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Abstract

Stochastic composition optimization draws much attention re-
cently and has been successful in many emerging applications
of machine learning, statistical analysis, and reinforcement
learning. In this paper, we focus on the composition problem
with nonsmooth regularization penalty. Previous works either
have slow convergence rate, or do not provide complete con-
vergence analysis for the general problem. In this paper, we
tackle these two issues by proposing a new stochastic com-
position optimization method for composition problem with
nonsmooth regularization penalty. In our method, we apply
variance reduction technique to accelerate the speed of conver-
gence. To the best of our knowledge, our method admits the
fastest convergence rate for stochastic composition optimiza-
tion: for strongly convex composition problem, our algorithm
is proved to admit linear convergence; for general composition
problem, our algorithm significantly improves the state-of-the-
art convergence rate from O(T−1/2) to O((n1+n2)

2/3T−1).
Finally, we apply our proposed algorithm to portfolio manage-
ment and policy evaluation in reinforcement learning. Experi-
mental results verify our theoretical analysis.

Introduction

Stochastic composition optimization draws much attention
recently and has been successful in addressing many emerg-
ing applications of different areas, such as reinforcement
learning (Dai et al. 2016; Wang and Liu 2016), statistical
learning (Wang, Fang, and Liu 2014) and risk management
(Dentcheva, Penev, and Ruszczyński 2016). The authors
in (Wang, Fang, and Liu 2014; Wang and Liu 2016) pro-
posed composition problem, which is the composition of two
expected-value functions:

min
x∈RN

EiFi(EjGj(x))︸ ︷︷ ︸
f(x)

+h(x), (1)

where Gj(x) : R
N �→ R

M are inner component functions,
Fi(y) : R

M �→ R are outer component functions. The regu-
larization penalty h(x) is a closed convex function but not
necessarily smooth. In reality, we usually solve the finite-
sum scenario for composition problem (1), and it can be
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represented as follows:

min
x∈RN

H(x) = min
x∈RN

1

n1

n1∑
i=1

Fi

(
1

n2

n2∑
j=1

Gj(x)

)
︸ ︷︷ ︸

f(x)

+h(x), (2)

where it is defined that F (y) = 1
n1

n1∑
i=1

Fi(y) and G(x) =

1
n2

n1∑
j=1

Gj(x). Throughout this paper, we mainly focus on the

case that Fi and Gj are smooth. However, we do not require
that Fi and Gj have to be convex.

Minimizing the composition of expected-value functions
(1) or finite-sum functions (2) is challenging. Classical
stochastic gradient method (SGD) and its variants are well
suited for minimizing traditional finite-sum functions (Bot-
tou, Curtis, and Nocedal 2016). However, they are not di-
rectly applicable to the composition problem. To apply
SGD, we need to compute the unbiased sampling gradi-
ent (∇Gj(x))

T∇Fi(G(x)) of problem (2), which is time-
consuming when G(x) is unknown. Evaluating G(x) requires
traversing all inner component functions, which is unaccept-
able to compute in each iteration if n2 is a large number.

In (Wang, Fang, and Liu 2014), the authors considered the
problem (1) with h(x) = 0 and proposed stochastic com-
positional gradient descent algorithm (SCGD) which is the
first stochastic method for composition problem. In their
paper, they proved that the convergence rate of SCGD for
strongly convex composition problem is O(T−2/3), and for
general problem is O(T−1/4). They also proposed acceler-
ated SCGD by using Nesterov smoothing technique (Nes-
terov 1983) which is proved to admit faster convergence rate.
SCGD has constant query complexity per iteration, however,
their convergence rate is far worse than full gradient method
because of the noise induced by sampling gradients. Recently,
variance reduction technique (Johnson and Zhang 2013) was
applied to accelerate the convergence of stochastic composi-
tion optimization. (Lian, Wang, and Liu 2016) first utilized
the variance reduction technique and proposed two variance
reduced stochastic compositional gradient descent methods
(Compositional-SVRG-1 and Compositional-SVRG-2). Both
methods are proved to admit linear convergence rate. How-
ever, the methods proposed in (Wang, Fang, and Liu 2014)
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Table 1: The table shows the comparisons of SCGD, Accelerated SCGD, ASC-PG, Compositional-SVRG-1, Compositional-
SVRG-2, com-SVR-ADMM and our VRSC-PG in terms of convergence. For fair comparison, we consider query complexity in
the convergence rate. We define that one query of Sampling Oracle (SO) has three cases: (1) Given x ∈ RN and j ∈ {1, 2, ..., n2},
SO returns Gj(x) ∈ R

M ; (2) Given x ∈ RN and j ∈ {1, 2, ..., n2}, SO returns ∇Gj(x) ∈ R
M×N ; (3) Given y ∈ R

M and
i ∈ {1, 2, ..., n1}, SO returns ∇Fi(y) ∈ R

M . T denotes the total number of iterations and κ denotes condition number and
0 < ρ < 1.

Algorithm h(x) �= 0 Strongly Convex General Problem

SCGD (Wang, Fang, and Liu 2014) � O(T−2/3) O(T−1/4)
Accelerated SCGD (Wang, Fang, and Liu 2014) � O(T−4/5) O(T−2/7)

Compositional-SVRG-1 (Lian, Wang, and Liu 2016) � O
(
ρ

T
n1+n2+κ4

)
-

Compositional-SVRG-2 (Lian, Wang, and Liu 2016) � O(ρ
T

n1+n2+κ3 ) -
ASC-PG (Wang and Liu 2016) � O(T−4/5) O(T−4/9)

ASC-PG (if Gj(x) are linear ) (Wang and Liu 2016) � O(T−1) O(T−1/2)

com-SVR-ADMM (Yu and Huang 2017) � O
(
ρ

T
n1+n2+κ4

)
1 -

VRSC-PG (Our) � O
(
ρ

T
n1+n2+κ3

)
O((n1 + n2)

2/3T−1)

and (Lian, Wang, and Liu 2016) are not applicable to compo-
sition problem with nonsmooth regularization penalty.

Composition problem with nonsmooth regularization was
then considered in (Wang and Liu 2016; Yu and Huang
2017). In (Wang and Liu 2016), the authors proposed ac-
celerated stochastic compositional proximal gradient algo-
rithm (ASC-PG). They proved that the optimal convergence
rate of ASC-PG for strongly convex problem and general
problem is O(T−1) and O(T−1/2) respectively. However,
ASC-PG suffers from slow convergence because of the noise
of the sampling gradients. (Yu and Huang 2017) proposed
com-SVR-ADMM using variance reduction. Although com-
SVR-ADMM admits linear convergence for strongly convex
composition problem, it is not optimal. Besides, they did
not analyze the convergence for general (nonconvex) com-
position problem either. We review the convergence rate of
stochastic composition optimization in Table 1.

In this paper, we propose variance reduced stochastic com-
positional proximal gradient method (VRSC-PG) for compo-
sition problem with nonsmooth regularization penalty. Apply-
ing the variance reduction technique to composition problem
is nontrivial because the optimization procedure and conver-
gence analysis are essentially different. We investigate the
convergence rate of our method: for strongly convex prob-
lem, we prove that VRSC-PG has linear convergence rate

O
(
ρ

T
n1+n2+κ3

)
, which is faster than com-SVR-ADMM; For

general problem, sometimes nonconvex, VRSC-PG signifi-
cantly improves the state-of-the-art convergence rate of ASC-
PG from O(T−1/2) to O((n1 + n2)

2/3T−1). To the best of
our knowledge, our result is the new benchmark for stochas-
tic composition optimization. We further evaluate our method
by applying it to portfolio management and reinforcement
learning. Experimental results verify our theoretical analysis.

1In (Yu and Huang 2017) , their result is O(ρ
T

n1+n2+Am ). We
prove that to get linear convergence, it must be satisfied that A and
m are proportional to κ2, which is not included in their paper. Check

Preliminary

In this section, we briefly review stochastic composition opti-
mization and proximal stochastic variance reduced gradient.

Stochastic Composition Optimization

The objective function of the stochastic composition opti-
mization is the composition of expected-value (1) or finite-
sum (2) functions, which is much more complicated than tra-
ditional finite-sum problem. The full gradient of composition
problem using chain rule is ∇f(x) = (∇G(x))T∇F (G(x)).
Given x, applying the classical stochastic gradient descent
method in constant queries to compute the unbiased sam-
pling gradient (∇Gj(x))

T∇Fi(G(x)) is not available, when
G(x) is unknown yet. In problem (2), evaluating G(x) is
time-consuming which requires n2 queries in each iteration.
Therefore, classical SGD is not applicable to composition
optimization. In (Wang, Fang, and Liu 2014), the authors
proposed the first stochastic compositional gradient descent
(SCGD) for minimizing the stochastic composition problem
(1) with h(x) = 0. In their paper, they proposed to use an
auxiliary variable y to approximate G(x). In each iteration t,
we store xt and yt in memory. SCGD are briefly described in
Algorithm 1.

In the algorithm, αt and βt are learning rate. Both of them
are decreasing to guarantee convergence because of the noise
induced by sampling gradients. In their paper, they supposed
that x ∈ X . In each iteration, x is projected to X after step
4. Furthermore, the authors proposed Accelerated SCGD
by applying Nesterov smoothing (Nesterov 1983), which is
proved to converge faster than basic SCGD.

Remark 1 in supplementary material.
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Algorithm 1 SCGD
1: Initialize x0 ∈ R

N , y0 ∈ R
M ;

2: for t = 0, 1, 2, . . . , T − 1 do
3: Uniformly sample j from {1, 2, ..., n2} with replace-

ment and query Gj(xt) and ∇jG(xt); � 2
queries

4: Update yt+1 using:

yt+1 ← (1− βt)yt + βtGj(xt); (3)

5: Uniformly sample i from {1, 2, ..., n1} with replace-
ment and query ∇Fi(yt+1); � 1
query

6: Update xt+1 using:

xt+1 ← xt − αt(∇Gj(xt))
T∇Fi(yt+1); (4)

7: end for

Proximal Stochastic Variance Reduced Gradient

Stochastic variance reduced gradient (SVRG) (Johnson and
Zhang 2013) was proposed to minimize finite-sum functions:

min
x∈RN

1

n1

n1∑
i=1

fi(x), (5)

where component functions fi(x) : R
N → R. In large-

scale optimization, SGD and its variants use unbiased sam-
pling gradient ∇fi(x) as the approximation of the full gra-
dient, which only requires one query in each iteration. How-
ever, the variance induced by sampling gradients forces
us to decease learning rate to make the algorithm con-
verge. Suppose x∗ is the optimal solution to problem (5),

full gradient 1
n1

n1∑
i=1

∇fi(x
∗) = 0, while sampling gradient

∇fi(x
∗) �= 0. We should decease learning rate, otherwise

the convergence of the objective function value can not be
guaranteed. However, the decreasing learning rate makes
SGD converge very slow at the same time. For example,
if problem (5) is strongly convex, gradient descent method
(GD) converges with linear rate, while SGD converges with
a learning rate at O(T−1). Reducing the variance is one of
the most important ways to accelerate SGD, and it has been
widely applied to large-scale optimization (Bottou, Curtis,
and Nocedal 2016; Defazio, Bach, and Lacoste-Julien 2014;
Gu, Huo, and Huang 2016b; Allen-Zhu and Yuan 2016;
Huo and Huang 2017; Gu, Huo, and Huang 2016a). In (Xiao
and Zhang 2014), the authors considered the nonsmooth reg-
ularization penalty h(x) �= 0 and proposed proximal stochas-
tic variance reduced gradient (Proximal SVRG). Proximal
SVRG is briefly described in Algorithm 2. In their paper,
they used vt as the approximation of full gradient, where
Evt = 0. It was also proved that the variance of vt converges

to zero: lim
t→∞E‖vt − 1

n1

n1∑
i=1

∇fi(xt)‖22 → 0. Therefore, we

can keep learning rate η constant in the procedure. In step 7,
Proxηh(.)(x) denotes proximal operator. With the definition

of proximal mapping, we have:

Proxηh(.)(x) = argmin
x′

(h(x′) +
1

η
‖x′ − x‖2), (6)

Convergence analysis and experimental results confirmed that
Proximal SVRG admits linear convergence in expectation for
strongly convex optimization. In (Reddi et al. 2016b), the au-
thors proved that Proximal SVRG has sublinear convergence
rate of O(n

2/3
1 T−1) when fi(x) is nonconvex.

Algorithm 2 Proximal SVRG
1: Initialize x̃0 ∈ R

N ;
2: for s = 0, 1, 2, . . . S − 1 do
3: xs+1

0 ← x̃s;

4: f ′ ← 1
n1

n1∑
i=1

∇fi(x̃
s); � n1 queries

5: for t = 0, 1, 2, . . . ,m− 1 do
6: Uniformly sample i from {1, 2, ..., n1} with re-

placement and query ∇fi(x
s+1
t ) and ∇fi(x̃

s); � 2
queries

7: Update vs+1
t using:

vs+1
t ← ∇fi(x

s+1
t )−∇fi(x̃

s) + f ′; (7)

8: Update model xs+1
t+1 using:

xs+1
t+1 ← Proxηh(.)(x

s+1
t − ηvs+1

t ); (8)

9: end for
10: x̃s+1 ← xs+1

m ;
11: end for

Variance Reduced Stochastic Compositional

Proximal Gradient

In this section, we propose variance reduced stochastic com-
positional proximal gradient method (VRSC-PG) for solving
the finite-sum composition problem with nonsmooth regular-
ization penalty (2).

The description of VRSC-PG is presented in Algorithm
3. Similar to the framework of Proximal SVRG (Xiao and
Zhang 2014), our VRSC-PG also has two-layer loops. At
the beginning of the outer loop s, we keep a snapshot of the
current model x̃s in memory and compute the full gradient:

∇f(x̃s) =
1

n2

n2∑
j=1

(∇Gj(x̃
s))T

1

n1

n1∑
i=1

∇Fi (G
s), (9)

where Gs = 1
n2

∑n2

j=1 Gj(x̃
s) denotes the value of the inner

functions and ∇G(x̃s) = 1
n2

∑n2

j=1 ∇Gj(x̃
s) denotes the

gradient of inner functions. Computing the full gradient of
f(x) in problem (2) requires (n1 + 2n2) queries.

To make the number of queries in each inner iteration irrel-
evant to n2, we need to keep Ĝs+1

t and ∇Ĝs+1
t in memory

to work as the estimates of G(xs+1
t ) and ∇G(xs+1

t ) respec-
tively. In our algorithm, we query GAt

(xs+1
t ) and GAt

(x̃s),
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then Ĝs+1
t is evaluated as follows:

Ĝs+1
t = Gs − 1

A

∑
1≤j≤A

(
GAt[j](x̃

s)−GAt[j](x
s+1
t )

)
, (10)

where At[j] denotes element j in the set At and |At| = A.
The elements of At are uniformly sampled from {1, 2, ..., n2}
with replacement. In (10), we reduce the variance of
GAt

(xs+1
t ) by using Gs and GAt

(x̃s) . Similarly, we sample
Bt with size B from {1, 2, ..., n2} uniformly with replace-
ment, and query ∇GBt

(xs+1
t ) and ∇GBt

(x̃s). The estima-
tion of ∇G(xs+1

t ) is evaluated as follows:

∇Ĝs+1
t = ∇G(x̃s)

− 1
B

∑
1≤j≤B

(∇GBt[j](x̃
s)−∇GBt[j](x

s+1
t )

)
(11)

where Bt[j] denotes element j in the set Bt and |Bt| =
B. It is important to note that At and Bt are independent.
Computing Ĝs+1

t and ∇Ĝs+1
t requires (2A+2B) queries in

each inner iteration.
Now, we are able to compute the estimate of ∇f(xs+1

t ) in
inner iteration t as follows:

vs+1
t =

1

b1

∑
it∈It

((
∇Ĝs+1

t

)T

∇Fit(Ĝ
s+1
t )

− (∇G(x̃s))
T ∇Fit(G

s)

)
+∇f(x̃s), (12)

where It is a set of indexes uniformly sampled from
{1, 2, ..., n1} and |It| = b1. As per (12), we need to query
∇FIt(Ĝ

s+1
t ) and ∇FIt(G

s), and it requires 2b1 queries. Fi-
nally, we update the model with proximal operator:

xs+1
t+1 = Proxηh(·)

(
xs+1
t − ηvs+1

t

)
, (13)

where η is the learning rate.

Convergence Analysis

In this section, we prove that (1) VRSC-PG admits linear
convergence rate for the strongly convex problem; (2) VRSC-
PG admits sublinear convergence rate O((n1 + n2)

2/3T−1)
for the general problem. To the best of our knowledge, both
of them are the best results so far. Following are the as-
sumptions commonly used for stochastic composition opti-
mization (Wang, Fang, and Liu 2014; Wang and Liu 2016;
Lian, Wang, and Liu 2016).
Strongly convex: To analyze the convergence of VRSC-PG
for the strongly convex composition problem, we assume that
the function f is μ-strongly convex.

Assumption 1 The function f(x) is μ-strongly convex.
Therefore ∀x and ∀y, we have:

‖∇f(x)−∇f(y)‖ ≥ μ‖x− y‖. (15)

Equivalently, μ-strongly convexity can also be written as
follows:

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ μ

2
‖x− y‖2 .(16)

Algorithm 3 VRSC-PG
Input: The total number of iterations in the inner loop m,

the total number of iterations in the outer loop S, the size
of the mini-batch sets A,B and b1, learning rate η.

1: Initialize x̃0 ∈ R
N ;

2: for s = 0, 1, 2, · · · , S − 1 do
3: xs+1

0 ← x̃s;
4: Gs ← 1

n2

∑n2

j=1 Gi(x̃
s); � n2 queries

5: ∇G(x̃s) ← 1
n2

∑n2

j=1 ∇Gj(x̃
s); � n2 queries

6: Compute the full gradient ∇f(x̃s) using (9) ; � n1

queries
7: for t = 0, 1, 2, · · · ,m− 1 do
8: Uniformly sample At from {1, 2, ..., n2} with

replacement and |At| = A ;
9: Update Ĝs+1

t using (10) ; � 2A queries
10: Uniformly sample Bt from {1, 2, ..., n2} with

replacement and |Bt| = B;
11: Update ∇Ĝs+1

t using (11); � 2B queries
12: Uniformly sample It from {1, 2, ..., n1} with re-

placement;
13: Compute vs+1

t using (12): � 2b1 queries
14: Update model xs+1

t+1 using:

xs+1
t+1 ← Proxηh(·)

(
xs+1
t − ηvs+1

t

)
(14)

15: end for
16: x̃s+1 ← xs+1

m ;
17: end for

Lipschitz Gradient: We assume that there exist Lipschitz
constants LF , LG and Lf for ∇Fi(x), ∇Gj(x) and ∇f(x)
respectively.
Assumption 2 There exist constants LF , LG and Lf for
∇Fi(x), ∇Gj(x) and ∇f(x) satisfying that ∀x, ∀y, ∀i ∈
{1, · · · , n1}, ∀j ∈ {1, · · · , n2}:

‖∇Fi(x)−∇Fi(y)‖ ≤ LF ‖x− y‖, (17)
‖∇Gj(x)−∇Gj(y)‖ ≤ LG‖x− y‖, (18)

‖ (∇Gj(x))
T ∇Fi(G(x)) − (∇Gj(y))

T ∇Fi(G(y))‖
≤ Lf‖x− y‖. (19)

As proved in (Lian, Wang, and Liu 2016), according to (19),
we have:

‖∇f(x)−∇f(y)‖ ≤ Lf ‖x− y‖ , ∀x, ∀y. (20)

Equivalently, (20) can also be written as follows: ∀x, ∀y, we
have

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ Lf

2
‖x− y‖2 , (21)

Bounded gradients: We assume that the gradients ∇Fi(x)
and ∇Gj(x) are upper bounded.
Assumption 3 The gradients ∇Fi(x) and ∇Gj(x) have up-
per bounds BF and BG respectively.

‖∇Fi(x)‖ ≤ BF , ∀x, ∀i ∈ {1, · · · , n1} (22)
‖∇Gj(x)‖ ≤ BG, ∀x, ∀j ∈ {1, · · · , n2} (23)
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Note that we do not need the strong convexity assump-
tion when we analyze the convergence of VRSC-PG for the
general problem.

Strongly Convex Problem

In this section, we prove that our VRSC-PG admits linear
convergence rate for strongly convex finite-sum composition
problem with nonsmooth penalty regularization (2). We need
Assumptions 1, 2 and 3 in this section. Unlike Prox-SVRG
in (Xiao and Zhang 2014), the estimated vs+1

t is biased,
i.e., EIt,At,Bt

[vs+1
t ] �= ∇f(xs+1

t ). It makes the theoretical
analysis for proving the convergence rate of VRSC-PG more
challenging than the analysis in (Xiao and Zhang 2014). In
spite of this, we can demonstrate that E‖vs+1

t −∇f(xs+1
t )‖2

is upper bounded as well.
Lemma 1 Let x∗ be the optimal solution to problem (2)
H(x) such that x∗ = argminx∈RN H(x). We define γ =(

64
μ

(
B2

FL2
G

B +
B4

GL2
F

A

)
+ 8Lf

)
. Supposing Assumptions 1,

2 and 3 hold, from the definition of vs+1
t in (12), the following

inequality holds that:
E‖vs+1

t −∇f(xs+1
t )‖2

≤ γ

[
H(xs+1

t )−H(x∗) +H(x̃s)−H(x∗)
]
. (24)

Therefore, when xs+1
t and x̃s converges to x∗, E‖vt −

∇f(xs+1
t )‖2 also converges to zero. Thus, we can keep learn-

ing rate constant, and obtain faster convergence.
Theorem 1 Suppose Assumptions 1, 2 and 3 hold. We let the
optimal solution x∗ = argminx∈RN H(x), if m, A, B and
η are selected properly so that ρ < 1, where ρ is defined as
follows:

ρ =

2
μ + 2η (6ηLf + ρc) (m+ 1)

2η
(
7
8 − (6ηLf + ρc)

)
m

(25)

ρc =

(
η

2
+

4

μ

)
32

μ

(
B2

FL
2
G

B
+

B4
GL

2
F

A

)
(26)

we can prove that our VRSC-PG admits linear convergence
rate:

EH(x̃S)−H(x∗) ≤ ρS
(
EH(x̃0)−H(x∗)

)
(27)

As per Theorem 1, we need to choose η, m, A and B
properly to make ρ < 1. We provide an example to show how
to select these parameters.
Corollary 1 According to Theorem 1, we set η, m, A and B
as follows:

η =
1

96Lf
(28)

m = 16

(
1 +

96Lf

μ

)
(29)

A =
2048B4

GL
2
F

μ2
(30)

B =
2048B2

FL
2
G

μ2
(31)

we have the following linear convergence rate for VRSC-PG:

EH(x̃S)−H(x∗) ≤
(
2

3

)S (
EH(x̃0)−H(x∗)

)
(32)

Remark 1 According to Theorem 1, to obtain

EH(x̃s)−H(x∗) ≤ ε (33)

the number of stages S is required to satisfy:

S ≥ log
EH(x̃0)−H(x∗)

ε
/ log

1

ρ
(34)

As per Algorithm 3 and the definition of Sampling Oracle
in (Wang and Liu 2016), to make the objective value gap
EH(x̃s)−H(x∗) ≤ ε, the total query complexity we need

to take is O
((

n1+n2+m(A+B+b1)
)
log( 1ε )

)
= O

(
(n1+

n2 + κ3) log( 1ε )

)
, where we let κ = max

{
Lf

μ , LF

μ , LG

μ

}
and b1 can be smaller than or proportional to κ2. It is better
than com-SVR-ADMM(Yu and Huang 2017) whose total

query complexity is O
(
(n1 + n2 + κ4) log( 1ε )

)
.

General Problem

In this section, we prove that VRSC-PG admits a sublinear
convergence rate O(T−1) for the general finite-sum compo-
sition problem with nonsmooth regularization penalty. It is
much better than the state-of-the-art method ASC-PG (Wang
and Liu 2016) whose optimal convergence rate is O(T−1/2).
In this section, we only need Assumption 2 and 3. The unbi-
ased vs+1

t makes our analysis nontrivial and it is much differ-
ent from previous analysis for finite-sum problem (Reddi et
al. 2016a). In our proof, we define:

Gη(x) =
1

η

(
x− Proxηh(.)(x−∇f(x)

)
. (35)

Theorem 2 Suppose Assumptions 2 and 3 hold. Let x∗
be the optimal solution to problem (2), we have x∗ =
argminx∈RN H(x). If m, A, B, b1 and η are selected prop-
erly such that:

4

(
ηm2L2

f

b1
+

2ηm2B4
GL2

F

A +
2ηm2B2

FL2
G

B

)
+

Lf

2 ≤ 1
2η , (36)

then the following inequality holds that:

E‖Gη(xa)‖2 ≤ 2

(1− 2ηLf )η

H(x̃0)−H(x∗)
T

(37)

where xa is uniformly selected from {{xs+1
t }m−1

t=0 }S−1
t=0 and

T is a multiple of m,

As per Theorem 2, we need to choose m, A, B, b1 and η
appropriately to make condition (36) satisfied. We provide
an example to show how to select these parameters.
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(d) κcov = 10

Figure 1: Experimental results for meaning-variance portfolio management on synthetic data. κcov is the conditional number
of the covariance matrix of the corresponding Gaussian distribution which is used to generate reward. We use time as x axis,
and it is proportional to the query complexity. In y axis, the objective value gap is defined as H(x) − H(x∗), where x∗ is
obtained by running our methods for enough iterations until convergence. ‖G(x)‖2 denotes the 
2-norm of the full gradient,
where G(x) = ∇f(x) + ∂h(x).

Corollary 2 According to Theorem 2, we let m =⌊
(n1 + n2)

1
3

⌋
, η = 1

4Lf
, b1 = (n1 + n2)

2
3 and T be a

multiple of m, it is easy to know that if A and B are lower
bounded:

A ≥ 8m2B4
GL

2
F

Lf
(38)

B ≥ 8m2B2
FL

2
G

Lf
(39)

we can obtain sublinear convergence rate for VRSC-PG:

E‖Gη(xa)‖2 ≤ 16Lf
H(x̃0)−H(x∗)

T
(40)

Remark 2 According to Theorem 2, to obtain
E‖Gη(xa)‖2 ≤ ε (41)

the number of iterations T is required to satisfy:

T ≥ 16Lf
EH(x̃0)−H(x∗)

ε
(42)

As per Algorithm 3 and the definition of Sampling Ora-
cle in (Wang and Liu 2016), to obtain ε-accurate solution,
E‖Gη(xa)‖2 ≤ ε, the total query complexity we need to take

is O(n1 + n2 + A+B+b1
ε ) = O

(
n1 + n2 + (n1+n2)

2/3

ε

)
,

where A, B and b1 are proportional to (n1 + n2)
2
3 . There-

fore, our method improves the state-of-the-art convergence
rate of stochastic composition optimization for general prob-
lem from O(T−1/2) (Optimal convergence rate for ASC-PG)

to O

(
(n1 + n2)

2/3T−1

)
.

Experimental Results

We conduct two experiments to evaluate our proposed
method: (1) application to portfolio management; (2) ap-
plication to policy evaluation in reinforcement learning.

In the experiments, there are three compared methods for
stochastic composition optimization:

3292



• Accelerated stochastic compositional proximal gradient
(ASC-PG) (Wang and Liu 2016);

• Stochastic variance reduced ADMM for Stochastic com-
position optimization (com-SVR-ADMM) (Yu and Huang
2017);

• Variance Reduced Stochastic Compositional Proximal Gra-
dient (VRSC-PG)(Our method).

In our experiments, learning rate η is tuned from
{1, 10−1, 10−2, 10−3, 10−4}. We keep the learning rate con-
stant for com-SVR-ADMM and VRSC-PG in the optimiza-
tion. For ASC-PG, in order to guarantee convergence, learn-
ing rate is decreased as per η

1+t , where t denotes the number
of iterations.

Application to Portfolio Management

Suppose there are N assets we can invest, rt ∈ R
N denotes

the rewards of N assets at time t. Our goal is to maximize the
return of the investment and to minimize the risk of the invest-
ment at the same time. Portfolio management problem can
be formulated as the mean-variance optimization as follows:

min
x∈RN

− 1

n

n∑
t=1

〈rt, x〉+ 1

n

n∑
t=1

(
〈rt, x〉 − 1

n

n∑
j=1

〈rj , x〉
)2

(43)

where x ∈ R
N denotes the investment quantity vector in

N assets. According to (Lian, Wang, and Liu 2016), prob-
lem (43) can also be viewed as the composition problem as
(2). In our experiment, we also add a nonsmooth regulariza-
tion penalty h(x) = λ|x| in the mean-variance optimization
problem (43).

Similar to the experimental settings in (Lian, Wang, and
Liu 2016), we let n = 2000 and N = 200. Rewards rt are
generated in two steps: (1) Generate a Gaussian distribution
on R

N , where we define the condition number of its covari-
ance matrix as κcov. Because κcov is proportional to κ, in
our experiment, we will control κcov to change the value of
κ; (2) Sample rewards rt from the Gaussian distribution and
make all elements positive to guarantee that this problem has
a solution. In the experiment, we compared three methods on
two synthetic datasets, which are generated through Gaussian
distributions with κcov = 2 and κcov = 10 separately. We set
λ = 10−3 and A = B = b1 = 5. We just select the values of
A,B, b1 casually, it is probable that we can get better results
as long as we tune them carefully.

Figure 1 shows the convergence of compared methods
regarding time. We suppose that the elapsed time is propor-
tional to the query complexity. Objective value gap means
H(xt) −H(x∗), where x∗ is the optimal solution to H(x).
We compute H(x∗) by running our method until convergence.
Firstly, by observing the x and y axises in Figure 1, we can
know that when κcov = 10, all compared methods need more
time to minimize problem (43), which is consistent with our
analysis. Increasing κ will increase the total query complexity.
Secondly, we can also find out that com-SVR-ADMM and
VRSC-PG admit linear convergence rate. ASC-PG runs faster
at the beginning, because of their low query complexity in
each iteration. However, their convergence slows down when
the learning rate gets small. In four figures, our SVRC-PG

always has the best performance compared to other compared
methods.

Application to Reinforcement Learning

We then apply stochastic composition optimization to rein-
forcement learning and evaluate three compared methods
in the task of policy evaluation. In reinforcement learning,
let V π(s) be the value of state s under policy π. The value
function V π(s) can be evaluated through Bellman equation
as follows:

V π(s1) = E[rs1,s2 + γV π(s2)|s1] (44)

for all s1, s2 ∈ {1, 2, ..., S}, where S represents the num-
ber of total states. According to (Wang and Liu 2016), the
Bellman equation (44) can also be written as a composition
problem. In our experiment, we also add sparsity regulariza-
tion h(x) = λ|x| in the objective function.

Following (Dann, Neumann, and Peters 2014), we gener-
ate a Markov decision process (MDP). There are 400 states
and 10 actions at each state. The transition probability is gen-
erated randomly from the uniform distribution in the range
of [0, 1]. We then add 10−5 to each element of transition
matrix to ensure the ergodicity of our MDP. The rewards
r(s, s′) from state s to state s′ are also sampled uniformly
in the range of [0, 1]. In our experiment, we set λ = 10−3

and A = B = b1 = 5. We also select these values casually,
better results can be obtained if we tune them carefully.

In Figure 2, we plot the convergence of the objective value
and ‖G(x)‖2 in terms of time. We can observe that VRSC-
PG is much faster than ASC-PG, which has been reflected
in the analysis of convergence rate already. It is also obvious
that our VRSC-PG converges faster than com-SVR-ADMM.
Experimental results on policy evaluation also verify our
theoretical analysis.

Conclusion

In this paper, we propose variance reduced stochastic compo-
sitional proximal gradient method (VRSC-PG) for composi-
tion problem with nonsmooth regularization penalty. We also
analyze the convergence rate of our method: (1) for strongly
convex composition problem, VRSC-PG is proved to admit
linear convergence; (2) for general composition problem,
VRSC-PG significantly improves the state-of-the-art conver-
gence rate from O(T−1/2) to O((n1 + n2)

2/3T−1). Both of
our theoretical analysis, to the best of our knowledge, are
the state-of-the-art results for stochastic composition opti-
mization. Finally, we apply our method to two different ap-
plications, portfolio management and reinforcement learning.
Experimental results show that our method always has the
best performance in different cases and verify the conclusions
of theoretical analysis.
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Figure 2: Figures show the experimental results of policy evaluation in reinforcement learning. We plot the convergence of
objective value and the full gradient ‖G(x)‖2 regarding time respectively. ‖G(x)‖2 denotes the 
2-norm of the full gradient,
where G(x) = ∇f(x) + ∂h(x).
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