.028 0.102 0.020 14.5

Average 0.177 0.127 0.168 0.113 14.8

loss of the trained SSVM model almost always exceeds 0.5,
corresponding to a meaningless bound on the Hamming loss
(i.e., randomly guessing achieves this value). Indeed, the
hinge loss is often entirely above the range of the loss func-
tion [0, 1]). In contrast, the game values of our approach
(ARC) always provide a meaningful upper bound on the
Hamming loss that is below random guessing (0.5). This
tighter bound translates into meaningful bounds from the
game values on testing data and testing Hamming losses that
are lower than SSVM across all datasets.

Additionally, we find that the equilibria are obtained from
performing constraint generation a relatively small number
of times. These range from performing 8 to 17 minimum
cuts during the testing time prediction task. In terms of run-
ning time, this is the main difference from the SSVM model,
which makes predictions based on the results of a single
minimum cut problem. Though we do not investigate it in
this paper, the similarity between minimum cut instances in
each prediction task may allow reuse and acceleration of the
inference procedure.

Multi-Label Prediction

The second application that we investigate is multi-label
classification, like our running example. In this setting, mul-
tiple labels can be attached to each example and the predic-
tion task is that of predicting some subset of the label set for
each example. We treat each of the labels as a binary vari-
able and follow the structure presented in the previous sec-
tion to train an adversarial multi-label predictor by learning
to make adversarial cuts. Most of the features we employ as
unary and pairwise features are taken from the Mulan dataset
(Tsoumakas et al. 2011). However, we additionally extracted
word2vec3 features for datasets with meaningful labels in-
cluding Bibtex, Bookmarks, Cal500, Emotions, Scene and
NUS-WIDE, and define a vector of features that is inversely
proportioned to the distance between each dimension of the
word2vec feature representation. When augmenting the fea-
tures in this manner, we omit a small number of labels with
no word2vec features from the dataset label representation,
as described in Equation (3). As shown in Table 2, we have

3https://code.google.com/p/word2vec/

considered datasets with different sizes from a variety of ap-
plication areas to show the general performance of our ap-
proach.

We compare the performance of ARC with Multi-label
KNN (Zhang and Zhou 2007), Binary relevance (BR)
(Tsoumakas, Katakis, and Vlahavas 2009), and Rank SVM
(Elisseeff and Weston 2002) on nine different benchmark
datasets. We perform 10-fold cross-validation and report
both the mean and standard deviation of the Hamming
loss, except for the extremely large NUS-WIDE dataset, for
which we only compute the Hamming loss for a singe test-
ing sample due to its size. As shown in Table 2, our ARC
approach performs at least as well as the other methods on
each individual dataset, and much better on average.

We also find that a relatively small number of minimum
cuts are needed by our ARC algorithm on average (between
7.4 and 20.8) to find the equilibria. We see no clear relation-
ship between the number of constraints generated and the
number of class labels, number of instances, or Hamming
loss. This suggests that the amount of support for the equi-
librium does not depend heavily on the size of the full game
representation nor the difficulty of the prediction game.

Discussion

We investigated a robust approach for learning to make
cuts in graphs. It operates by making worst-case approxima-
tions to the training labels. This has benefits theoretically—
providing meaningful bounds on losses—and in practice, as
illustrated by our experiments. In future work, we plan to in-
vestigate the benefits of our game formulation for multiclass
problems where only approximately optimal graph cuts can
be obtained. We expect that because the equilibrium is de-
fined over many different cuts, rather than the single best
alternative (as in structured SVM’s hinge loss), that approxi-
mations will have a less detrimental impact on our approach.

Acknowledgments

This research was supported in part by NSF CAREER grant
#1652530 and RI grant #1526379.

2710

References

Asif, K.; Xing, W.; Behpour, S.; and Ziebart, B. D. 2015.
Adversarial cost-sensitive classification. In Proceedings of
the Conference on Uncertainty in Artificial Intelligence.
Blum, A., and Chawla, S. 2001. Learning from labeled and
unlabeled data using graph mincuts. In International Con-
ference on Machine Learning, 19–26. Morgan Kaufmann
Publishers Inc.
Blum, A.; Lafferty, J.; Rwebangira, M. R.; and Reddy, R.
2004. Semi-supervised learning using randomized mincuts.
In Proceedings of the twenty-first international conference
on Machine learning, 13. ACM.
Boyd, S., and Vandenberghe, L. 2004. Convex optimization.
Cambridge university press.
Boykov, Y.; Veksler, O.; and Zabih, R. 2001. Fast
approximate energy minimization via graph cuts. IEEE
Transactions on pattern analysis and machine intelligence
23(11):1222–1239.
Dalvi, N.; Domingos, P.; Sanghai, S.; Verma, D.; et al. 2004.
Adversarial classification. In KDD, 99–108. ACM.
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. J. Mach. Learn. Res. 12:2121–2159.
Dudı́k, M., and Schapire, R. E. 2006. Maximum entropy
distribution estimation with generalized regularization. In
Learning Theory. Springer Berlin Heidelberg. 123–138.
Elisseeff, A., and Weston, J. 2002. A kernel method for
multi-labelled classification. In Advances in neural infor-
mation processing systems, 681–687.
Fathony, R.; Bashiri, M. A.; and Ziebart, B. 2017. Adver-
sarial surrogate losses for ordinal regression. In Advances in
Neural Information Processing Systems. Curran Associates,
Inc. 563–573.
Fathony, R.; Liu, A.; Asif, K.; and Ziebart, B. 2016. Adver-
sarial multiclass classification: A risk minimization perspec-
tive. In Advances in Neural Information Processing Systems,
559–567.
Flake, G. W.; Tarjan, R. E.; and Tsioutsiouliklis, K. 2004.
Graph clustering and minimum cut trees. Internet Mathe-
matics 1(4):385–408.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Advances in Neural
Information Processing Systems, 2672–2680.
Greig, D. M.; Porteous, B. T.; and Seheult, A. H. 1989.
Exact maximum a posteriori estimation for binary images.
Journal of the Royal Statistical Society. Series B (Method-
ological) 271–279.
Grünwald, P. D., and Dawid, A. P. 2004. Game theory, max-
imum entropy, minimum discrepancy, and robust Bayesian
decision theory. Annals of Statistics 32:1367–1433.
Ishikawa, H. 2003. Exact optimization for markov ran-
dom fields with convex priors. IEEE transactions on pattern
analysis and machine intelligence 25(10):1333–1336.

Joachims, T. 2005. A support vector method for multivariate
performance measures. In Proceedings of the International
Conference on Machine Learning, 377–384. ACM.
Kolmogorov, V., and Zabin, R. 2004. What energy functions
can be minimized via graph cuts? IEEE transactions on pat-
tern analysis and machine intelligence 26(2):147–159.
Li, J.; Asif, K.; Wang, H.; Ziebart, B. D.; and Berger-Wolf,
T. 2016. Adversarial sequence tagging. In International
Joint Conference on Artificial Intelligence (IJCAI), 1690–
1696.
Lichman, M. 2013. UCI machine learning repository.
McMahan, H. B.; Gordon, G. J.; and Blum, A. 2003. Plan-
ning in the presence of cost functions controlled by an ad-
versary. In Proceedings of the International Conference on
Machine Learning, 536–543.
Potts, R. B. 1952. Some generalized order-disorder trans-
formations. In Mathematical proceedings of the cambridge
philosophical society, volume 48, 106–109. Cambridge
Univ Press.
Taskar, B.; Chatalbashev, V.; Koller, D.; and Guestrin, C.
2005. Learning structured prediction models: A large mar-
gin approach. In Proceedings of the International Confer-
ence on Machine Learning, 896–903. ACM.
Taskar, B.; Chatalbashev, V.; and Koller, D. 2004. Learn-
ing associative markov networks. In Proceedings of the
twenty-first international conference on Machine learning,
102. ACM.
Taskar, B.; Guestrin, C.; and Koller, D. 2004. Max-margin
markov networks. In Advances in neural information pro-
cessing systems, 25–32.
Topsøe, F. 1979. Information theoretical optimization tech-
niques. Kybernetika 15(1):8–27.
Tsochantaridis, I.; Hofmann, T.; Joachims, T.; and Altun, Y.
2004. Support vector machine learning for interdependent
and structured output spaces. In Proceedings of the Interna-
tional Conference on Machine Learning, 104. ACM.
Tsoumakas, G.; Spyromitros-Xioufis, E.; Vilcek, J.; and
Vlahavas, I. 2011. Mulan: A java library for multi-label
learning. Journal of Machine Learning Research 12:2411–
2414.
Tsoumakas, G.; Katakis, I.; and Vlahavas, I. 2009. Mining
multi-label data. In Data mining and knowledge discovery
handbook. Springer. 667–685.
von Neumann, J., and Morgenstern, O. 1947. Theory of
Games and Economic Behavior. Princeton University Press.
Wainwright, M. J., and Jordan, M. I. 2008. Graphical mod-
els, exponential families, and variational inference. Founda-
tions and Trends in Machine Learning 1(1-2):1–305.
Wang, H.; Xing, W.; Asif, K.; and Ziebart, B. 2015. Adver-
sarial prediction games for multivariate losses. In Advances
in Neural Information Processing Systems, 2728–2736.
Zhang, M.-L., and Zhou, Z.-H. 2007. Ml-knn: A lazy learn-
ing approach to multi-label learning. Pattern recognition
40(7):2038–2048.

2711

