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Abstract

We have witnessed rapid evolution of deep neural network
architecture design in the past years. These latest progresses
greatly facilitate the developments in various areas such as
computer vision and natural language processing. However,
along with the extraordinary performance, these state-of-the-
art models also bring in expensive computational cost. Di-
rectly deploying these models into applications with real-time
requirement is still infeasible. Recently, Hinton et al. (?) have
shown that the dark knowledge within a powerful teacher
model can significantly help the training of a smaller and
faster student network. These knowledge are vastly beneficial
to improve the generalization ability of the student model. In-
spired by their work, we introduce a new type of knowledge
– cross sample similarities for model compression and accel-
eration. This knowledge can be naturally derived from deep
metric learning model. To transfer them, we bring the “learn-
ing to rank” technique into deep metric learning formulation.
We test our proposed DarkRank method on various metric
learning tasks including pedestrian re-identification, image re-
trieval and image clustering. The results are quite encouraging.
Our method can improve over the baseline method by a large
margin. Moreover, it is fully compatible with other existing
methods. When combined, the performance can be further
boosted.

Introduction

Metric learning is the basis for many computer vision
tasks, including face verification(?; ?) and pedestrian re-
identification(?; ?). In recent years, end-to-end deep metric
learning method which learns feature representation by the
guide of metric based losses has achieved great success(?;
?; ?). A key factor for the success of these deep metric
learning methods is the powerful network architectures(?;
?; ?). Nevertheless, along with more powerful features, these
deeper and wider networks also bring in heavier computation
burden. In many real-world applications like autonomous
driving, the system is latency critical with limited hardware
resources. To ensure safety, it requires (more than) real-time
responses. This constraint prevents us from benefiting from
the latest developments in network design.
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To mitigate this problem, many model acceleration meth-
ods have been proposed. They can be roughly categorized
into three types: network pruning(?; ?), model quantization(?;
?) and knowledge transfer(?; ?; ?). Network pruning itera-
tively removes the neurons or weights that are less important
to the final prediction; model quantization decreases the rep-
resentation precision of weights and activations in a network,
and thus increases computation throughput; knowledge trans-
fer directly trains a smaller student network guided by a
larger and more powerful teacher. Among these methods,
knowledge transfer based methods are the most practical.
Compared with other methods that mostly need tailor made
hardwares or implementations, they can archive considerable
acceleration without bells and whistles.

Knowledge Distill (KD)(?) and its variants(?; ?) are the
dominant approaches among knowledge transfer based meth-
ods. Though they utilize different forms of knowledges, these
knowledges are still limited within a single sample. Namely,
these methods provide more precise supervision for each
sample from teacher networks at either classifier or inter-
mediate feature level. However, all these methods miss an-
other valuable treasure – the relationships (similarities or
distances) across different samples. This kind of knowledge
also encodes the structure of the embedded space of teacher
networks. Moreover, it naturally fits the objective of metric
learning since it usually utilizes similar instance level super-
vision. We elaborate our motivation in the sequel, and depict
our method in Fig. ??. The upper right corner shows that the
student better captures the similarity of images after transfer-
ring. The digit 0 which are more similar to 6 than 3, 4, 5 are
now ranked higher.

To summarize, the contributions of this paper are three
folds:

• We introduce a new type of knowledge – cross sample
similarities for knowledge transfer in deep metric learning.

• We formalize it as a rank matching problem between
teacher and student networks, and modify classical list-
wise learning to rank methods(?; ?) to solve it.

• We test our proposed method on various metric learning
tasks. Our method can significantly improve the perfor-
mance of student networks. And it can be applied jointly
with existing methods for a better transferring perfor-
mance.
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Figure 1: The network architecture of our DarkRank method. The student network is trained with standard classification loss,
contrastive loss and triplet loss as well as the similarity transfer loss proposed by us.

Related works

In this section, we review several previous works that are
closely related to our proposed method.

Deep Metric Learning

Different from most traditional metric learning methods
that focus on learning a Mahalanobis distance in Euclidean
space(?; ?) or high dimensional kernel space(?), deep metric
learning usually transforms the raw features via DNNs, and
then compare the samples in Euclidean space directly.

Despite the rapid evolution of network architectures, the
loss functions for metric learning are still a popular research
topic. The key point of metric learning is to separate inter-
class embeddings and reduce the intra-class variance. Classi-
fication loss and its variants(?; ?) can learn robust features
that help to separate samples in different classes. However,
for out-of-sample identities, the performance cannot be guar-
anteed since no explicit metric is induced by this approach.
Another drawback of classification loss is that it projects
all samples with the same label to the same direction in
the embedding space, and thus ignores the intra-class vari-
ance. Verification loss(?) is a popular alternative because
it directly encodes both the similarity ans dissimilarity su-
pervisions. The weakness of verification loss is that it tries
to enforce a hard margin between the anchor and negative
samples. This restriction is too strict since images of differ-
ent categories may look very similar to each other. Impos-
ing a hard margin on those samples only hurts the learnt
representation. Triplet loss and its variants(?; ?) overcome
this disadvantage by imposing an order on the embedded
triplets instead. Triplet loss is the exact reflection of desired

retrieval results: the positive samples are closer to anchor
than the negative ones. But its good performance requires a
careful design of the sampling and the training procedure(?;
?). Other related work includes center loss (?) which main-
tains a shifting template for each class to reduce the intra-
class variance by simultaneously drawing the template and
the sample towards each other. Besides loss function design,
Bai et al. (?) introduce smoothness of metric space with re-
spect to data manifold as a prior.

Knowledge Transfer for Model Acceleration and
Compression

In (?), Bucila et al. first proposed to approximate an ensemble
of classifiers with a single neural network. Recently, Hinton et
al. revived this idea under the name knowledge distill(?). The
insight comes from that the softened probabilities output by
classifiers encode more accurate embedding of each sample
in the label space than one-hot labels. Consequently, in addi-
tion to the original training targets, they proposed to use soft
targets from teacher networks to guide the training of student
networks. Through this process, KD transfers more precise su-
pervision signal to student networks, and therefore improves
their generalization ability. Subsequent works FitNets(?), At-
tention Transfer(?) and Neuron Selectivity Transfer(?) tried
to exploit other knowledges in intermediate feature maps of
CNNs to improve the performance. Instead of using forward
input-output pairs, Czarnecki et al. tried to utilize the gradi-
ents with respect to input of teacher network for knowledge
transfer with Sobolev training(?). In this paper, we exploit a
unique type of knowledge inside deep metric learning model
– cross sample similarities to train a better student network.
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Learning to Rank

Learning to rank refers to the problem that given a query, rank
a list of samples according to their similarities. Most learning
to rank methods can be divided into three types: pointwise,
pairwise and listwise, according to the way of assembling
samples. Pointwise approaches (?; ?) directly optimize the
relevance label or similarity score between the query and each
candidate; while pairwise approaches compare the relative
relevance or similarity of two candidates. Representative
works of pairwise ranking include Ranking SVM (?) and
Lambda Rank (?). Listwise methods either directly optimize
the ranking evaluation metric or maximize the likelihood
of the ground-truth rank. SVM MAP (?), ListNet (?) and
ListMLE (?) fall in this category. In this paper, we introduce
listwise ranking loss into deep metric learning, and utilize it
to transfer the soft similarities between candidates and the
query into student models.

Background

In this section, we review ListNet and ListMLE which are
classical listwise learning to rank methods introduced by Cao
et al. (?) and Xia et al. (?) for document retrieval task. These
methods are closely related to our proposed method that will
be elaborated in the sequel.

The core idea of these methods is to associate a probabil-
ity with every rank permutation based on the relevance or
similarity score between candidate x and query q.

We use π to denote a permutation of the list indexes. For
example, a list of four samples can have a permutation of
π = {π(1), π(2), π(3), π(4)} = {4, 3, 1, 2}, which means
the forth sample in the list is ranked first, the third sample sec-
ond, and so on. Formally, We denote the candidate samples
as X ∈ R

p×n with each column i being a sample xi ∈ R
p.

Then the probability of a specific permutation π is given as:

P (π|X) =
n∏

i=1

exp[S(xπ(i))]∑n
k=i exp[S(xπ(k))]

(1)

where S(x) is a score function based on the distance between
x and q. After the probability of a single permutation is
constructed, the objective function of ListNet can be defined
as:

LListNet(x) = −
∑
π∈P

P (π|s) logP (π|x) (2)

where P denotes all permutations of a list of length n, and s
denotes the ground-truth.

Another closely related method is ListMLE(?). Unlike
ListNet, as its name states, ListMLE aims at maximizing the
likelihood of a ground truth ranking πy . The formal definition
is as follow:

LListMLE(x) = − logP (πy|x) (3)

Our Method

In this section, we first introduce the motivation of our Dark-
Rank by an intuitive example, then followed by the formula-
tion and two variants of our proposed method.

Motivation

We depict our framework in Fig. ?? along with an intuitive
illustration to explain the motivation of our work. In the ex-
ample, the query is a digit 6, and there are two relevant digits
and six irrelevant digits. Through training with such supervi-
sion, the original student network can successfully rank the
relevant digits in front of the irrelevant ones. However, for
the query 6, there are two 0s which are more similar than
other digits. Simply using hard labels (similar or dissimilar)
totally ignores such dark knowledge. However, such knowl-
edge is crucial for the generalization ability of student models.
A powerful teacher model may reflect these similarities its
the embedded space. Consequently, we propose to transfer
these cross sample similarities to improve the performance
of student networks.

Formulation

We denote the embedded features of each mini-batch after
an embedding function f(·) as X. Here the choice of f(·)
depends on the problem at hand, such as CNN for image
data or DNN for text data. We further use Xs to denote the
embedded features from student networks, and similarly Xt

for those from teacher networks. We use one sample in the
mini-batch as the anchor query q = x1, and the rest samples
in the mini-batch as candidates C = {x2,x3, · · · ,xn}. We
then construct a similarity score function S(x) based on the
Euclidean distance between two embeddings. The α and β
are two parameters in the score function to control the scale
and “contrast” of different embeddings:

S(x) = −α‖q− x‖β2 . (4)
After that, we propose two methods for the transfer: soft

transfer and hard transfer. For soft transfer method, we con-
struct two probability distributions P (π ∈ P | Xs) and
P (π ∈ P | Xt) over all possible permutations (or ranks) P
of the mini-batch based on Eqn. ??. Then, we match these two
distributions with KL divergence. For hard transfer method,
we simply maximize the likelihood of the ranking πy which
has the highest probability by teacher model. Formally, we
have

Lsoft(X
s,Xt) = DKL[P (π ∈ P | Xt) ‖ P (π ∈ P | Xs)]

=
∑
π∈P

P (π | Xt) log
P (π | Xt)

P (π | Xs)
,

Lhard(X
s,Xt) = − logP (πy | Xs,Xt).

(5)

Soft transfer considers all possible rankings. It is help-
ful when there are several rankings with similar probability.
However, there are n! possible ranking in total. It is only
feasible when n is not too large. Whereas, hard transfer only
considers the most possible ranking labeled by the teacher.
As demonstrated in the experiments, hard transfer is a good
approximation of soft transfer in the sense that it is much
faster with long lists but has similar performance.

For the gradient calculation, we first use Si to denote
S(xπ(i)) for better readability, then the gradient is calculated
as below:
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∂P

∂Si
=

n∏
k=2

exp(Sk)∑n
m=k exp(Sm)

−
i∑

j=1

[(
n∏

k=2

exp(Sk)∑n
m=k exp(Sm)

)
exp(Si)∑n

m=j exp(Sm)

]
.

(6)

For the gradient of Si with respect to x, it is trivial to
calculate. So we don’t expand it here.

The overall loss function for the training of student net-
works consists both losses from ground-truth and loss from
teacher knowledge. In specific, we combine large margin
softmax loss (?), verification loss (?) and triplet loss (?) and
the proposed DarkRank loss which can either be its soft or
hard variant.

Experiments

In this section, we test the performance of our DarkRank
method on several metric learning tasks including person
re-identification, image retrieval and clustering, and com-
pare it with several baselines and closely related works. We
also conduct ablation analysis on the influence of the hyper-
parameters in our method.

Datasets

We briefly introduce the datasets will be used in the following
experiments.

CUHK03 CUHK03(?) is a large scale data for person re-
identification. It contains 13164 images of 1360 identities.
Each identity is captured by two cameras from different views.
The author provides both detected and hand-cropped anno-
tations. We conduct our experiments on the detected data
since it is closer to the real world scenarios. Furthermore, we
follow the training and evaluation protocol in(?). We report
Rank-1, 5 and 10 performance on the first standard split.

Market1501 Market1501(?) contains 32668 images of
1501 identities. These images are collected from six different
camera views. We follow the training and evaluation protocol
in (?), and report mean Average Precision (mAP) and Rank-1
accuracy in both single and multiple query settings.

CUB-200-2011 The Caltech UCSD Birds-200-2011 (CUB-
200-2011) dataset contains 11788 images of 200 bird species.
Following the setting in (?), we train our network on the
first 100 species (5864 images) and then perform image re-
trieval and clustering on the rest 100 species (5924 images).
Standard F1, NMI and Recall@1 metrics are reported.

Implementation Details

We choose Inception-BN(?) as our teacher network and NIN-
BN(?) as our student network. Both networks are pre-trained
on the ImageNet LSVRC image classification dataset(?). We

first remove the fully connected layers specific to the pre-
trained task, and then globally average pool the features. The
output is then connected to a fully connected layer followed a
L2 normalization layer to generate the final embeddings. The
large margin softmax loss is directly connected to the fully
connected layer. All other losses including the proposed trans-
fer loss are built upon the L2 normalization layer. Figure ??
illustrates the architecture of our system.

We set the margin in large margin softmax loss to 3, and set
the margin to 0.9 in both triplet and verification loss. We set
the loss weights of verification, triplet and large margin soft-
max loss to 5, 0.1, 1, respectively. We choose the stochastic
gradient descent method with momentum for optimization.
We set the learning rate to 0.01 for the Inception-BN and
5× 10−4 for the NIN-BN, and set the weight decay to 10−4.
We train the model for 100 epochs, and shrink the learning
rate by a factor of 0.1 at 50 and 75 epochs. The batch size is
set to 8.

For person ReID tasks, we resize all input images to
256×128 and randomly crop to 224×112. We first construct
all possible cross view positive image pairs, and randomly
shuffle them at the start of each epoch. For image retrieval
and clustering, we resize all input images to 256×256 and
randomly crop to 224×224. In addition, we flip the images
in horizontal direction randomly during the training of both
tasks. We implement our method in MXNet (?). We train our
model from scratch when experimenting with CUB-200-2011
dataset, since the authors discourage the use of ImageNet pre-
trianed model due to sample overlap.

Compared Methods

We introduce the models and baselines compared in our ex-
periments. Despite the soft and hard DarkRank methods pro-
posed by us, we also test the following methods and the
combination of them with our methods:

Knowledge Distill (KD) Since the classification loss is
included in our model, we test the knowledge distill with
softened softmax target. According to (?), we set the temper-
ature T to 4 and the loss weight to 42 for softmax knowledge
distill method. Formally, KD can be defined as:

LKD(X
s,Xt) =

n∑
i=1

DKL

[
softmax

(
xt
i

T

)
‖softmax

(
xs
i

T

)]
.

(7)

Direct Match Distances between the query and candidates
are the most straightforward form of cross sample similari-
ties knowledge. So we directly match the distances output
by teacher and student models as a baseline. Formally, the
matching loss is defined as:

Lmatch(X
s,Xt) =

n∑
i=2

(‖xs
i − qs‖22 − ‖xt

i − qt‖22
)2

. (8)
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Figure 2: Selected results visualization before and after our DarkRank transfer on Market1501. The border color of image
denotes its relation to the query image. With the help of teacher’s knowledge, the student model learns a better distance metric
that can capture similarities in images.

Person ReID Results

We present the results of Market1501 and CUHK03 in Ta-
ble. ?? and Table. ??, respectively.

Single Query Multiple Query

Method mAP Rank 1 mAP Rank 1

Student 58.1 80.3 66.7 86.7
Direct Match 58.5 80.3 68.0 86.7

Hard DarkRank 63.5 83.0 71.2 87.4
Soft DarkRank 63.1 83.6 71.4 88.8

KD 66.7 86.0 75.1 90.4
KD + HardRank 68.5 86.6 76.3 90.3
KD + SoftRank 68.2 86.7 76.4 91.4

Teacher 74.3 89.8 81.2 93.7

Table 1: mAP(%) and Rank-1 accuracy(%) on Market1501
of various methods. We use average pooling of features in
multi-query test.

From Table. ??, we can see that directly matching the dis-
tances between teacher and student model only has marginal
improvement over the original student model. We owe the
reason to that the student model struggles to match the ex-
act distances as teacher’s due to its limited capacity. As for
our method, both soft and hard variants make significant im-
provements over the original model. They could get similar
satisfactory results. As discussed in the formulation, the hard
variant has great computational advantage over the soft one

Method Rank 1 Rank 5 Rank 10

Student 82.6 95.2 97.4
Direct Match 82.6 95.6 97.7

HardRank 86.0 97.5 98.8
SoftRank 86.2 97.5 98.6

KD 87.8 97.5 98.7
KD + HardRank 88.6 98.2 99.0
KD + SoftRank 88.7 98.0 99.0

Teacher 89.7 98.4 99.2

Table 2: Rank-1,5,10 accuracy(%) of various methods on
CUHK03.

in training, thus it is more preferable for the practitioners.
Moreover, in synergy with KD, the performance of the stu-
dent model can be further improved. This complementary
results demonstrate that our method indeed transfers the inter-
instance knowledge in the teacher network which is ignored
by KD.

On CUHK03 dataset, we can observe similar trends as on
Market1501, except that the model performance on CUHK03
is much higher, which makes the performance improvement
less significant.

Ablation Analysis

In this section, we conduct ablation analysis on the hyper-
parameters for our proposed soft DarkRank method, and
discuss how they affect the ReID performance.
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Figure 3: The effect of different parameters on the performance of CUHK03 validation set. Here we report Rank-1, 5, 10 results.

Contrast β Since the rank information only reveals the
relative distance between the query and each candidate, it
does not provide much details of the absolute distance in the
metric space. If the distances of candidates and the query
are close, the associated probabilities for the permutations
are also close, which makes it hard to distinguish from a
good ranking to a bad ranking. So we introduce the contrast
parameter β to sharpen the differences of the scores. We test
different values of β on CUHK03 validation set, and find 3.0
is where the model performance peaks. Figure ?? shows the
details.

Scaling factor α While constraining embeddings on the
unit hyper-sphere is the standard setting for metric learn-
ing methods in person ReID, a recent work(?) shows that
small embedding norm may hurt the representation power of
embeddings. We compensate this by introducing a scaling
factor α and test different values on the CUHK03 validation
set. Figure ?? shows the influences on performance of dif-
ferent scaling factors. We choose α = 3.0 where the model
performance peaks.

Loss weight λ During the training process, it is important
to balance the transfer loss and the original training loss.
We set the loss weight of our transfer loss to 2.0 according
to the results in Fig. ??. Note that it also reveals that the
performance of our model is quite stable in a large range of
λ.

Transfer without Identity

Single Query Multiple Query

Method mAP Rank 1 mAP Rank 1

FitNet 64.0 83.4 72.4 88.6
FitNet + DarkRank 67.3 85.3 74.9 90.3

Table 3: mAP(%) and Rank-1 accuracy(%) on Market1501
of FitNet. We use average pooling features in multi-query
test.

Supervised learning has achieved great success in com-
puter vision, but the majority of collected data remains un-

labeled. In tasks like self-supervised learning(?), class level
supervision is not available. The supervision signal purely
comes from pairwise similarity. Knowledge transfer meth-
ods like KD are hard to fit in these cases. As an advantage,
our method utilize instance level supervision, and thus is
available for both supervised and unsupervised tasks. An-
other well-known instance level method is FitNet(?), which
directly matches the embeddings of student and teacher with
L2 loss. We compare the transfer performance of FitNet with
and without our DarkRank. As shown in Table. ??, FitNet
achieves similar performance as our method alone. And com-
bined with our method, a significant improvement is achieved.
This result further proves that our method utilizes a different
kind of information complimenting existing intra-instance
methods.

Image Retrieval and Clustering Results

Method F1 NMI Recall@1

Student 0.153 0.461 0.311
DarkRank 0.168 0.483 0.340

Teacher 0.172 0.484 0.367

Table 4: F1, NMI, Recall@1 of DarkRank on CUB-200-
2011.

The goal of image clustering is to group images into
categories according to their visual similarity. And im-
age retrieval is about finding the most similar images in
a gallery for a given query image. These tasks rely heav-
ily on the embeddings learnt by model, since the similar-
ity of a image pair is generally calculated based on the
Euclidean or Mahalanobis distance between their embed-
dings. The metrics we adopted for image clustering are
F1 and NMI. F1 is the harmonic mean of precision and
recall. F1 = 2PR/(P + R). The Normalized Mutual In-
formation(NMI) reflects the correspondence between candi-
date clustering Ω and ground-truth clustering C of the same
dataset. NMI = 2I(Ω,C)/(H(Ω) + H(C)), here I(·) and
H(·) are mutual information and entropy, respectively. NMI
ranges from 0 to 1, where higher value indicates better corre-
spondence. We choose Recall@1, which is the percentage of
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returned images belongs to the same category as the query
image, as the metric for image retrieval task. The networks
and hyper-parameters are as stated in implementation details
section. We present the image retrieval and clustering results
on CUB-200-2011 in Table. ??. The results show our method
achieves significant margin in all F1, NMI, Recall@1 met-
rics. This again shows our method is generally applicable to
various kinds of metric learning tasks.

Speedup

Model NIN-BN Inception-BN

Number of parameters 7.6M 10.3M
Images / Second 526 178

Speedup 2.96 1.00
Rank-1 on CUHK03 0.887 0.897

Rank-1 on Market1501 0.867 0.898

Table 5: Complexity and performance comparisons of the
student network and teacher network.

We summarize the complexity and the performance of the
teacher and the student network in Table. ??. The speed is
tested on Pascal Titan X with MXNet (?). We don’t further
optimize the implementation for testing. Note that, as the first
work that studies knowledge transfer in deep metric learning
model, we choose two off-the-shelf network architectures
rather than deliberately designing them. Even though, we still
achieve a 3X wall time acceleration with minor performance
loss. We believe we can further benefit from the latest network
design philosophy (?; ?), and achieve even better speedup.

Conclusion

In this paper, we have proposed a new type of knowledge –
cross sample similarities for model compression and acceler-
ation. To fully utilize the knowledge, we have modified the
classical listwise rank loss to bridge teacher networks and stu-
dent networks. Through our knowledge transfer, the student
model can significantly improve its performance on various
metric learning tasks. Moreover, by combining with other
transfer methods which exploit the intra-instance knowledge,
the performance gap between teachers and students can be
further narrowed. Particularly, without deliberately tuning
the network architecture, our method achieves about three
times wall clock speedup with minor performance loss with
off-the-shelf networks. We believe our preliminary work pro-
vides a new possibility for knowledge transfer based model
acceleration. In the future, we would like to exploit the use of
cross sample similarities in more general applications beyond
deep metric learning.
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