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Abstract

Parameter tying is a regularization method in which param-
eters (weights) of a machine learning model are partitioned
into groups by leveraging prior knowledge and all parame-
ters in each group are constrained to take the same value. In
this paper, we consider the problem of parameter learning in
Markov networks and propose a novel approach called auto-
matic parameter tying (APT) that uses automatic instead of a
priori and soft instead of hard parameter tying as a regulariza-
tion method to alleviate overfitting. The key idea behind APT
is to set up the learning problem as the task of finding parame-
ters and groupings of parameters such that the likelihood plus
a regularization term is maximized. The regularization term
penalizes models where parameter values deviate from their
group mean parameter value. We propose and use a block co-
ordinate ascent algorithm to solve the optimization task. We
analyze the sample complexity of our new learning algorithm
and show that it yields optimal parameters with high prob-
ability when the groups are well separated. Experimentally,
we show that our method improves upon Lo regularization
and suggest several pragmatic techniques for good practical
performance.

Introduction

Markov networks (MNs) compactly represent a joint prob-
ability distribution over a large number of random variables
and are widely used in a variety of application domains such
as natural language processing and computer vision for rep-
resenting and reasoning about uncertainty. They are often
described using an undirected graph which has one vertex
for each variable and each potential function, the latter de-
scribe relationships between various random variables. The
two key tasks over MNs are (1) learning the structure of
the graph and parameters of the potential functions from
data; and (2) answering probabilistic queries posed over the
learned model (e.g., finding the probability of a variable
given an assignment to a subset of variables). Because of
the generality, flexibility, and wide applicability of MNs,
efficiently solving the two aforementioned tasks is of both
practical and theoretical interest in machine learning.

In this paper, we focus on the fundamental problem of
learning the parameters of a MN, given its structure, from
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a fully observed dataset. This problem is typically solved
via maximum log-likelihood parameter estimation (MLE).
Since calculating the MLE is computationally intractable
in many real-world domains, alternative tractable approx-
imations such as maximum pseudo-log-likelihood estima-
tion (MPLE) are generally used. However, both MLE and
MPLE are susceptible to overfitting. To combat this issue,
Lo regularization is often employed in practice. Lo regu-
larization uses an uninformed prior distribution to penalize
large parameter values, which helps smooth out the varia-
tions in the data. The penalty grows quadratically and thus
larger parameter values are penalized more than smaller
parameter values. Since the Lo regularization term is con-
cave, combining it with either MLE or MPLE preserves
concavity and the resulting objective can be efficiently opti-
mized using gradient-based methods.

An alternative regularization method is parameter tying,
namely partitioning the parameters into groups and forcing
all parameters in each group to take the same value. Param-
eter tying is typically performed a priori. For example, in
convolutional neural networks (CNNs) (LeCun et al. 1998),
parameters are shared (tied) between various neurons to take
advantage of symmetries in images and to control the num-
ber of parameters. Similarly, in statistical relational learn-
ing (SRL) models (Getoor and Taskar 2007) such as Markov
logic networks (Domingos and Lowd 2009) and probabilis-
tic soft logic (Bach et al. 2015), weights are tied in order to
exploit symmetries in relational domains.

A number of automatic tying schemes have also been in-
vestigated. (Nowlan and Hinton 1992) proposed utilizing a
Gaussian mixture prior for parameter sharing to simplify
neural networks. While Gaussian mixtures are a general
model, the trade-offs with this approach are significant, e.g.,
added complexity resulting from an increase in the number
of parameters that need to be selected with validation data,
the creation of a large number of local minima, and slow
convergence. (Han, Mao, and Dally 2016) investigated com-
pression and pruning in neural networks, utilizing a form
of k-means quantization and parameter tying. They incorpo-
rate these elements into their pipelined algorithm as a post-
processing step and empirically validate the performance.
(Liu and Page 2013) utilized k-means to initialize a nonpara-
metric Bayesian (hard) tying approach. Recently, there has
been growing interest in locality-sensitive hashing (LSH)



where, at a high-level, the objective is to develop hash func-
tions such that the probability of collision for similar items
is maximized to solve the approximate nearest neighbor
(ANN) search problem. Quantization is generally used as
a subroutine to partition a lower-dimensional feature space
(Wang et al. 2016). Deep learning neural networks have been
proposed to learn such hash functions (Zhu et al. 2016).

To the best of our knowledge, there has not been prior
work on parameter tying for regularization in MNs. How-
ever, (Chou et al. 2016) recently proposed an automatic ap-
proach for tying (parameters) in Bayesian networks (BNs)
(Pearl 1988; Darwiche 2009). Their parameter learning al-
gorithm has three steps: (1) learn the parameters of the
given BN using the MLE objective (this can be done in
closed-form in BNs); (2) given a positive integer k, use
the 1-dimensional k-means algorithm to group the condi-
tional probabilities into k clusters; and (3) relearn the prob-
abilities by forcing all parameters in each cluster to take
the same value (again this can be done in closed form).
Through experimental evaluations on a few benchmark
datasets, Chou et al. showed that their (hard) parameter ty-
ing approach often yields models that not only have higher
test set log-likelihood scores but also admit faster and more
accurate inference compared to models trained using the
MLE objective.

It is not clear how to apply Chou et al.’s method to solve
the harder parameter learning task for MNs. Unlike BN,
the choices of (clique) potential functions for MNs are not
unique, i.e., MNs are not identifiable. Specifically, there is an
(infinte) continuum of parameter value settings that all rep-
resent the same probability distribution. For instance, multi-
plying all parameters in a potential function by a real con-
stant ¢ > 0 does not change the underlying distribution.
Another example is a MN with two pairwise potentials that
share one common variable. The information on the com-
mon variable can be split (shifted) in arbitrary ways that re-
sult in the same distribution. A consequence of this invari-
ance is that applying the aforementioned k-means clustering
technique to achieve parameter tying may not produce use-
ful results.

We address this limitation by proposing a soft, instead
of hard, parameter tying scheme dubbed APT. Given that a
MN has high degree of freedom in terms of parameter set-
tings, soft tying allows for greater flexibility for parameters
to shift among cluster assignments. This type of soft tying
can be viewed as a generalization of Lo regularization that
allows for k Gaussian priors (instead of one) and £ differ-
ent cluster center means (instead of only zero means). To
automate parameter tying, we set up the learning problem
as jointly selecting the parameters, group membership, and
means such that either the MLE or MPLE plus the penalty
term, informally described above, is maximized. We then
propose a block coordinate ascent algorithm for this opti-
mization problem and show that it converges to a local max-
imum.

The second contribution of this paper is a detailed the-
oretical analysis of our proposed algorithm. In particular,
building on the work of (Bradley and Guestrin 2012) and
(Ravikumar, Wainwright, and Lafferty 2010), we prove sam-
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ple complexity bounds for our algorithm within the proba-
bly approximately correct framework. We show that we can
learn the optimal group memberships of the parameters with
high probability when the groups are well separated (i.e.,
sufficiently far from each other). Moreover, when the data
is generated from a model having tied parameters, we show
that the sample complexity of our algorithm can be signif-
icantly smaller than the MLE/MPLE learning task with Lo
regularization. These results provide the first rigorous theo-
retical justification of quantization that we are aware of.

We end the paper with a detailed empirical evaluation of
our proposed algorithm. We compare with Lo regulariza-
tion on binary pairwise Markov network structures gener-
ated using the L; regularized logistic regression algorithm
of (Ravikumar, Wainwright, and Lafferty 2010). Our re-
sults clearly show that APT outperforms Lo regularization
in terms of pseudo-log-likelihood (PLL) score, especially
on dense networks. We also evaluated the impact of chang-
ing the number of groups on the PLL score and found that
small to medium values for k often achieve the best score.
These results demonstrate that APT is a promising, practical
approach for controlling model complexity and improving
generalization performance.

Preliminaries and Notation

Let X = {X;,...,X,} denote a set of random variables
and ® = {(F1,01),...,(Fm,0m)} be aset of weighted fea-
tures where Fj is a feature function defined over a subset of
variables, S(F;), called its scope and 6; is a real number.
Given an assignment of values, denoted by X to all variables
in X, let Xg(f,) denote the projection of X on S(F;). We as-
sume that given Xg(p,), F; takes a value from the set {0, 1}
where 0 indicates that the feature evaluates to false and 1
indicates that the feature is true.

A log-linear model or a Markov network (MN), denoted
by M is a pair (X, 0) and represents the following proba-
bility distribution

Py (X) =

ﬁ exp (Z 0; - Fz‘(iS(Fa))> J

where Z(®) = Y _exp (3, 0; - Fi(Xs(r,))) is the normal-
ization constant or the partition function. Note that comput-
ing the partition function is #P-hard in the worst case (Roth
1996). Often MNs are described using an undirected graph
called the interaction graph or primal graph. This graph has
one vertex for each variable X; € X and an edge between
two vertices if the corresponding variables are included in
the scope of a feature F);. The primal graph also helps us
analyze conditional independence properties of the under-
lying distribution; specifically each variable is conditionally
independent of all other variables given its Markov blanket
where the Markov blanket of a variable X is the subset of
variables of X that are its neighbors in the primal graph.

Parameter (Weight) Learning

We assume that the MN structure, namely the features (and
their respective scopes) are known while the parameter vec-
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Figure 1: Quantization intervals denoting tied parameters.
Each k-partition (interval) contains a set of quantized param-
eters 6; (dots) and is associated with a local Gaussian distri-
bution parameterized by (¢ = pq;, o). Short dashed lines
on the intervals denote the quantization boundaries which
shift according to an optimum (local) penalized parameter
setting.

tor, 8 = (01,...,0,,), is unknown and needs to be esti-
mated from data. In addition, we assume a fully observed
dataset, D = {x() ... %(P)}, that consists of D indepen-
dent samples drawn from an unknown distribution such that
the latter can be represented using the given MN structure.
In parameter learning, we seek a choice of parameters that
maximizes the log-likelihood of the data.

D
= Z log Py ()_(( )
d=1

Formally, this method of parameter learning is referred to as
maximum likelihood estimation (MLE). The log-likelihood
is a concave function of its parameters, which means that
the MLE objective function can be maximized by a stan-
dard gradient-based procedure. However, evaluating the log-
likelihood as well as its gradient requires computing the log-
partition function. As computing the latter is #P-hard in gen-
eral, tractable alternatives to the log-likelihood such as the
pseudo-log-likelihood (Besag 1986) are often used in prac-
tice. Formally, maximum pseudo-log-likelihood estimation
(MPLE) seeks to find parameters that maximizes the follow-
ing objective.

ey

D n
d —(d
=57 log Po(a! \xﬁﬂg(xi))’

d=1i=1

where :fgd) is the value assigned to X; in () and MB(X;)
is the Markov blanket of X;. Both the pseudo-log-likelihood
as well as its gradient can be computed in linear time in the
size of the MN and dataset. This yields a scalable approach
for MN parameter learning (and we use this scheme in our
experiments).

Lo Regularization

Both MLE and MPLE are prone to overfitting when the
size of the training dataset is small compared to the num-
ber of parameters. One way to combat overfitting, the
Bayesian approach, is to introduce a prior distribution over
the parameters. A zero-mean Gaussian prior distribution is
the standard choice. After taking logs, the regularizer is of
the form —3(|0[3 = —3 3", (6;)?. This penalty term,
when added to the learning objective, is generally referred
to as Lo regularization. Two observations: (1) the penalty
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is concave in the parameters and thus preserves the con-
cavity of both the MLE and MPLE learning objectives; and
(2) the hyperparameter \ o 1/0? controls the variance of
the Gaussian distribution. Due to the inverse relation, high
lambda values result in low variance and vice versa.

Quantization and Clustering

Quantization is the process of mapping a set of real numbers
to a smaller set. Formally, a quantization function Q, is a
many-to-one mapping from a set of real numbers A to a set
of real numbers B, such that |A| > |B]|. Our aim is to find
a quantization that minimizes the average quantization error
(i.e., min ﬁ Y acala — Q(a)]). A k-level quantizer fixes

the size of B, namely |B| = k.

Closely related to the optimal k-level quantization prob-
lem is the k-means clustering problem (Pollard 1982; Bot-
tou and Bengio 1995). Note that in our work, we only
need to solve the 1-dimensional k-means clustering prob-
lem, which admits a polynomial time algorithm, O(m?k),
via dynamic programming (Wang and Song 2011). Given a
set @ = {04,...,0,,} of real numbers, the 1-dimensional
k-means algorithm seeks to partition € into k clusters such
that the following objective function is minimized

m
2
Z(ej - lj’aj) )
Jj=1
where = {u1,..., 1} are the cluster centers or means
and a; € {1,...,k} denotes the cluster assignments,

namely the cluster to which 6; is assigned to. The cluster
mean, fi;, 1S given by

1
—— N9 I(a:
S Ty 2 T
where I(a;,i) is an indicator function which equals 1 if
a; = 1 and 0 otherwise.
From any k-clustering (a, p) where a = {ay,...,an,}
and pp = {p1,...,ux} of 8, we can define an equivalent
quantizer such that Q(6;) = jq; .

i i)a

Learning MNs with Parameter Tying

We define a parameter tied graphical model M as a triple
(X,0,C), where X is a set of random variables, 0 is a set
of parameters, and C is a set of equality constraints such that
0; = 0, for some 0;,0; € 6. We are interested in learning
the optimal parameter tied model M7, from data. Formally,
the optimization problem can be defined as follows. Given
training data D on variable set X, find the constraint set C
and parameters @ such that the parameters respect the con-
straints and the log-likelihood of data is maximized.

For a fixed set of constraints, the learning problem can
be formulated as maximizing a concave objective (the
log-likelihood) over a convex set (the set of constraints).
This can be done via projected gradient descent. However,
searching over all possible constraint sets to find the best
partition is infeasible. Specifically, given m parameters, the
number of partitions of size k is given by the Stirling num-
bers of the second kind, denoted as {1;;} The total number



of partitions of a set is given by the Bell number, B,, =
>y {7} However, the problem can be simplified if we
relax the equality constraints. Our approach is to approx-
imate the equality constraints utilizing a penalty function
which enforces a soft tying of parameters. We reformulate
the learning of a parameter tied graphical model by adding a
penalty for poor clusterings to the log-likelihood objective.

m

A
argmax £(6) — 5 Z(aj — ta,)?
0.a,1u =1

2
The objective in equation (2) represents a regularized log-
likelihood similar to Lo regularization. Here, the penalty
function is the k-means objective with an additional tuning
hyperparameter A that controls the magnitude of the penalty.
This corresponds to a collection of k Gaussian priors such
that the ¢-th prior has mean j; and variance proportional to
1/ (see Figure 1). However, while equation (2) is concave
in @ for a fixed clustering, the objective function is no longer
a concave optimization problem when a is not given (note
that, in general, the k-means objective is not convex). It is
easy to show that Lo regularization is a special case of the
objective in equation (2); all we have to do is assume that
there is only one cluster and y1; = 0.

Block Coordinate Ascent Learning Algorithm

In this section, we derive a block coordinate ascent tech-
nique for equation (2), thus achieving our aim of automating
parameter tying in MNs. We will refer to this general al-
gorithm simply as APT going forward. Given training data
D, the MN structure M = (X, ®), k clusters and penalty
term A, the APT algorithm performs coordinate ascent on the
objective in equation (2) by alternating between finding the
optimal parameters for a fixed clustering and finding the op-
timal clustering for a fixed vector of parameters (see Algo-
rithm 1). Both of these optimizations are straightforward: a
regularized maximum likelihood optimization problem and
a one-dimensional k-means clustering problem respectively.
The former can be solved using standard gradient ascent
while the latter can be solved in polynomial time using dy-
namic programming.

Next, we make several remarks about Algorithm 1, which
illustrate the flexibility and utility of our proposed method.

First, Algorithm 1 returns a soft clustering of the
parameters. However, we can easily turn the soft cluster-
ing into hard clustering and relearn the parameters using the
MLE objective while enforcing equality constraints C on all
parameters assigned to the same cluster. This can be done
via projected gradient ascent. That is, after each gradient
step, the parameter vector may step outside of the set of con-
straints. If this happens, we simply project the parameters
back into the constraint set. As the cluster constraints insist
that all parameters in cluster ¢ must have the same value, the
projection operation simply replaces all parameters in clus-
ter ¢ with the average of all parameters in cluster 7.

Second, since the objective function in equation (2) is
bounded from above, the coordinate ascent procedure is
guaranteed to converge to a local maxima. The algorithm
increases the objective function each iteration since each
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Algorithm 1: Automatic Parameter Tying (APT)

Input: A Markov network structure M = (X, ®),
Integer k, Integer 1" and penalty A.

Output: Feature vector 0 and clustering (a, w).

begin

Initialize 8®) and (a, p) to random values.

for t =1 to T or until convergence do

1. Update 0 given (a, 1) using gradient ascent:

m

(t) _ A (t—1) \2
0% = argmax £(6) = 5 3 (05— ")

j=1

2. Update (a, ) using 1D k-means given 0:

. t 2
(@, p) = argmin Y (05 — 1a;)
Rl
1 m .
ST I(ag50) Zj:l 0; - I(aj,1)
and I(aj, 1) is an indicator function which
equals 1 if a; = ¢ and O otherwise.

where p; =

| return (87, @™, u(™M)

of the two sub-optimization problems, finding the optimal
parameters for a fixed clustering (increasing log-likelihood)
and finding the optimal clustering for a fixed vector of
parameters (reducing penalty), contributes to increasing the
objective function. In practice, the rate of convergence can
be improved by initializing the parameters and cluster means
to small values or after running a few iterations of gradient
ascent that optimizes MLE plus an L, regularization term.

Third, note that Algorithm 1 optimizes MLE plus a
penalty term which requires inference over the MN. The lat-
ter is often infeasible in practice. Its practical performance
and convergence can be improved by using two strategies:
(a) stochastic or mini-batch gradient ascent and (b) using the
MPLE objective instead of MLE. Stochastic and mini batch
gradient ascent can be used in two ways. First, we can use it
to optimize @ in Step 1 of the for loop of Algorithm 1. Sec-
ond, we can use it in the outer loop by not running Step 1
until convergence, namely we run gradient ascent only for a
few iterations in Step 1. In our experiments, we employ both
strategies to speed up our algorithm.

Theoretical Analysis

In this section, we analyze the sample complexity of the pro-
posed method and provide conditions under which it prov-
ably recovers the correct clustering assignments a and ap-
proximate cluster means p with small L; error. We demon-
strate polynomial sample complexity when the clusters are
well-separated (defined formally below). We consider two
cases: (1) Hard Tying: when the true MN from which the
data is generated has exactly £ < m unique parameters; and
(2) Soft Tying: when the MN has m parameters and k is the
number of clusters.

We begin by establishing conditions for well-separation
of clusters in Lemmas 1 and Corollary 1. Let w denote the
maximum width of a cluster where the width of a cluster is



the distance between its farthest points. Formally,

10, — 0s].

w = max max
i (rs)|ar=ia.=i

Let «v denote the distance between two closest points in dif-
ferent clusters, namely

~ min
(3,9)|ai#a;

o = |91 — 9J|

We will refer to «v as the minimum inter-cluster distance. Let
0; and [i; denote the estimates of the true parameters 6; and
i respectively based on N samples drawn independently

and identically from the true MN.

Lemma 1. Let max; |0; — él| < €. Then the 1D k-means
clustering algorithm is guaranteed to return optimal cluster
assignments if € < 7%,

Proof. (Sketch.) Notice that since the maximum error is
bounded by ¢, the maximum cluster width derived from the
estimated parameters is bounded from above by w + 2e.
Similarly, the minimum inter-cluster distance derived from
the estimated parameters is bounded from below by av — 2e.

Thus, in order to ensure that the estimates éi and éj of any
two parameters 0; and 6; such that a; equals a; in true model
also have equal cluster assignments in the estimated model,
the following constraint should be satisfied: o —2e > w+2e.
Rearranging, we get € < %, O

Corollary 1. For the hard tying case (namely there are k
unique parameters) the 1D k-means clustering algorithm is
guaranteed to return optimal cluster assignments if ¢ < 7.

Proof. When there are k unique parameters that also corre-
spond to the cluster centers, the maximum cluster width w
equals 0 and the proof follows from Lemma 1. O

Lemma 1 and Corollary 1 help us derive the follow-
ing definition for well-separation. We say that the triple
(6, a, p) denoting the parameters as well as cluster assign-
ments and centers is well-separated for a given error bound
€ iff € < %3 for the soft tying case and ¢ < 7 for the hard
tying case.

Next we use Lemma 1 and Corollary 1 in conjunction with
the PAC and sample complexity bounds for MLE derived in
(Bradley and Guestrin 2012) and (Ravikumar, Wainwright,
and Lafferty 2010) to yield our desired sample complexity
bounds. Formally,

Theorem 1 (MLE Sample Complexity). Let C,,;n > 0 be
a lower bound on the minimum eigenvalue of the Hessian
of the negative log likelihood. Let the regularization hyper-
parameter \ be chosen such that \ = C?,, n=%/2 /(26m?)
where n is the number of training samples, m is the num-
ber of feature weights and ¢ € (0, 1). Then, to recover the
optimal cluster assignments a and centers p with Ly error
smaller than (o — w) /4 with probability at least (1 — §), it
suffices to have training set size

n> 29 16m?
% (a—w)?

min

2m(m + 1)
5 .

log
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For hard tying in which we have k unique parameters, the
sample complexity for finding optimal cluster assignments a
and centers p with Ly error smaller than a/4 is given by

29 16k*  2m(m+1)
"= C?m’n a? log 0
Proof. (Sketch.) Note that the bounds in Bradley and
Guestrin straightforwardly apply to Step 1 (gradident ascent
given fixed cluster centers and assignments) of our algo-
rithm. The bounds in the theorem are obtained by substi-
tuting the error term in Bradley and Guestrin’s bounds with
the bounds derived in Lemma 1 and Corollary 1. L]

The sample complexity bound implies that when the mini-
mum eigenvalue is large and/or when the difference between
the minimum inter-cluster distance and the maximum clus-
ter width is large (namely, the clusters are well separated),
our algorithm is statistically efficient. As expected, the hard
tying case is statistically more efficient than the soft tying
case since the former does not depend on the cluster width.

Experiments
Experimental Setup

We evaluated APT on 20 real-world datasets which have
been widely used in recent years to evaluate learning al-
gorithms for probabilistic graphical models (Rahman and
Gogate 2016; Rooshenas and Lowd 2014; Davis and Domin-
gos 2010) (see Table 1 for details on the binary datasets).
We implemented APT in C++ and all experiments were con-
ducted on Intel i7 Ubuntu machines with 16GB of RAM.

For each dataset, we learned a pairwise binary MN struc-
ture (not the parameters) using the L, regularization based
structure learning algorithm of (Ravikumar, Wainwright,
and Lafferty 2010). This algorithm constructs the MN struc-
ture as follows. It learns a L; regularized logistic regres-
sion classifier L(X;) for predicting the value of each vari-
able X; given all other variables. Then, it adds an edge be-
tween two variables X; and X if the features correspond-
ing to X; or X; have non-zero weights in L(X;) and L(X,)
respectively. Unfortunately, on many datasets, this method
yields dense models. Therefore, in order to achieve sparsity
we constrained the regularization hyperparameter (\) so that
the degree (size of the Markov blanket) of each variable is
bounded by d. In our experiments, we used the following
values for d = {5, 10, 15, 30, 50} where d = 10, 30 are
shown in supplemental material due to space constraint. We
learned the L, regularized logistic regression classifier using
the Orthant-Wise Limited-memory Quasi Newton (OWL-
QN) method (Andrew and Gao 2007).

We experimented with the following values for the num-
ber of clusters k£ = {1, 2, 5, 10, 20, 100, 500, 1000, 5000,
10000} and the regularization hyperparameter A = {0.01,
0.1, 0.5, 1, 10, 15, 30, 50, 100}. We ran stochastic gradi-
ent ascent until convergence (or maximum of SM iterations).

!Similarly, we can use Bradley and Guestrin’s MPLE bounds to
derive MPLE sample complexity bounds for APT. The derivation is
straightforward; we just have to substitute the expression for € in
their MPLE bound. We skip the details for brevity.



d=5 d=15 d =50
Dataset || #vars | #train [ #valid [ #test Ly [ LTR | APT Ly [ LtR [ APT Ly [ LTR | APT
nltcs 16 16181 | 2157 | 3236 5.05 5.02 5.02 5.10 4.99 4.98 - — -
msnbc 17 1291326 | 38843 | 58265 6.17 6.12 6.11 6.22 6.10 6.08 - - -

kdd 64 | 180092 | 19907 | 34955 2.12 2.11 2.11 2.09 2.08 2.09 2.14 2.08 2.07
plants 69 17412 | 2321 | 3482 10.68 | 10.63 | 10.59 10.46 | 10.23 | 10.21 11.11 10.26 | 10.24
audio 100 | 15000 | 2000 | 3000 || 38.88 | 38.46 | 38.44 | 38.34 | 37.31 | 37.22 || 40.73 | 37.47 | 37.03
jester 100 9000 1000 | 4116 51.94 | 51.41 | 51.28 51.21 | 50.00 | 49.75 54.97 | 50.53 | 50.04
netflix 100 | 15000 | 2000 | 3000 5491 | 54.41 | 54.40 5422 | 52.84 | 52.68 57.52 | 53.32 | 52.67
accidents || 111 12758 | 1700 | 2551 14.71 | 14.50 | 14.47 13.21 | 12.78 | 12.70 13.85 | 12.90 | 12.69
retail 135 | 22041 | 2938 | 4408 10.53 | 10.46 | 10.45 10.57 | 10.41 | 10.40 10.93 | 10.40 | 10.39
pumsbx 163 12262 | 1635 | 2452 11.58 | 11.47 | 11.46 10.13 9.80 9.79 11.17 9.94 9.79
dna 180 1600 400 1186 59.16 | 58.54 | 58.46 61.92 | 59.73 | 59.54 69.26 | 63.13 | 62.84
kosarek 190 | 33375 | 4450 | 6675 10.41 | 10.35 | 10.34 10.32 | 10.17 | 10.17 10.59 | 10.27 | 10.25
msweb 294 | 29441 | 3270 | 5000 1698 | 16.80 | 16.79 17.04 | 16.60 | 16.60 14.80 | 13.74 | 13.71
book 500 8700 1159 | 1739 3590 | 36.68 | 35.82 35.49 | 37.70 | 35.20 36.48 | 42.14 | 35.88
tmovie 500 4524 1002 591 7191 | 72.87 | 71.49 63.16 | 66.43 | 62.94 61.22 | 66.22 | 58.50
webkb 839 2803 558 838 158.31 | 163.21 | 158.08 || 157.30 | 169.17 | 155.51 || 180.85 | 203.54 | 158.71
reuters 889 6532 1028 | 1540 91.33 | 92.29 | 91.26 88.55 | 91.98 | 88.65 91.19 | 99.66 | 88.83
20ng 910 | 11293 | 3764 | 3764 || 163.90 | 164.36 | 163.30 || 160.82 | 162.38 | 162.29 || 170.94 | 167.38 | 166.71
bbc 1058 | 1670 225 330 || 259.96 | 275.06 | 259.18 || 267.44 | 292.66 | 256.60 || 331.67 | 343.90 | 260.95
ad 1556 | 2461 327 491 6.79 6.58 6.55 6.37 6.11 6.16 6.22 6.01 6.06

Table 1: For each dataset, cols. (2-5): dataset characteristics; remaining cols.: test set neg. PLL scores (k and A selected using
the validation set) on 20 benchmark datasets for Lo regularization, LTR and APT algorithm under various values of d.

The cluster centers were updated every 50K iterations. We
used average PLL score to evaluate the resulting models (see
equation (1)).

APT versus Lo regularization

Table 1 shows the test set negative PLL scores (using various
values of d) for APT and L, regularization on the 20 datasets.
For each dataset, we select the k& and \ values using the val-
idation set. Lower negative PLL values are better and bold
signifies the higher value achieved by the respective regu-
larization method. From the results, we can clearly see APT
outperforms Lo across the majority (with the exception of
reuters and 20ng) of datasets and complexity of model struc-
ture. Moreover, as the structure becomes increasingly dense
(more neighboring nodes), the performance gap widens. One
key takeaway here is when the underlying model has a large
number of parameters, it is prudent to utilize APT for better
generalization performance. Parameter learning algorithms
for complex models such as CNNs or SRL models can lever-
age our method since the model will contain parameters that
take on similar values, which is evident from the results.

APT versus LTR

We also compared APT with our adaptation of (Chou et al.
2016) to MNs, which we refer to as the learn-tie-relearn al-
gorithm (LTR). Their algorithm only operates on BNs and
a straightforward extension of their method to parameter
learning in MNs is the following: (1) learn the parameters
using the MLE objective; (2) cluster the resulting parameters
into k clusters; and (3) relearn the parameters by adding
equality constraints over the parameters in each cluster.
However, we found that this approach has high variance.
This is likely due to the scale invariance property of MNs.
To combat this, in step (1) of the algorithm, we learned the

parameters using Lo regularization, which greatly reduces
the variance and thus improves the performance of LTR.

Table 1 also shows the test set negative PLL scores (using
various values of d) for APT and LTR. For each dataset we
select the k£ and A values using the validation set. Lower neg-
ative PLL values are better and bold signifies the best value
achieved by the respective regularization method. From the
results, we clearly observe that APT outperforms LTR across
the majority of datasets and complexity of model structure
(measured by d). However, the noticeable deviation from the
previous results is that wider differences occur in datasets
with higher complexity (more variables and neighboring
nodes) as in the case with bbc (d = 50). Comparatively, we
see that LTR mostly outperforms Ls. Thus, hard tying the
parameters output by Lo is highly beneficial.

Impact of varying &

Figure 2 shows average negative test set PLL scores for APT
and Lo regularization as a function of the number of clus-
ters & on four randomly chosen datasets. To better organize
the results and to avoid clutter, the comparison was made by
fixing the maximum number of d neighboring nodes to 5, 15
and 50 for the learned MN structures and across varying k
clusters. Consistent with the previous results, more complex
structures (d = 50) create a wider performance gap between
APT and Ls. Conversely, the performance gap is closer for
simpler models (d = 5). The plots also show that by having
the ability to control the parameter k£ (number of clusters),
there is an optimal setting where the lowest test average neg-
ative PLL score can be achieved. For example, in dna, the
best test average negative PLL score requires approximately
20 clusters. Overall, for each of the datasets, there is a set-
ting of k£ where APT outperforms Lo. This demonstrates the
utility of our approach.

We found that our algorithm converges rapidly and re-
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Figure 2: Avg. test set neg. PLL scores for Lo (dotted) and APT (solid) for varying # of clusters (k) and model complexity (d).
To minimize clutter, we show graphs for only three values of d and do not include results for LTR (whose variance is quite high).

quires roughly the same number of iterations as Lo to con-
verge in practice. Moreover, its variance is also low (and
therefore not plotted in the graphs and tables), namely most
local maxima reached achieve similar solution quality.

We end this section by mentioning several pragmatic tech-
niques to achieve good practical performance. First, it is
often beneficial to increase the regularization hyperparam-
eter \ with the number of iterations. As the cluster cen-
ters and assignments converge, increasing A increases the
penalty and yields rapid convergence to good solutions. Sec-
ond, hard tying is beneficial only for moderate to large val-
ues of k£ and in fact for small values of k£, it may hurt the
performance significantly. For small values of k, soft tying
works much better. Finally, the rate of convergence can be
improved in practice by updating the cluster centers but not
the cluster assignments at each iteration of gradient ascent
in Step 1 of Algorithm 1. Periodically updating the cluster
assignments appears to yield much faster convergence than
updating them at each iteration.

Conclusion

We investigated parameter tying, an alternative regulariza-
tion method for MNs. Unlike other machine learning frame-
works where parameter tying is specified a priori, we in-
troduced an automatic approach to tying parameters (APT).
Specifically, we incorporated a more informative and gen-
eral penalty term that leverages clustering into the objective
function for parameter learning in MNs. We showed that our
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approach generalizes Lo regularization. Since our formula-
tion of the penalized learning problem is no longer concave,
we proposed a block coordinate ascent algorithm to solve the
optimization problem efficiently. We provided sample com-
plexity bounds for our proposed algorithm which show sig-
nificant improvement over standard L, regularization with
high probability when the clusters are well-separated. Em-
pirically, we showed that our approach outperforms Lo reg-
ularization on a variety of real-world datasets.
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