
Mining Heavy Temporal Subgraphs:
Fast Algorithms and Applications

Jose Cadena, Anil Vullikanti

Department of Computer Science and Biocomplexity Institute, Virginia Tech, Blacksburg, VA 24061
{jcadena,vsakumar}@vt.edu

Abstract

Anomaly detection is a fundamental problem in dynamic net-
works. In this paper, we study an approach for identifying
anomalous subgraphs based on the Heaviest Dynamic Sub-
graph (HDS) problem. The HDS in a time-evolving edge-
weighted graph consists of a pair containing a subgraph and
sub-interval whose sum of edge weights is maximized. The
HDS problem in a static graph is equivalent to the Prize
Collecting Steiner Tree (PCST) problem with the Net-Worth
objective—this is a very challenging problem, in general, and
numerous heuristics have been proposed. Prior methods for
the HDS problem use the PCST solution as a heuristic, and
run in time quadratic in the size of the graph. As a result, they
do not scale well to large instances. In this paper, we develop
a new approach for the HDS problem, which combines rigor-
ous algorithmic and practical techniques and has much better
scalability. Our algorithm is able to extend to other variations
of the HDS problem, such as the problem of finding multiple
anomalous regions. We evaluate our algorithms in a diverse
set of real and synthetic networks, and we find solutions with
higher score and better detection power for anomalous events
compared to earlier heuristics.

1 Introduction

Networks in most applications are dynamic and evolve over
time. An important problem in temporal data is to detect
“anomalous” events, e.g., an unusual rate of incidence of a dis-
ease in a region. As discussed in the survey of (Akoglu, Tong,
and Koutra 2014), the different directions on dynamic net-
work anomaly detection are formalized in terms of changes
in properties of nodes and edges (Kang et al. 2011), spectral
properties (Sun et al. 2008) or communities (Peel and Clauset
2014), or window-based (Bogdanov, Mongiovı̀, and Singh
2011; Mongiovı̀ et al. 2013).

We focus on the window-based approach in a weighted
temporal graph. In this setting, we are given a fixed graph
G = (V,E) with a weight f t(e) for an edge e = (u, v) ∈ E
for timestamps t = 1, . . . , T , which may reflect the sig-
nificance of the interaction at some time. The objective of
the Heaviest Dynamic Subgraph (HDS) problem (Bogdanov,
Mongiovı̀, and Singh 2011) is then to find a connected sub-
graph G′ = (V ′, E′) and a time interval [i, j] whose sum of

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

edge scores is maximized (see Section 2 for a formal defini-
tion). When the time interval is fixed (i.e., the graph is static),
we refer to this as the Heaviest Subgraph (HS) problem. The
HDS has been shown to be able to identify interesting events
in social media and traffic data networks. The heaviest sub-
graph problem for a static graph is the complement of the
well-known Prize Collecting Steiner Tree (PCST) problem—
this is equivalent to the PCST problem with the Net-Worth
objective, which is known to be very challenging in general
(Bateni, Hajiaghayi, and Liaghat 2013). Despite a lot of work,
no rigorous algorithms are known for the NetWorth objec-
tive, but usually the Goemans-Williamson (Goemans and
Williamson 1997) algorithm for PCST is used as a heuristic.

In this paper, we develop a new approach for the HDS
problem and its extensions that combines rigorous algorith-
mic and practical techniques. Our contributions are:
(1) We design a new temporal filtering method that selects
a sub-quadratic set of time intervals and provably preserves
the maximum HDS solution, within a factor of 2. Together,
with a faster algorithm for the PCST problem (by adapting
the technique of (Cole et al. 2001)), we obtain a near-linear
time algorithm, both in terms of the number of time intervals
and the size of the network.
(2) Our algorithms can be applied to various extensions of the
HDS problem, such as finding multiple anomalous regions,
finding anomalous regions rooted at a subset of interest, and
finding regions up to a size constraint.
(3) We evaluate our algorithms in real and synthetic networks.
Our proposed algorithm for the HDS problem is several or-
ders of magnitude (up to four) faster than existing methods.
For the generalization of HDS to multiple anomalous regions,
we discover more regions while either matching or improving
on the objective value of the existing state-of-the-art method.
Further, we show that the subgraphs identified by our algo-
rithms are relevant in their respective domains.

Since the Steiner tree and PCST are commonly used
heuristics in a number of problems (Rozenshtein et al. 2014;
Sadeghi and Frohlich 2013; Mongiovı̀ et al. 2013; Wu et al.
2016), we expect our techniques for speeding up PCST will
be useful more generally. Many details are omitted because
of the space limitation, and are available in the full version at
(Cadena and Vullikanti 2017).

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

2779

(a) (b)

Figure 1: (a) Example of an instance of HDS with 4 time
intervals. Thick edges have weight +1 and thin edges have
weight −1. The HDS includes all the edges and spans sub-
interval [2, 3]. For comparison, the HS in sub-interval [1,1]
has a score of 1 by using either (A,C) or (D,E). (b) Re-
duction of an instance of HS to an instance of NW. Nodes
A, B, and C are merged into a node of prize 3 (weights of
(A,B), (B,C), and (C,A)). Nodes D, E, and F are merged
similarly. Negative edges become positive.

2 Preliminaries

An edge-evolving network over a set T = {t1, . . . , t2} of
timestamps is a tuple (G = (V,E), F, T), where: (1) G =
(V,E) is an undirected graph with set V = V (G) of nodes
and set E = E(G) of edges; and (2) F = {f t1 , . . . , f t2} is
a family of weighing functions that assigns weights to edges.
In most cases, T will just be a time interval [t1, t2]. Each
function f i is associated with a timestamp i ∈ [t1, t2]. For
two timestamps i ≤ j, such that t1 ≤ i ≤ j ≤ t2, we say
that [i, j] is a sub-interval of [t1, t2]. Informally, the score
fk(e) of an edge e represents the importance or anomalous-
ness of the edge. For example, a positive edge may indi-
cate increased interaction between two users in an online
social network. Mongiovı̀ et al. (Mongiovı̀ et al. 2013) define
f t(e) = − log pt(e)/μ, where pt(e) is the p-value associated
with the edge at time t, and μ denotes a significance level
threshold. We use f [i,j](e) =

∑
t∈[i,j] f

t(e). A temporal
subgraph of G is a pair (G′ = (V ′, E′), [i, j]), where G′ is a
connected subgraph of G and [i, j] is a sub-interval of [t1, t2].
The score of a subgraph G′ in the interval [i, j] is the sum
of the weights of the edges in E′ during the interval [i, j],
or, formally, score(G′, F, [i, j]) =

∑
e∈E′(G′)

∑j
k=i f

k(e).
When the sub-interval of the temporal subgraph is clear from
context, we omit it and refer only to G′.
Problem 2.1 (HDS and HS problems). Given an instance
(G,F, [t1, t2]) of an edge-evolving network, the objec-
tive of the HEAVIEST DYNAMIC SUBGRAPH problem,
HDS(G,F, [t1, t2]), is to find a temporal subgraph
(G′, [i, j]), over all possible subgraphs G′ of G and sub-
intervals [i, j] of [t1, t2], such that score(G′, F, [i, j]) is max-
imized. The objective of the HEAVIEST SUBGRAPH prob-
lem, HS(G, f [t1,t2]), is to find a temporal subgraph G′ of

Notation Description

(G, f [t1,t2]) HS instance
(G,F, T) Edge-evolving network
(G,F, [t1, t2]) HDS instance
(G,F, [t1, t2], τ) SAR instance
R = {R1 . . . Rk} SAR solution (or region set)
φHDS(G,F, [i, j]) value of optimal solution for HDS instance
(H,w, π) = P(G, [t1, t2]) PCST instance equivalent to (G, [t1, t2])

φPCST(H,w, π) Minimization PCST objective
φNW(H,w, π) Net-worth PCST objective
we, πi Weight of edge e, prize of node i

Table 1: Summary of the notation used in the paper

maximum score in a fixed interval [t1, t2] over all possible
subgraphs G′.

The HS problem is closely related to the well-studied
Prize-Collecting Steiner Tree (PCST) problem (Johnson,
Minkoff, and Phillips 2000). In PCST, we are given an undi-
rected graph H = (V ′, E′); each node i of the graph has a
non-negative prize πi, and each edge e has a non-negative
weight we. The objective is to find a tree T that minimizes
φPCST(H,w,π) =

∑
e∈T we +

∑
i �∈T πi. Goemans and

Williamson (Goemans and Williamson 1997) develop an
algorithm (referred to as Algorithm GW) that gives a 2-
approximation to this problem but has a running time of
O(n2 log n), where n = |V |. Another objective that has
been considered is the Net-Worth maximization (NW) prob-
lem, where the goal is to find a tree T that maximizes
φNW(H,w,π) =

∑
i∈T πi −

∑
e∈T we. To avoid nota-

tional clutter, we will sometimes refer to these two objec-
tives as φPCST and φNW, respectively, without mentioning
the instance (H,w,π) whenever it is clear from the con-
text. Observe that φNW =

∑
i∈V ′ πi − φPCST, but an ap-

proximation to the PCST objective does not imply a similar
approximation to the NW objective.

As observed by (Bogdanov, Mongiovı̀, and Singh 2011),
the HS problem for an instance (G, f [t1,t2]) and NW prob-
lems are equivalent in an approximation-preserving sense.
Let V1, . . . , Vr be the connected components of the graph
G[E+] induced by the set E+ of edges, where E+ = {e ∈
E : f [t1,t2](e) ≥ 0} is the set of edges with non-negative
score in this interval. Let H = (V ′, E′) be a weighted
graph with V ′ = {V1, . . . , Vr} and (i, j) ∈ E′ if there
exists an edge e = (u, v) ∈ E with u ∈ Vi, v ∈ Vj . For
e = (Vi, Vj) ∈ E′, we define we = min{f [t1,t2](e′) :
e′ = (u′, v′) and u′ ∈ Vi, v

′ ∈ Vj} to be the minimum
score of an edge between Vi and Vj . For Vi ∈ V ′, we define
πi =

∑
e=(u,v):u,v∈Vi

max{f [t1,t2](e), 0} to be the sum of
the positive edge scores for edges with both end points in Vi.
An example of this reduction is shown in Figure 1. We will
refer to (H,w, π) = P(G, f [t1,t2]) as the PCST instance
equivalent to (G, f [t1,t2]). It can be verified that the score
of HS(G, f [t1,t2]) is equal to φNW(H,w, π). Similarly, a
subgraph H ′ of H can be mapped to a subgraph G′ of G
with equal score.

2780

Next, we consider an extension of HDS to multiple sub-
graphs, as defined by (Mongiovı̀ et al. 2013).

Problem 2.2 (Significant Anomalous Regions). Given an
edge-evolving network (G,F, T) and a threshold τ , the
objective is to find a set of regions (temporal subgraphs)
R = {R1, R2, . . . , Rk} in decreasing order of scores, such
that the score of a region Ri, without considering the score
of positive edges overlapping with higher-scoring regions, is
not below τ .

Note that an edge can appear in multiple subgraphs, but it
contributes to the score of only one of them. This allows for
overlaps.

3 Proposed Methods

3.1 Small certificate for HDS: selection of a small
number of time intervals

Algorithm 1 SELECTINTERVALS(t): Produce set of
O(t log t) intervals.

Input: Time interval [1, t]
Output: Set A of sub-intervals from [0, t]
For i ∈ [1, log t], let A1(i) denote the set all the intervals
of the form [1, 2i], [2i, 2(2i)] . . . [(t− 2i), t].
Let A1 = ∪iA1(i)
For each interval [a, b] ∈ A1, let A2(a, b) denote the
sub-intervals that have either a or b as an end-point, i.e.,
intervals [a, c], for all c ∈ [a + 1, b] and [d, b], for all
d ∈ [a, b− 1].
Let A2 = ∪[a,b]∈A1

A2(a, b).
Let A3 be the set of intervals [i, i + 1], [i, i +
2], . . . , [i,min{i+ log t, i+ t}] for each i ∈ [1, t].
return A = A1 ∪A2 ∪A3

Let (G,F, [1, t]) be an instance of HDS, where [1, t] is
chosen only to simplify notation. Instead of solving HDS for
the instance by considering the HS solution on the graphs for
each of the O(t2) time intervals, Algorithm SELECTINTER-
VALS picks O(t log t) intervals, such that a solution within a
factor of two of the optimal HDS solution is preserved. Note
that the set A3 of intervals selected by Algorithm SELECT-
INTERVALS is not needed in the proof of Lemma 2; however,
it turns out to give significant improvements in practice.

Lemma 1. Let 1 ≤ a < b < d ≤ t. Then,
max{φHDS(G,F, [a, b]), φHDS(G,F, [b, d])} ≥
φHDS(G,F, [a, d])/2.

The proofs of this lemma and the next are presented in
(Cadena and Vullikanti 2017).

Lemma 2. Let A be the set of intervals returned by Algo-
rithm SELECTINTERVALS(t). Then, |A| = O(t log t) and
max(i,j)∈A φHDS(G, [i, j]) ≥ φHDS(G, [1, t])/2.

3.2 Algorithm FASTGW for the HS problem

Next, we present algorithm FASTGW for the HS problem,
which combines ideas from three prior results in a non-
trivial manner. We improve upon the algorithm of (Cole et al.

2001), who adapt the primal-dual algorithm of (Goemans and
Williamson 1997) (denoted by GW), using improved pruning
and data structures, leading to an improved running time.
We briefly describe the intuition and then present algorithm
FASTGW. Some of the details are described in (Cadena and
Vullikanti 2017).

Let (H = (V ′, E′),w, π) be an instance of PCST. The
rooted version of the PCST problem with root r can be
formulated as the following integer program (PCST-IP):

min
∑

e

wexe +
∑

T⊆V ′−{r}
zTπ(T) such that

∑

e∈δ(S)

x(e) +
∑

T⊇S

zT ≥ 1 ∀S ⊆ V ′ − {r}

∑

T⊆V ′−{r}
zT ≤ 1

xe, zT ∈ {0, 1} ∀e ∈ E, T ⊂ V ′ − {r}
The linear relaxation (PCST-LP) of (PCST-IP) is obtained

by replacing the constraints xe ∈ {0, 1} and zT ∈ {0, 1} by
xe ∈ [0, 1] and zT ∈ [0, 1]. The dual (PCST-D) of (PCST-LP)
is:

max
∑

S⊂V ′−{r}
yS such that

∑

S:e∈δ(S)

yS ≤ we, e ∈ E

∑

S⊆T

yS ≤ π(T), T ⊆ V ′ − {r}

yS ≥ 0, S ⊆ V ′ − {r}
The GW algorithm maintains variables yS in (PCST-D) for

each cluster S; these are interpreted as the cluster’s potential.
The algorithm has two phases: Growth and Pruning. In the
Growth phase, we maintain a set of clusters. If a cluster has
non-zero potential, we say that it is active; otherwise, the
cluster is inactive. Initially, all nodes are in active singleton
clusters, except for the root, which is inactive. Let Su de-
note the cluster containing node u. The algorithm maintains
a quantity du for each node u, which captures the sum of
all dual variables (i.e., potential) yS , such that u ∈ S over
the past rounds. For any edge e = (u, v), the algorithm will
ensure that du+dv ≤ we. In a given round, the dual variables
associated with all the active clusters grow at the same rate
until one of the following events happen: (1) For some edge
e = (u, v) with Su being active and Sv being the root compo-
nent, we have du+dv = we. In this case, we say that the edge
(u, v) becomes tight, Su is merged with the root cluster, and
it becomes inactive. (2) For some edge e = (u, v) with Su

and Sv being distinct active clusters, we have du + dv = we.
In this case, we say that the edge (u, v) becomes tight, and
the clusters Su and Sv are merged to form a new cluster; (3)
For some cluster S, we have

∑
T⊆S yT = π(S). In this case

the cluster S becomes inactive. The Growth phase ends when
all the clusters are inactive, and the solution returned is the
set of tight edges, F . In the Pruning phase, we find a tree
F ′ ⊂ F by discarding edges whose removal does not degrade
the quality of the initial solution. (Goemans and Williamson
1997) show that this algorithm runs in O(n2 log n) time.

2781

Algorithm 2 FASTGW(H,w, π)

Input: (H,w, π)
Output: Tree T , a solution to PCST
Growing Phase:
Set F = ∅, H = {vc|v ∈ V }
while H is not empty do

Set Sc = H.pop()
Set i = S.pop()
if i is an edge then

if i = (S, S′) is a terminal edge then
MERGE(S, S′)
Add PARENT(i) to F

else
EDGESPLIT(i)
Add Sc back to H

end if
else

DEACTIVATECOMPONENT(S)
end if

end while
Pruning Phase
Set F ′ = ALLROOTEDNW(F)
return F ′

FASTGW algorithm We adapt the approach of (Cole et al.
2001) to develop a much faster algorithm for PCST (Algo-
rithm 2). We describe the main ideas below.

1. Growth Phase and Edge Splitting: The main idea is to
avoid having an edge whose two endpoints are both active
clusters—this is referred to as edge splitting by (Cole et al.
2001). Initially, every edge (u, v) in the graph is “split” in
half by adding an artificial node t between u and v; this
effectively creates two edges, (u, t) and (t, v). In every
Growth phase round, if two clusters are merged and, as
a result, two active clusters become neighbors, the edge
is split again ensuring that at most one of the endpoints
is active. Of course, the edge cannot be split indefinitely;
an edge that cannot be split is called a terminal. The user
determines how many times an edge will be split via a
parameter.

2. Pruning phase: This step takes an edge-weighted tree
and finds the optimal Heaviest Subgraph by solving the
net-worth problem on it optimally. Note that this step is
different from (Cole et al. 2001).

3. During the Growth phase, we maintain a binomial heap
H of active clusters. For every active component S, H
contains a heap Sc of edges that have S as an endpoint. Sc

also contains a reference to itself. In every Growth phase
round, we pop a heap Sc from H and, subsequently, an
element i from Sc. The element i corresponds to either
an edge that has just become tight, or a cluster that now
has zero potential. In the former case, if the edge is a
terminal, its endpoints are merged (procedure MERGE);
otherwise, the edge is split (EDGESPLIT). In the latter
case, the component becomes deactivated, so we discard it
(DEACTIVATECOMPONENTS).

4. In order to obtain the the desired running time, we im-
plemented a system of clocks. The Growth phase of GW
can be interpreted as a process in which dual variables
grow as time passes. We maintain 1) a global clock W , 2)
an internal clock for each cluster, SW , and 3) an internal
clock for each element in a heap iW . A cluster clock SW

indicates the the time from the beginning of the algorithm
at which S will either merge with some other component
or be deactivated.

3.3 Putting it all together: improved algorithm
for the HDS problem

We describe the main idea for FASTGW-HDS (Algorithm 3)
below. It iterates over the intervals returned by the SELECT-
INTERVALS procedure. The second step involves converting
G into an instance of PCST, H . We define a procedure called
HS-TO-PCST that executes the instance transformation de-
scribed in Section 2. For further improving the running time,
we use the two upper bounds, UBSOP and UBSTR, from
(Bogdanov, Mongiovı̀, and Singh 2011), which allow us to
discard low-scoring intervals without having to compute the
PCST solution.

Algorithm 3 FASTGW-HDS: Find a solution to HDS

Input: Dynamic Network G = (V,E,W)
Output: Dynamic Subgraph R = (G′, [i, j])
Set z = 0,R = ∅
Let A = A1 ∪A2 ∪A3 = SELECTINTERVALS(T)
for subinterval [a, b] ∈ A1 do

if the graph for subinterval [a, b], passes the
upper-bound checks, UBSOP (G[a,b]) ≥ z and
UBSTR(G[a,b]) ≥ z then

Set (H,w, π) = HS-TO-PCST(G)
Set score = FASTGW(H,w, π)
if this score is better than the current best then

Let H ′ be the subgraph of H returned by
FASTGW(H,w, π)
Set z = score
Set R = (G′, [a, b]), which is the temporal sub-
graph of (G, [a, b]) equivalent to H ′

end if
end if

end for
Repeat above loop for each subinterval [a, b] ∈ A2 ∪A3

return R

Lemma 3. Algorithm FASTGW-HDS runs in time
O(T log T (m+ n) log2 n) and requires space O(m).

Proof. (Sketch) The algorithm runs FASTGW for all the in-
tervals in A. For each such interval, the bounds UBSOP and
UBSTR are computed, and the HS instance is converted to
the equivalent PCST instance, and back. All of these can be
done in linear time. Since FASTGW takes O((n+m) log2 n)
time, the total time is O(T log T (m+n) log2 n). Finally, the
algorithm only needs space for running the instance corre-
sponding to one interval in A, so the lemma follows.

2782

4 C-SAR: An algorithm for the SAR

Problem

We describe Algorithm C-SAR (Component SAR) for the
SAR problem. C-SAR has two main parts that we describe
below (see (Cadena and Vullikanti 2017) for more details).
(1) Candidate-generation step. We generate the candidate
subgraph set for an interval [i, j] by running a modified ver-
sion of FASTGW, which we call FORESTGW. This algorithm
returns a collection of trees of the PCST instance (H,w, π)
and their respective scores. The candidate subgraph set Ci,j
is precisely this collection. Notice that we do not map the
forest to the corresponding edges in G at this point, as there
is no need to retrieve the original edges for a subgraph unless
it gets selected as the next region to be output.
(2) Update step. The update step takes place in an iteration
k after region Rk = (G′, [a, b]) is selected to be output. We
need to update the candidate subgraphs belonging to intervals
that overlap with [a, b], so that the positive edges of G′ do not
contribute to the scores of the subgraphs in these overlapping
intervals in future iterations.

Algorithm 4 C-SAR Find all regions with anomaly score
above a given threshold

Input: (G,F, [t1, t2], τ)
Output: Set of regions R = {R1, R2, . . . , Rk}
Set R = ∅
Set I = FORESTGW-HDS(G,F, [t1, t2], τ)
Set k = 1
while there is a candidate interval I do

Find the interval [a, b] with subgraph of maximum score:
Set [a, b] = argmax[i,j]∈I{maxG′∈Ci,j{score(G

′)}}
Find the subgraph Gk in [a, b] with maximum score:
Gk = argmaxG′∈Ca,b

{score(G′)}
Implicitly remove Gk from Ci,j

Set R = R∪ {(Gk, [a, b])}
for each sub-interval [i, j] ∈ I that overlaps with [a, b] do

Update edge weight function:
for subgraph H ′ ∈ Ci,j do

for node v ∈ H ′ with prize πv do
compute new prize π′v:
if π′v �= πv then

mark H ′ for update
end if

end for
if H ′ is marked for update then

Remove {H ′} from Ci,j

Set new sub = FORESTGW(H ′,w′,pi′)
Add the updated components in new sub back Ci,j :
Set Ci,j = Ci,j ∪ {g ∈ new sub|score(g) ≥ τ}

end if
end for
Comment: Implicitly discard [i, j] if Ci,j = ∅

end for
k ← k + 1

end while

Table 2: Sizes of experimental networks

Dataset Nodes Edges Timestamps Resolution

Twitter Venezuela 2,645 17,018 182 1 day
Hospital 75 1,139 5,820 1 minute
Traffic 1,870 1,993 2,160 20 minutes
Wikipedia 992 1,408 723 1 day
AS-CAIDA 31,379 101,945 122 weekly to monthly

5 Experiments

5.1 Datasets and Setup

We evaluate our algorithms on five real networks (see Table
2): (i) a Twitter follower graph with communication evolv-
ing over 6 months, (ii) the highway network of Los Angeles
County, California and its activity on May, 20141, (iii) a con-
tact network of health-care workers and patients in a hospital
ward during 4 days (Vanhems et al. 2013), (iv) a sample
of Wikipedia page view statistics, and (v) an autonomous
systems network. Additionally, we generated semi-synthetic
data by randomly assigning edge weights with probability
p to the Hospital, Twitter, and Wikipedia networks. For the
results below, we use values of p of 0.01, 0.05, 0.10, 0.30. A
detailed description of each dataset can be found in (Cadena
and Vullikanti 2017).
Experimental setup We compare the quality of FASTGW to
the Basic and MEDEN algorithms of (Bogdanov, Mongiovı̀,
and Singh 2011) for HDS. Also, we compare C-SAR to the
NetSpot algorithm of (Mongiovı̀ et al. 2013), which is the
state-of-the-art for the SAR problem.

We focus on answering the following questions:
(1) Quality: What is the accuracy of FASTGW-HDS com-
pared to MEDEN? How does TopDown compare to our algo-
rithms for approximating the score of a heaviest subgraph on
standard benchmarks?
(2) Scalability: How fast is FASTGW-HDS compared to
(Bogdanov, Mongiovı̀, and Singh 2011), and how does it
scale with the network size and number of intervals?
(3) Detection Power: Are the subgraphs identified by our al-
gorithms relevant or anomalous in their respective domains?

5.2 Quality of FASTGW-HDS

We compare the objective value of the solution produced by
our algorithms to the solution produced by MEDEN on real
data. Figure 2 shows the score of the HDS obtained by both
algorithms for the highway network and for Twitter. We com-
pute heaviest subgraph for different lengths of time intervals
up to the maximum number of intervals for each network.
For Twitter, the two algorithms exhibit similar performance.
However, as discussed in Section 5.5, our algorithms find
qualitatively better results for this dataset. Results for the
other datasets can be found in (Cadena and Vullikanti 2017).

Figure 3 shows the score obtained by MEDEN relative to
the FASTGW-HDS score as the number of positive edges in
the network increases. We plot relative performance in this
case because (i) FASTGW-HDS always has a higher score
and (ii) the scores for different values of p are very different

1http://pems.dot.ca.gov/

2783

(a) (b)

Figure 2: Objective score of FASTGW-HDS and MEDEN for
(a) the Traffic dataset and (b) Twitter for a varying number
of timestamps. Most of the time, the solution produced by
FASTGW-HDS is at least as good as the MEDEN solution
and significantly better for the Traffic dataset

(a) (b)

Figure 3: MEDEN score relative to FASTGW-HDS as the
positive edges of a network increase. Notice that the y-axes
on both plots have different ranges. FASTGW-HDS outper-
forms MEDEN for instances with a low percentage of pos-
itive weights. As more edges become positive, the instance
becomes easier to solve and both algorithms obtain the same
scores.

making it difficult to appreciate the gap between the two
algorithms on an absolute scale. We note that both algorithms
achieve the same score across all values of p for the Hospital
network, suggesting that this dataset is an easy instance to
solve.

5.3 Scalability of FASTGW-HDS

Figure 4 shows the running times of FASTGW-HDS and
Basic on the Traffic (4a), Hospital (4b), Wikipedia (4c) and
AS (4d) datasets. We ran both algorithms varying the number
of timestamps of the input up to the maximum number of
timestamps for each network. We can see FASTGW-HDS is
much faster than Basic for these datasets, even for a small
number of intervals. The most notorious difference is the
Hospital network, where our algorithm is up to four orders of
magnitude faster, but we point out that this dataset is also the
largest with respect to number of intervals. For Wikipedia, we
see an improvement of one order of magnitude, and for the
Traffic dataset, we could only run Basic with up to 500 time
intervals. Given that MEDEN is approximately one order of
magnitude faster than Basic (Bogdanov, Mongiovı̀, and Singh
2011), our results show evidence that FASTGW-HDS has
running time competitive to or superior to that of MEDEN.

(a) (b)

(c) (d)

Figure 4: Running times (in seconds) of FASTGW-HDS and
Basic for the (a) Traffic, (b) Hospital, (c) Wikipedia, and (d)
AS datasets. FASTGW-HDS is much faster than Basic in all
instances for up to four orders of magnitude.

Algorithms Twitter Hospital Traffic Wikipedia

C-SAR

Avg. 315.53 189.14 1,577.87 27.33
Med. 269 198 1,539 18
Count 72 14 31 9
Range [153, 786] [114, 241] [1,012, 2,505] [15, 76]

NetSpot

Avg. 323.77 137.90 1,303.57 29.714
Med. 293 134 1,262 18
Count 56 10 7 7
Range [153, 722] [112, 180] [1,026, 1,657] [15, 76]

Table 3: Quality statistics for C-SAR and NetSpot

5.4 Quality of C-SAR

Table 3 shows statistics of running C-SAR and NetSpot in
our datasets. For every network, we set the threshold T low
enough to capture subgraphs with a score at least half of
the heaviest subgraph— sometimes much lower as in the
case of Twitter, where T is 150 and the heaviest subgraph
found has score 786. We note that the largest regions found
by C-SAR for each dataset are larger than those found by
NetSpot (equal for Wikipedia). The biggest improvement
is on the traffic dataset, where our algorithm finds a region
50% larger than the NetSpot solution. Also, C-SAR finds a
larger number of regions for the chosen NetSpot parameter.
Average and median scores also show overall better quality
for C-SAR, except for Twitter. An explanation for this is that
the regions found by NetSpot span only one time interval for
this dataset, whereas our algorithm covers almost half of the
time intervals for the biggest region. This makes it possible
for NetSpot to “pack” more intervals of higher scores in
subsequent runs.

5.5 Detection power

For the traffic dataset, the HDS obtained by FASTGW-HDS
corresponds to the stretch of highway I10-E between high-

2784

ways I405 and I5, a road prone to congestion during peak
traffic hours. The HDS occurs on Friday, May 9, from 15:00
to 18:20. For Wikipedia, at least three of the highest-scoring
subgraphs found using C-SAR exactly match those found by
NetSpot. Therefore, we can draw conclusions similar to the
NetSpot authors regarding the relevance of the discovered
patterns. For the rest of this section, we focus on analyzing
our Twitter datasets. We explore different ways of studying
Twitter follower graphs in terms of edge-evolving networks.

In order to model information diffusion, we make an as-
sumption similar to the one in (Bogdanov, Mongiovı̀, and
Singh 2011): if two neighboring users send similar tweets in
the same timestamp, it is possible that one is influencing the
other. Furthermore, we model anomalous activity in an edge
as deviations from a Poisson distribution specific to that edge.
Formally, let nt

e be the number of tweets that pass through
edge e at time t; we model nt

e as a draw from a Poisson
distribution with parameter λe. We take a Bayesian approach
and consider λe to be drawn from a Gamma distribution with
parameters αe and βe. These parameters are updated as we
see new data every day. Finally, the weight of an edge is
given by − log(P (nt

e|n
[1,t−1])
e)/μ, where P (nt

e|n
[1,t−1]
e) is

the posterior probability of nt
e given the counts in the pre-

vious days, and μ = 0.05 is a significance threshold. This
weighing function was proposed by (Mongiovı̀ et al. 2013); it
has the desired properties of being positive-increasing if the
posterior probability is less than μ and negative-decreasing
otherwise.

We ran FASTGW-HDS on the Twitter dataset of 182 days.
The temporal subgraph obtained spans the time period from
January 4, 2014 to March 31, 2014, which aligns with a pe-
riod of large-scale national protests in the country. We note
that our result is more interpretable than the subgraph ob-
tained by MEDEN, which covers the entire 182 days. Figure
5 shows the number of civil-unrest events in Venezuela ac-
cording to the GSR dataset (Ramakrishnan et al. 2014); this
dataset is a compilation of events from major newspapers in
Latin America processed manually by analysts and approved
by political scientists who are experts in the region.

Using HDS in this setting we find the heaviest subgraph,
but it may be interesting to also find other events of high
score. In this case, the SAR problem is a natural fit. We ran
NETSPOT (Mongiovı̀ et al. 2013) (with τ = 0) to find the
100 heaviest subgraphs. We find that the timeline of heavy
subgraphs found for Venezuela aligns with the timeline of
GSR events. In particular, most of the activity for both time-
lines occur in the period of January to March 2014. Figure 5
shows the weekly number of events for GSR superimposed
with the weekly number of anomalous subgraphs. The y-axis
is normalized by the sum of instances in the respective series.

6 Related Work

Anomaly detection in dynamic networks has received a
lot of attention in recent years, and has been used in a
number of applications, including computer and social net-
works and water distribution systems e.g., (Ma et al. 2011;
Zeidanloo and Manaf 2010; Akoglu and Faloutsos 2010). The
survey by Akoglu et. al. (Akoglu, Tong, and Koutra 2014)

2
0
1
3
-1
0
-0
6

2
0
1
3
-1
0
-2
0

2
0
1
3
-1
1
-0
3

2
0
1
3
-1
1
-1
7

2
0
1
3
-1
2
-0
1

2
0
1
3
-1
2
-1
5

2
0
1
3
-1
2
-2
9

2
0
1
4
-0
1
-1
2

2
0
1
4
-0
1
-2
6

2
0
1
4
-0
2
-0
9

2
0
1
4
-0
2
-2
3

2
0
1
4
-0
3
-0
9

2
0
1
4
-0
3
-2
3

2
0
1
4
-0
4
-0
6

0

20

40

60

80

100

120

140

160

180

2
0
1
3
-1

0
-0

6

2
0
1
3
-1

0
-2

0

2
0
1
3
-1

1
-0

3

2
0
1
3
-1

1
-1

7

2
0
1
3
-1

2
-0

1

2
0
1
3
-1

2
-1

5

2
0
1
3
-1

2
-2

9

2
0
1
4
-0

1
-1

2

2
0
1
4
-0

1
-2

6

2
0
1
4
-0

2
-0

9

2
0
1
4
-0

2
-2

3

2
0
1
4
-0

3
-0

9

2
0
1
4
-0

3
-2

3

2
0
1
4
-0

4
-0

60.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
GSR Heavy Subgraphs

Figure 5: Top: Number of GSR protest events and heavy
subgraphs per week in Venezuela. Bottom: Proportion of
GSR events compared to the proportion of anomalous regions
found by C-SAR each week

gives a good introduction to the research on this topic. It
classifies the different approaches on anomaly detection in
dynamic graphs into the following broad classes, depend-
ing on the graph characteristic that is used and the kind
of events that are detected. The first approach uses graph
features, such as degree distribution, diameter and eigen-
values, and identifies anomalies based on changes in these
features, e.g., (Kang et al. 2011; Shoubridge et al. 2002;
Leskovec et al. 2008). A related approach examines changes
in community structure, e.g., (Peel and Clauset 2014; Ag-
garwal, Zhao, and Yu 2011). The third approach uses ma-
trix decomposition of time-evolving graphs, and formalizes
anomalies in terms of eigenvectors and eigenvalues, e.g.,
(Sun et al. 2008; Shoubridge et al. 2002). In this paper, we
focus on what is referred to as window-based approach. This
attempts to formalize anomalous patterns in the graph within
a time window, which is used for identifying anomalies in
the entire stream (Bogdanov, Mongiovı̀, and Singh 2011;
Mongiovı̀ et al. 2013). Bogdanov et al. (Bogdanov, Mon-
giovı̀, and Singh 2011) show that the HS problem is NP-Hard
even when the edge weights in {−1, 1}. Section 2 presents
some discussion of their results and those of Mongiovı̀ et al.
(Mongiovı̀ et al. 2013) for the SAR problem.

These problems are closely related to the generalized
Steiner tree and PCST problems, which have been stud-
ied very extensively, e.g., (Goemans and Williamson 1997;
Cole et al. 2001; Johnson, Minkoff, and Phillips 2000;
Chudak, Roughgarden, and Williamson 2001; Bateni, Ha-
jiaghayi, and Liaghat 2013), including node weights and
other objectives. While efficient approximation algorithms
are known for the PCST problem, the NetWorth objective

2785

remains open. Bateni et al., (Bateni, Hajiaghayi, and Liaghat
2013) showed strong inapproximability results for the rooted
version.

7 Conclusions

Mining temporal networks is a challenging problem with
broad applicability. We present new algorithms for the HDS
and HS problems. FASTGW-HDS performs very well in
practice, improving on prior approaches in terms of quality,
with comparable running time. Our temporal pruning tech-
nique is also likely to be useful in other temporal network
analysis problems. We develop a much faster algorithm for
the PCST problem, which extends easily to other variants, as
discussed in (Cadena and Vullikanti 2017).

Acknowledgements

This work was partially supported by the following
grants: DTRA CNIMS Contracts HDTRA1-11-D-0016-0010,
HDTRA1-17-D-0023, and NSF grants IIS-1633028, ACI-
1443054.

References

Aggarwal, C.; Zhao, Y.; and Yu, P. 2011. Outlier detection
in graph streams. In ICDE.
Akoglu, L., and Faloutsos, C. 2010. Event detection in time
series of mobile communication graphs. In Proc. of Army
Science Conference.
Akoglu, L.; Tong, H.; and Koutra, D. 2014. Graph based
anomaly detection and description: a survey. Data Mining
and Knowledge Discovery.
Bateni, M.; Hajiaghayi, M.; and Liaghat, V. 2013. Improved
approximation algorithms for (budgeted) node-weighted
steiner problems. In ICALP.
Bogdanov, P.; Mongiovı̀, M.; and Singh, A. 2011. Mining
heavy subgraphs in time-evolving networks. In ICDM.
Cadena, J., and Vullikanti, A. 2017. Mining heavy temporal
subgraphs: Fast algorithms and applications. https://tinyurl.
com/ycgwqgbm.
Chudak, F.; Roughgarden, T.; and Williamson, D. 2001.
Approximate k-msts and k-steiner trees via the primal-dual
method and lagrangean relaxation. In IPCO.
Cole, R.; Hariharan, R.; Lewenstein, M.; and Porat, E. 2001.
A faster implementation of the goemans-williamson cluster-
ing algorithm. In ACM SODA.
Goemans, M. X., and Williamson, D. P. 1997. The primal-
dual method for approximation algorithms and its application
to network design problems. SIAM Journal of Computing.
Johnson, D.; Minkoff, M.; and Phillips, S. 2000. The prize
collecting steiner tree problem: Theory and practice. In ACM
SODA.
Kang, U.; Papadimitriou, S.; Sun, J.; and Tong, H. 2011.
Centralities in large networks: Algorithms and observations.
In SDM.
Leskovec, J.; Backstrom, L.; Kumar, R.; and Tomkins, A.
2008. Microscopic evolution of social networks. In Proc. of
KDD.

Ma, X.; Xiao, H.; Xie, S.; Li, Q.; Luo, Q.; and Tian, C. 2011.
Continuous, online monitoring and analysis in large water
distribution networks. In ICDE.
Mongiovı̀, M.; Bogdanov, P.; Ranca, R.; Singh, A.; Papalex-
akis, E.; and Faloutsos, C. 2013. Netspot: Spotting significant
anomalous regions on dynamic networks. In SDM.
Peel, L., and Clauset, A. 2014. Detecting change points
in the large-scale structure of evolving networks. CoRR,
abs/1403.0989.
Ramakrishnan, N.; Butler, P.; Muthiah, S.; Self, N.; Khandpur,
R.; Saraf, P.; Wang, W.; Cadena, J.; Vullikanti, A.; Korkmaz,
G.; Kuhlman, C.; Marathe, A.; Zhao, L.; Hua, T.; Chen, F.;
Lu, C. T.; Huang, B.; Srinivasan, A.; Trinh, K.; Getoor, L.;
Katz, G.; Doyle, A.; Ackermann, C.; Zavorin, I.; Ford, J.;
Summers, K.; Fayed, Y.; Arredondo, J.; Gupta, D.; and Mares,
D. 2014. Beating the news with embers: Forecasting civil
unrest using open source indicators. In Proceedings of the
20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, 1799–1808. New
York, NY, USA: ACM.
Rozenshtein, P.; Anagnostopoulos, A.; Gionis, A.; and Tatti,
N. 2014. Event detection in activity networks. In Proceed-
ings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, 1176–
1185. New York, NY, USA: ACM.
Sadeghi, A., and Frohlich, H. 2013. Steiner tree methods for
optimal sub-network identification: an empirical study. BMC
Bioinformatics 14.
Shoubridge, P.; Kraetzl, M.; Wallis, W.; and Bunke, H. 2002.
Detection of abnormal change in a time series of graphs.
Journal of Interconnection Networks.
Sun, J.; Xie, Y.; Zhang, H.; and Faloutsos, C. 2008. Less is
more: Sparse graph mining with compact matrix decomposi-
tion. Statistical Analysis and Data Mining.
Vanhems, P.; Barrat, A.; Cattuto, C.; Pinton, J.-F.; Khanafer,
N.; Régis, C.; Kim, B.-a.; Comte, B.; and Voirin, N. 2013.
Estimating potential infection transmission routes in hos-
pital wards using wearable proximity sensors. PloS one
8(9):e73970.
Wu, N.; Chen, F.; Li, J.; Zhou, B.; and Ramakrishnan, N.
2016. Efficient nonparametric subgraph detection using tree
shaped priors. In AAAI.
Zeidanloo, H. R., and Manaf, A. B. A. 2010. Botnet detec-
tion by monitoring similar communication patterns. CoRR,
abs/1004.1232.

2786

