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Abstract

This paper presents a novel decentralized high-dimensional
Bayesian optimization (DEC-HBO) algorithm that, in con-
trast to existing HBO algorithms, can exploit the interdepen-
dent effects of various input components on the output of the
unknown objective function f for boosting the BO perfor-
mance and still preserve scalability in the number of input di-
mensions without requiring prior knowledge or the existence
of a low (effective) dimension of the input space. To realize
this, we propose a sparse yet rich factor graph representa-
tion of f to be exploited for designing an acquisition function
that can be similarly represented by a sparse factor graph and
hence be efficiently optimized in a decentralized manner us-
ing distributed message passing. Despite richly characteriz-
ing the interdependent effects of the input components on the
output of f with a factor graph, DEC-HBO can still guarantee
no-regret performance asymptotically. Empirical evaluation
on synthetic and real-world experiments (e.g., sparse Gaus-
sian process model with 1811 hyperparameters) shows that
DEC-HBO outperforms the state-of-the-art HBO algorithms.

1 Introduction

Many real-world applications/tasks often involve optimiz-
ing an unknown objective function f given a limited budget
of costly function evaluations. Examples of such applica-
tions/tasks include automatic hyperparameter tuning for ma-
chine learning models (e.g., deep neural network) (Bergstra,
Yamins, and Cox 2013; Snoek, Hugo, and Adams 2012)
and parameter configuration for robotic control strategies.
Whereas gradient-based methods fail to optimize a function
without an analytic form/derivative, Bayesian optimization
(BO) has established itself as a highly effective alternative.
In particular, a BO algorithm maintains a Gaussian process
(GP) belief of the unknown objective function f and alter-
nates between selecting an input query to evaluate f and us-
ing its observed output to update the GP belief of f until the
budget is exhausted. Every input query is selected by max-
imizing an acquisition function that is constructed from the
GP belief of f . Intuitively, such an acquisition function has
to trade off between optimizing f based on its current GP be-
lief (exploitation) vs. improving its GP belief (exploration).
Popular choices include improvement-based (Shahriari et al.
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2016), information-based (Hennig and Schuler 2012), and
upper confidence bound (Srinivas et al. 2010).

While BO has demonstrated to be an effective optimiza-
tion strategy in general, it has mostly found success in
the context of input spaces with low (effective) dimension
(Djolonga, Krause, and Cevher 2013; Wang et al. 2013).
However, several real-world application domains such as
computer vision (Bergstra, Yamins, and Cox 2013), net-
working (Hornby et al. 2006), and computational biology
(González et al. 2014) often require optimizing an objec-
tive function f over a high-dimensional input space without
knowing if its low (effective) dimension even exists. This
poses a grand challenge to the above conventional BO al-
gorithms as the cost of maximizing an acquisition function
grows exponentially with the number of input dimensions.
To sidestep this issue, an extreme approach is to assume the
effects of all input components on the output of f to be pair-
wise independent (Kandasamy, Schneider, and Póczos 2015;
Wang and Jegelka 2017; Wang et al. 2017) (in the case of Li
et al. (2016), after some affine projection of the input space).
The acquisition function can then be maximized along each
(projected) dimension separately, thus reducing its cost to
linear in the number of input dimensions. Despite its sim-
plicity, such a decoupling assumption can severely compro-
mise the BO performance since it rarely holds in practice:
The effects of different input components on the output of f
are usually interdependent (Naveršnik and Rojnik 2012). In
this paper, we argue and show that this highly restrictive as-
sumption to gain scalability is an overkill: It is in fact possi-
ble to achieve the same scalability with a strong performance
guarantee while still taking into account the interdependent
effects of various input components on the output of f .

To achieve this, we first observe that the interdependent
effects of many input components on the output of f tend to
be indirect: The effect of one input component (on the output
of f ) can only directly influence that of some components in
its immediate “neighborhood”, which in turn may influence
that of other components in the same manner. For example,
in a multi-project company, the poor performance of one em-
ployee in a collaborative project only indirectly affects the
performance of another employee in another project through
those who work on both projects. This is also the case for
many parameter tuning tasks with additive loss where differ-
ent, overlapping subsets of parameters contribute to different
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additive factors of the loss function (Krähenbühl and Koltun
2011). The key challenge thus lies in investigating how the
unknown objective function f can be succinctly modeled to
characterize such observed interdependent effects of the in-
put components (on the output of f ) and then exploited to
design an acquisition function that can still be optimized
scalably and yield a provable performance guarantee.

To address this challenge, this paper presents a novel
decentralized high-dimensional BO (DEC-HBO) algorithm
(Section 3) that, in contrast to some HBO algorithms (Kan-
dasamy, Schneider, and Póczos 2015; Wang and Jegelka
2017; Wang et al. 2017), can exploit the interdependent
effects of various input components (on the output of f )
for boosting the BO performance and, perhaps surprisingly,
still preserve scalability in the number of input dimen-
sions without requiring the existence of a low (effective)
dimension of the input space, unlike the other HBO algo-
rithms (Djolonga, Krause, and Cevher 2013; Li et al. 2016;
Wang et al. 2013). To realize this, we propose a sparse yet
rich and highly expressive factor graph representation of the
unknown objective function f by decomposing it into a lin-
ear sum of random factor functions, each of which involves
only a small, possibly overlapping subset of input compo-
nents and is assumed to be distributed by an independent
GP prior (Section 3.1). As a result, the input components
of the same factor function have direct interdependent ef-
fects on the output of f , while the input components that
are distinct between any two factor functions have indirect
interdependent effects on the output of f via their common
input components; the latter is predominant due to sparsity
of the factor graph representing f . We in turn exploit such
a factor graph representation of f to design an acquisition
function that, interestingly, can be similarly represented by
a sparse factor graph (Section 3.2) and hence be efficiently
optimized (Section 3.3) in a decentralized manner using a
class of distributed message passing algorithms. The main
novel contribution of our work here is to show that despite
richly characterizing the interdependent effects of the in-
put components on the output of f with a factor graph, our
DEC-HBO algorithm not only preserves the scalability in
the number of input dimensions but also guarantees the same
trademark (asymptotic) no-regret performance. We empiri-
cally demonstrate the performance of DEC-HBO with syn-
thetic and real-world experiments (e.g., sparse Gaussian pro-
cess model with 1811 hyperparameters) (Section 5).

2 Background and Notations
This section first describes the zeroth-order optimization
problem and its asymptotic optimality criterion which lay
the groundwork for BO. Then, we review a class of well-
studied BO algorithms (Kandasamy, Schneider, and Póczos
2015; Srinivas et al. 2010) and highlight their practical limi-
tations when applied to high-dimensional optimization prob-
lems. We will discuss later in Sections 3 and 4 how our pro-
posed DEC-HBO algorithm overcomes these limitations.

2.1 Zeroth-Order Optimization

Consider the problem of sequentially optimizing an un-
known objective function f : D → R over a compact in-

put domain D ⊆ R
d: In each iteration t = 1, . . . , n, an

input query xt ∈ D is selected for evaluating f to yield
a noisy observed output yt � f(xt) + ε with i.i.d. Gaus-
sian noise ε ∼ N (0, σ2

n) and noise variance σ2
n. Since every

evaluation of f is costly (Section 1), our goal is to strategi-
cally select input queries to approach the global maximizer
x∗ � argmaxx∈D f(x) as rapidly as possible. This can
be achieved by minimizing a standard BO objective such
as the cumulative regret Rn which sums the instantaneous
regret rt � f(x∗) − f(xt) incurred by selecting the in-
put query xt (instead of x∗ due to not knowing x∗ before-
hand) to evaluate f over iteration t = 1, . . . , n, that is,
Rn �

∑n
t=1 rt. A BO algorithm is said to be asymptoti-

cally optimal if it satisfies limn→∞Rn/n = 0 which implies
limn→∞(f(x∗) − maxnt=1 f(xt)) = 0, thus guaranteeing
no-regret performance asymptotically.

2.2 Bayesian Optimization with No Regret

A notable asymptotically optimal BO algorithm selects, in
each iteration t + 1, an input query x ∈ D to maximize an
acquisition function called the Gaussian process upper con-
fidence bound (GP-UCB) (Srinivas et al. 2010) that trades
off between observing an expected maximum (i.e., with
large GP posterior mean μt(x)) given the current GP be-
lief of f (i.e., exploitation) vs. that of high predictive un-
certainty (i.e., with large GP posterior variance σt(x)

2) to
improve the GP belief of f over D (i.e., exploration), that
is, xt+1 � argmaxx∈D μt(x) + β

1/2
t+1σt(x) where the pa-

rameter βt+1 > 0 is set to trade off between exploitation vs.
exploration for guaranteeing no-regret performance asymp-
totically with high probability and the GP posterior mean
μt(x) and variance σt(x)

2 will be defined later in a similar
manner to (1) (Section 3.2) to ease exposition.

Unfortunately, the GP-UCB algorithm does not scale
well to high-dimensional optimization problems as its cost
grows exponentially with the number of input dimensions.
This prohibits its use in real-world application domains
that require optimizing an objective function over a high-
dimensional input space such as those mentioned in Sec-
tion 1. To sidestep this issue, some HBO algorithms (Djo-
longa, Krause, and Cevher 2013; Li et al. 2016; Wang et
al. 2013) assume the existence of a low-dimensional embed-
ding of the input space which then allows them to operate
in an exponentially smaller surrogate space and hence re-
duce their cost. But, these HBO algorithms impose strong
assumptions (including prior knowledge of the dimension of
the embedding) to guarantee that the global maximizer (or
its affine projection) indeed lies within the surrogate space.
In particular, one such precarious assumption is that the di-
mensionality of the low-rank surrogate space reflects the ac-
tual effective dimension of the input space.

A more practical alternative is to consider the effects
of various input components on the output of f in-
stead: The HBO algorithm of Kandasamy, Schneider, and
Póczos (2015) assumes the unknown objective function f to
be decomposable into a sum of independent, GP-distributed
local functions f1, . . . , fd, each of which involves only a
single input dimension: f(x) � f1(x

(1)) + . . . + fd(x
(d))
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where x(i) and d denote component i and the dimension
of input x, respectively. Interestingly, this in turn induces
a similar decomposition of the above-mentioned GP-UCB
acquisition function into a sum of independent local acqui-
sition functions ϕ(i)

t (x(i)) � μ
(i)
t (x(i))+β

1/2
t+1σ

(i)
t (x(i)) for

i = 1, . . . , d, that is,
∑d

i=1 ϕ
(i)
t (x(i)). As a result, each local

acquisition function ϕ
(i)
t (x(i)) can be independently maxi-

mized along a separate input dimension, thus reducing the
overall computational cost to linear in the number d of in-
put dimensions. However, such a HBO algorithm and a few
others (Wang and Jegelka 2017; Wang et al. 2017) preclude
the interdependent effects of different input dimensions on
the output of f (Naveršnik and Rojnik 2012), which can
severely compromise their performance. We will describe
in Sections 3 and 4 how our DEC-HBO algorithm can ex-
ploit the interdependent effects of various input components
(on the output of f ) for boosting the BO performance and
still preserve scalability in the number of input dimensions
as well as guarantee no-regret performance asymptotically.

3 Problem Formulation

This section first introduces the sparse factor representation
of the unknown objective function f (Section 3.1). Then, we
exploit it to reformulate the GP-UCB acquisition function
to a form that can be similarly represented by a sparse fac-
tor graph (Section 3.2) and hence be efficiently optimized
in a decentralized manner using distributed message pass-
ing (Section 3.3) to achieve the same trademark (asymptotic)
no-regret performance guarantee (Section 4).

3.1 Sparse Factor Graph Representation

To scale up BO to high-dimensional optimization problems
while still taking into account the interdependent effects of
various input components on the output of f , we first state
the following key structural assumption to represent f as a
sparse yet rich and highly expressive factor graph:
Assumption 1. The d-dimensional objective function f can
be decomposed into a sum of |U| factor functions {fI}I∈U ,
each of which depends on a |I|-dimensional input xI com-
prising only a small, possibly overlapping subset I ⊆ S �
{1, 2, . . . , d} of the input components of x (i.e., |I| � d),
that is, f(x) �

∑
I∈U fI(xI).

Intuitively, Assumption 1 decomposes the high d-
dimensional optimization problem into small sub-problems,
each of which involves optimizing a single factor func-
tion fI over a low |I|-dimensional input space (and is
hence much less costly) while succinctly encoding the
compatibility of its selected input xI with that of other
factor functions through their common input components;
the latter is completely disregarded by the state-of-the-art
HBO algorithms (Kandasamy, Schneider, and Póczos 2015;
Wang and Jegelka 2017; Wang et al. 2017) due to their
highly restrictive decoupling assumption (Section 2.2). In
practice, our more relaxed assumption thus allows prior
knowledge of the interdependent effects of different input
components (on the output of f ) to be explicitly and suc-
cinctly encoded into the sparse factor graph representation

of f . As a result, the input components of the same factor
function have direct interdependent effects on the output of
f , while the input components that are distinct between any
two factor functions have indirect interdependent effects
on the output of f via their common input components;
the latter is predominant due to sparsity of the factor graph
representing f . Interestingly, our assumption can be further
coupled with Assumption 2 below to induce an additive GP
model of f (Duvenaud, Nickisch, and Rasmussen 2011)
with truncated ANOVA kernels which have shown to be
highly expressive in characterizing the latent interaction
between different input components.

Despite needing to maintain the compatibility of their se-
lected inputs, these factor functions can still be optimized
in a decentralized manner if a message passing protocol can
be established between them to allow those with common
input components to coordinate their optimization efforts
without requiring any factor function to handle input com-
ponents not of its own. To achieve this, two non-trivial re-
search questions arise: Firstly, how can these factor func-
tions (with compatibility constraints) without analytic ex-
pressions nor black-box generators be optimized (see Sec-
tions 3.2 and 3.3)? Secondly, even if it is possible to op-
timize each factor function, how can their coordinated opti-
mization efforts be guaranteed to converge the selected input
queries to the global maximizer of f (see Section 4)? Note
that the second question has not been addressed by the pre-
viously established convergence guarantee for the GP-UCB
algorithm (Srinivas et al. 2010) as it only applies to the cen-
tralized setting but not our decentralized BO setting.

3.2 Acquisition Function

To optimize each factor function without having direct ac-
cess to its black-box generator, we need a mechanism that
can draw inference on the output of the factor function fI
given only the noisy observed outputs of f . This is achieved
with the following assumption:
Assumption 2. Each factor function fI in the decomposi-
tion of f in Assumption 1 is independently distributed by a
GP GP(0, σI

0 (x
I ,x′I)) with prior mean μI

0 (x
I) � 0 and

covariance σI
0 (x

I ,x′I).
Assumption 2 implies that f is distributed by a GP
GP(0, σ0(x,x

′)) with prior mean 0 and covariance
σ0(x,x

′) �
∑

I∈U σI
0 (x

I ,x′I). It follows that for any
subset I ⊆ S of the input components of any input
x and input queries x1, . . . ,xt, the prior distribution of
(fI(xI), f(x1), . . . , f(xt))

� is a Gaussian. Then, given a
column vector y � (yi)

�
i=1,...,t) of noisy outputs observed

from evaluating f at the selected input queries x1, . . . ,xt

after t iterations, the posterior distribution of the output of
the factor function fI at some input xI in iteration t+1 is a
Gaussian N (fI(xI)|μI

t (x
I), σI

t (x
I)2) with the following

posterior mean and variance:

μI
t (x

I) � kI�
x (K+ σ2

nI)
−1y ,

σI
t (x

I)2 � σI
0 (x

I ,xI)− kI�
x (K+ σ2

nI)
−1kI

x

(1)

where kI
x � (σI

0 (x
I ,xI

i ))
�
i=1,...,t and K �

(σ0(xi,xj))i,j=1,...,t. Using (1), we can naively adopt
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the HBO algorithm of Kandasamy, Schneider, and
Póczos (2015) (Section 2.2) by independently maximizing a
separate local acquisition function for every corresponding
factor function fI . But, this does not guarantee compati-
bility of the inputs selected by independently maximizing
each local acquisition function due to their common input
components. So, we instead propose to jointly maximize
them using the following additive acquisition function:

∑

I∈U
ϕI
t (x

I) , ϕI
t (x

I) � μI
t (x

I) + β
1/2
t+1σ

I
t (x

I) (2)

which appears, with high probability, to bound the global
maximum f(x∗) = maxx∈X

∑
I fI(xI) from above, as

shown later in Section 4. Intuitively, (2) is similar to the GP-
UCB acquisition function (Srinivas et al. 2010) in the sense
that both are exploiting the GP posterior mean of f to select
the next input query since it can be shown that the sum of
GP posterior means of the outputs of all factor functions is
equal to the GP posterior mean of their sum (i.e., output of
f ). On the other hand, unlike GP-UCB, our proposed acqui-
sition function (2) uses the sum of GP posterior variances of
the outputs of all factor functions instead of the GP posterior
variance of their sum (i.e., output of f ) in order to construct
an upper bound on the global maximum. This interestingly
allows (2) to be optimized efficiently in a decentralized man-
ner (Section 3.3) and at the same time preserves the asymp-
totic optimality of our DEC-HBO algorithm (Section 4).

3.3 Decentralized HBO (DEC-HBO)

When the interdependent effects of the majority of input
components on the output of f are indirect, our proposed
acquisition function (2) can in fact be represented by a
sparse factor graph and hence be efficiently optimized in
a decentralized manner. To do this, let (2) be represented
by a factor graph with each factor and variable node de-
noting, respectively, a different local acquisition function
and input component such that every edge connecting a
factor node to some variable node implies a local acquisi-
tion function involving the participation of some input com-
ponent. The following message passing protocol between
the factor and variable nodes can then be used to optimize∑

I∈U ϕI
t (x

I) (2) via dynamic programming (DP):

Message Passing Protocol. In iteration t + 1, let
mϕI

t →x(i)(h) and mx(i)→ϕI
t
(h) denote messages to be

passed from a factor node ϕI
t (x

I) (i.e., a local acquisition
function) to a variable node x(i) (i.e., component i ∈ I of its
input xI) and from x(i) back to ϕI

t (x
I), respectively. Given

x(i) � h,

mϕI
t →x(i)(h) � max

hI\i∈D(xI\i)
Δ−i

ϕI
t
(hI\i) + ϕI

t (h
I\i, h),

mx(i)→ϕI
t
(h) �

∑

I′∈A(i)\{I}
mϕI′

t →x(i)(h)

(3)
where I\i is used in place of I\{i} to ease notations,
Δ−i

ϕI
t
(hI\i) �

∑
j∈I\i mx(j)→ϕI

t
(h(j)), D(xI\i) is the do-

main of input xI\i, h(j) denotes component j of hI\i,

and A(i) � {I ′|fI′(xI′
) is a factor function ∧ i ∈ I ′}.

These message updates (3) can be performed simultane-
ously, which yields a fully decentralized optimization algo-
rithm where full knowledge of the results of optimization
are accessible to all nodes. This can be perceived as a con-
current learning process where each node tries to perfect its
own DP perspective through exchanging information with
its immediate neighbors. As the messages are passed back
and forth simultaneously among nodes, their individual per-
spectives are updated and steadily converge to an equilib-
rium that maximizes

∑
I∈U ϕI

t (x
I) (2). Our decentralized

optimization algorithm yields a huge computational advan-
tage in a sparse factor graph since the cost of evaluating
each message in any iteration is only as expensive as iter-
ating through the input domain of the local acquisition func-
tion involving the largest number of input components (i.e.,
maximum factor size), which is usually much smaller than
the entire input domain. The overall computational cost at
each node thus reduces at an exponential rate in the ratio be-
tween the sizes of the original input domain and that of such
a local acquisition function.

Upon convergence1, the final message mϕI′
t →x(i)(h)

from every factor node ϕI′
t (xI′

) to a variable node x(i)

(i.e., component i ∈ I ′ of its input xI′
) is the maximum

value achieved by optimizing the sum of all remaining fac-
tor nodes, except ϕI

t (x
I), over the remaining variable nodes

xS\i while fixing x(i) = h. As such, component i of the
maximizer xt+1 � argmaxx∈D

∑
I ϕI

t (x
I) can be com-

puted using an arbitrary variable-factor pair (x(i), ϕI
t (x

I)):

x
(i)
t+1 � argmax

h∈D(x(i))

max
hI\i∈D(xI\i)

ϕI
t (h

I\i, h) +mx(i)→ϕI
t
(h)

(4)
for all i ∈ I where D(x(i)) denotes the domain of input
component x(i). Note that (4) only operates in the domains
D(x(i)) and D(xI\i). Its time complexity is thus bounded
by the cost of iterating through the input domain of the lo-
cal acquisition function involving the largest number of in-
put components (i.e., maximum factor size), as analyzed in
(Hoang et al. 2017). Our decentralized optimization algo-
rithm is similar in spirit to the max-sum algorithm for solv-
ing the well-known distributed constraint optimization prob-
lem (Leite, Enembreck, and Barthès 2014) operating in dis-
crete input domains and in fact adapts it to maximize our
additive acquisition function (2) over a continuous input do-
main. Such an adaptation is achieved by scheduling an iter-
ative process of domain discretization with increasing gran-
ularity. Nevertheless, our DEC-HBO algorithm is guaran-
teed to be asymptotically optimal, as further detailed in Sec-
tion 4. DEC-HBO requires a specification of the input par-
tition U ⊆ 2S that underlies our additive acquisition func-
tion (2), which can be learned from data (Hoang et al. 2017).

1Though the convergence of our message passing protocol is
only guaranteed when the factor graph is a tree, it empirically con-
verges to a competitive performance quickly (Section 5.2). To guar-
antee the performance for a general factor graph, a bounded variant
of the max-sum algorithm (Rogers et al. 2011) can be considered.
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4 Asymptotic Optimality

This section analyzes the asymptotic optimality of our pro-
posed DEC-HBO algorithm (Section 3.3) that is powered by
our additive acquisition function (2). We will first present a
simplified version of our analysis in a simple setting with
discrete input domains and then generalize it to handle a
more realistic setting with continuous input domains.

Discrete Input Space. To guarantee the asymptotic opti-
mality of DEC-HBO, it suffices to show that its average re-
gret approaches zero in the limit (i.e., limn→∞Rn/n = 0).
To achieve this, we will first construct upper bounds for the
instantaneous regrets rt = f(x∗) − f(xt) (Theorem 1) and
then combine these results to establish a sub-linear upper
bound for the cumulative regret Rn (Theorem 2).

Theorem 1. Given δ ∈ (0, 1), let βt � 2 log(|D||U|πt/δ)

with πt � π2t2/6.
Pr(∀x ∈ D, t ∈ N rt ≤ 2β

1/2
t

∑
I∈U σI

t−1(x
I
t )) ≥ 1− δ.

Its proof is in (Hoang et al. 2017). Theorem 1 establishes
a universal bound that holds simultaneously for all instan-
taneous regrets rt with an arbitrarily high confidence and is
adjustable via parameter βt to trade off between exploitation
vs. exploration. More importantly, Theorem 1 immediately
implies the following bound on the cumulative regret Rn

based on the notion of maximum information gain below:

Definition 1. Let A � {xt}t=1,...,n ⊆ D and fIA �
(fI(xI

t ))
�
t=1,...,n. Suppose that a column vector yI

A �
(yI(xI

t ))
�
t=1,...,n of noisy outputs yI(xI

t ) = fI(xI
t ) + ε

can be observed from evaluating the latent factor function
fI at input queries xI

1 , . . . ,x
I
n, respectively. Then, the max-

imum information gain about fIA given yI
A can be char-

acterized in terms of their Shannon mutual information:
γI
n � maxA:A⊆D,|A|=n I(f

I
A,y

I
A). The total maximum in-

formation gain is γn �
∑

I∈U γI
n .

The total maximum information gain γn defined above
can then be exploited to bound the cumulative regret Rn:

Theorem 2. Given δ ∈ (0, 1), Pr(Rn ≤ (Cnβnγn)
1/2 ∈

o(n)) ≥ 1− δ where C is some constant defined in (Hoang
et al. 2017).

Its proof is in (Hoang et al. 2017).

Remark Kandasamy, Schneider, and Póczos (2015) have
attempted to bound the cumulative regret Rn in terms of
the maximum information gain I(fA,yA) of the objective
function f directly (i.e., fA � (f(xt))

�
t=1,...,n and yA �

(yt)
�
t=1,...,n) for an extreme special case of our work where

the effects of all input components on the output of f are sta-
tistically independent. The validity of their proof appears to
depend on the assumption that the sum of the GP posterior
variances of the outputs of all factor functions is less than
or equal to the GP posterior variance of the output of the
objective function f , which is flawed as recently acknowl-
edged by the authors in (Kandasamy, Schneider, and Póczos
2016). Our analysis (Hoang et al. 2017) instead uses a differ-
ent quantity (see Definition 1) to bound the cumulative regret
Rn and therefore avoid making such a flawed assumption.

Theorem 2 implies limn→∞ Rn/n = 0 which guarantees
the desired asymptotic optimality of DEC-HBO (hence, no
regret) with an arbitrarily high confidence. However, when
the input space is infinite, 〈βt〉t tend to infinity and hence
void the above analysis. To address this caveat, we extend
our analysis to handle infinite, continuous input spaces by
assuming Lipschitz continuity of the objective function f .

Continuous Input Space. To extend our previous analy-
sis to the setting with infinite, continuous input spaces, we
assume objective function f to be L-Lipschitz continuous:
Assumption 3. There exist constants a, b, L > 0 such that
Pr(∀x,x′ ∈ D |f(x) − f(x′)| ≤ L‖x − x′‖1) ≥ 1 −
a|U| exp(−L2/b2).
The Lipschitz continuity of f can be exploited to establish an
upper bound on the cumulative regret Rn without relying on
the finiteness of the input space. Intuitively, the key idea is
to repeat the above finite-case analysis for a finite discretiza-
tion of the input space by first establishing regret bounds for
these discretized inputs. The resulting bounds can then be
related to an arbitrary input by using the Lipschitz continu-
ity of f in Assumption 3 to bound its output in terms of
that of its closest discretized input with high probability. As
such, it can be shown that if the discretization (especially its
granularity) is carefully designed, then the cumulative regret
Rn of our DEC-HBO algorithm can be bounded in terms of
the above Lipschitz constants as well as the discretization
granularity instead of the (infinite) size of the input space:
Theorem 3. Given δ ∈ (0, 1), there exists a monotoni-
cally increasing sequence 〈βt〉t such that βt ∈ O(log t) and
Pr(Rn ≤ (Cnβnγn)

1/2 + π2/6 ∈ o(n)) ≥ 1− δ.
Its proof is in (Hoang et al. 2017). Theorem 3 concludes

our analysis for the infinite case which is similar to Theo-
rem 2 for the finite case: The upper bound on the cumulative
regret Rn is sub-linear in n, which guarantees that its av-
erage regret approaches zero in the limit. So, DEC-HBO is
asymptotically optimal with an arbitrarily high confidence.

5 Experiments and Discussion

This section empirically evaluates the performance of our
DEC-HBO algorithm on an extensive benchmark compris-
ing three synthetic functions: Shekel (4-dimensional), Hart-
mann (6-dimensional), Michalewicz (10-dimensional) (Sec-
tion 5.1), and two high-dimensional optimization problems
involving hyperparameter tuning for popular machine learn-
ing models such as sparse GP (Snelson and Ghahramani
2007) and convolutional neural network modeling two real-
world datasets: Physicochemical properties of protein ter-
tiary structure (Rana 2013) and CIFAR-10 (Section 5.2).

5.1 Optimizing Synthetic Functions

This section empirically compares the performance of DEC-
HBO (with maximum factor size of 2 (MF2) or 3 (MF3))
with that of the state-of-the-art HBO algorithms like ADD-
GP-UCB (Kandasamy, Schneider, and Póczos 2015), ADD-
MES-G and ADD-MES-R (Wang and Jegelka 2017), and
REMBO (Wang et al. 2013) in optimizing the Shekel, Hart-
mann, and Michalewicz functions (Hoang et al. 2017).
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Figure 1: (a) Graphs of cumulative incurred time of tested
algorithms vs. no. t of BO iterations for Shekel function,
graphs of regret (i.e., minti=1 f(xi) − f(x∗)) achieved by
tested HBO algorithms vs. no. t of BO iterations for (b)
Shekel, (c) Hartmann, and (d) Michalewicz functions.

Fig. 1 reports results of the regret (i.e., minti=1 f(xi) −
f(x∗)) of the tested algorithms averaged over 5 runs, each of
which comprises 150 iterations. For DEC-HBO (MF2) and
DEC-HBO (MF3), each BO iteration involves 30 iterations
of max-sum. For clarity, Table 1 further reports the final
converged regrets achieved by the tested HBO algorithms
including REMBO2. The results show that in general, our
DEC-HBO variants perform competitively with the other
state-of-the-art HBO algorithms for all synthetic functions.
Interestingly, it can also be observed that DEC-HBO (MF3)
consistently outperforms DEC-HBO (MF2) and Add-GP-
UCB (corresponding to the DEC-HBO variant with max.
factor size of 1) for all synthetic functions with input di-
mension d ≥ 4. This highlights the importance of exploiting
the interdependent effects of various input components on
the output of f . In most cases, DEC-HBO (MF3) also out-
performs Add-MES-G, Add-MES-R, and REMBO with the
difference being most pronounced for the 10-dimensional
Michalewicz function. This further indicates the efficacy of
DEC-HBO when applied to higher-dimensional optimiza-
tion problems and asserts that preserving the interdependent
effects of various input components on the output of f is
necessary. Fig. 1a also shows the cumulative incurred time
of GP-UCB, Add-GP-UCB, DEC-HBO (MF2), and DEC-
HBO (MF3) in optimizing the Shekel function. The results
reveal that DEC-HBO performs competitively in terms of
time efficiency with Add-GP-UCB with minimal increase in
incurred time over 150 iterations in exchange for a signifi-
cant improvement in terms of BO performance. In contrast,
GP-UCB incurs much more time than our DEC-HBO vari-

2The performance of REMBO is not plotted in Figs. 1 and 2
to ease clutter as it requires much more iterations for convergence
using the authors’ implementation: github.com/ziyuw/rembo.

HBO Hartmann Shekel Michalewicz

MF2 1.1436 7.0538 4.4944
MF3 0.7904 1.4295 1.2367
Add-GP-UCB 1.7898 3.8338 2.9870
Add-MES-G 0.7268 4.4951 4.8227
Add-MES-R 1.0372 2.6858 3.3296
REMBO 1.5843 5.1677 4.0524

Table 1: Regrets achieved by tested HBO algorithms for
Hartmann, Shekel, and Michalewicz functions.

ants, thus asserting the computational advantage of our de-
centralized optimization algorithm.

5.2 Optimizing Hyperparameters of ML Models

This section demonstrates the effectiveness of DEC-HBO
in tuning the hyperparameters of two ML models like the
sparse partially independent conditional (PIC) approxima-
tion of GP model (Snelson and Ghahramani 2007) and con-
volutional neural network (CNN). The goal is to find the op-
timal configuration of (a) kernel hyperparameters and induc-
ing inputs for which PIC predicts well for the physicochem-
ical properties of protein tertiary structure dataset (Rana
2013) and (b) network hyperparameters for which CNN
classifies well for the CIFAR-10 dataset. These PIC and
CNN hyperparameter tuning tasks are detailed as follows:

PIC. The PIC model is trained using the physicochemical
properties of protein tertiary structure dataset (Rana 2013)
which has 45730 instances, each of which contains κ = 9 at-
tributes describing the physicochemical properties of a pro-
tein residue and its size (in armstrong) to be predicted. 95%
and 5% of the dataset are used as training and test data, re-
spectively. The training data is further divided into 5 equal
folds. The goal is to find a hyperparameter configuration
that minimizes the root mean square error (RMSE) of PIC’s
prediction on the test data. This is achieved via BO using
the 5-fold validation performance as a noisy estimate of
the real performance on the test data. Specifically, for ev-
ery input query of hyperparameters, the corresponding PIC
model separately predicts on each of these folds (validation
data), having trained on the remaining folds (effective train-
ing data). The averaged prediction error over these 5 folds
is then returned to the HBO algorithm to update the acquisi-
tion function for selecting the next input query of hyperpa-
rameters. Every such input query contains 2 + κ + ν × κ
hyperparameters which include the signal and noise vari-
ances, κ length-scales of the squared exponential kernel, and
ν = 200 inducing inputs of dimension κ each.

CNN. The CNN model is trained using the CIFAR-10 ob-
ject recognition dataset which has 50000 training images
and 10000 test images, each of which belongs to one of the
ten classes. 5000 training images are set aside as the valida-
tion data. Similar to PIC, the goal is to find a hyperparameter
configuration that minimizes the classification error of CNN
on the test data, which is likewise achieved via BO using the
performance on the validation data to estimate the real per-
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Figure 2: Graphs of (a) classification error of CNN and (b)
RMSE of PIC’s prediction vs. no. t of BO iterations.

formance on the test data3. The six CNN hyperparameters
to be optimized in our experiments include the learning rate
of SGD in the range of [10−5, 1], three dropout rates in the
range of [0, 1], batch size in the range of [100, 1000], and
number of learning epochs in the range of [100, 1000].

Fig. 2 shows results of the performance of DEC-HBO
variants in comparison to that of ADD-GP-UCB for hyper-
parameter tuning of PIC and CNN trained with real-world
datasets. Table 2 further reports the final converged RMSE
achieved by the tested HBO algorithms including REMBO
for PIC hyperparameter tuning4. It can be observed that in
general, our DEC-HBO variants outperform ADD-GP-UCB
and REMBO. Interestingly, for PIC hyperparameter tuning,
the performance difference is also more pronounced in the
early BO iterations, which suggests that DEC-HBO excels in
time-constrained high-dimensional optimization problems
and preserving the interdependent effects of various input
components on the output of f boosts the performance of
GP-UCB-based algorithms. This is consistent with our ear-
lier observations in Section 5.1. The poor performance of
REMBO as compared to DEC-HBO is expected since it
only considers input hyperparameter queries generated from
a random low-dimensional embedding of the input space,
which severely restricts the expressiveness of PIC model.

6 Conclusion

This paper describes a novel DEC-HBO algorithm that, in
contrast to existing HBO algorithms, can exploit the inter-
dependent effects of various input components on the output
of the unknown objective function f for boosting the BO
performance and still preserve scalability in the number of
input dimensions as well as guarantee no-regret performance
asymptotically (see Remark in Section 4). To realize this, we
propose a sparse yet rich factor graph representation of f to
be exploited for designing an acquisition function that can
be similarly represented by a sparse factor graph and hence
be efficiently optimized in a decentralized manner using
a class of distributed message passing algorithms. Empiri-
cal evaluation on both synthetic and real-world experiments

3We use the same CNN structure as the example code of keras:
github.com/fchollet/keras/ and replace the default optimizer in their
code by stochastic gradient descent (SGD).

4The performance of DEC-HBO is not compared with that of
REMBO (implemented in MATLAB) for CNN hyperparameter
tuning as the CNN code in keras cannot be converted to MATLAB.

HBO MF2 MF3 Add-GP-UCB REMBO

PIC 4.0879 4.0437 4.1774 9.9100
CNN 0.0950 0.1107 0.1068 -

Table 2: Minimum errors achieved by tested HBO algo-
rithms for hyperparameter tuning of PIC and CNN.

show that our DEC-HBO algorithm performs competitively
to the state-of-the-art centralized BO and HBO algorithms
while providing a significant computational advantage for
high-dimensional optimization problems. For future work,
we plan to generalize DEC-HBO to batch mode (Daxberger
and Low 2017) and the nonmyopic context by appealing to
existing literature on nonmyopic BO (Ling, Low, and Jail-
let 2016) and active learning (Cao, Low, and Dolan 2013;
Hoang et al. 2014a; 2014b; Low, Dolan, and Khosla 2008;
2009; 2011) as well as to be performed by a multi-robot
team to find hotspots in environmental sensing/monitoring
by seeking inspiration from existing literature on multi-
robot active sensing/learning (Chen, Low, and Tan 2013;
Chen et al. 2012; 2015; Low et al. 2012; Ouyang et al.
2014). For applications with a huge budget of function
evaluations, we like to couple DEC-HBO with the use of
parallel/distributed (Chen et al. 2013; Hoang, Hoang, and
Low 2016; Low et al. 2015) and online/stochastic (Hoang,
Hoang, and Low 2015; 2017; Xu et al. 2014) sparse GP
models to represent the belief of f efficiently.
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