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Abstract

Variations of human body skeletons may be considered as dy-
namic graphs, which are generic data representation for nu-
merous real-world applications. In this paper, we propose a
spatio-temporal graph convolution (STGC) approach for as-
sembling the successes of local convolutional filtering and
sequence learning ability of autoregressive moving average.
To encode dynamic graphs, the constructed multi-scale local
graph convolution filters, consisting of matrices of local re-
ceptive fields and signal mappings, are recursively performed
on structured graph data of temporal and spatial domain. The
proposed model is generic and principled as it can be gen-
eralized into other dynamic models. We theoretically prove
the stability of STGC and provide an upper-bound of the
signal transformation to be learnt. Further, the proposed re-
cursive model can be stacked into a multi-layer architecture.
To evaluate our model, we conduct extensive experiments on
four benchmark skeleton-based action datasets, including the
large-scale challenging NTU RGB+D. The experimental re-
sults demonstrate the effectiveness of our proposed model
and the improvement over the state-of-the-art.

1 Introduction

Human action recognition is one of the most active re-
search topics due to its wide applications to video surveil-
lance, robot vision, human computer interaction, etc. Since
human body itself can be viewed as an articulated sys-
tem of rigid bones connected by hinged joints, the actions
of human body are essentially embodied in skeletal mo-
tions in the 3D space (Ye et al. 2013). Thereby, various
skeleton based action recognition methods (Liu et al. 2017;
Shahroudy et al. 2016; Zhang et al. 2017) are springing up
in recent years, accompanying with the progress of more ac-
cessible deep sensors.

Different from grid-shaped structures of images/videos,
human skeleton, consisting of a series of joints and bones,
has an irregular geometric structure. Human action may be
regarded as a consecutive dynamic sequence of such irreg-
ular structures. Considering the motion complexity of the
entire body skeleton, the sophisticated strategy is to sepa-
rately model the trajectory of each joint or clique of joints
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(body part). The statistic model (Xia, Chen, and Aggarwal
2012), shape model (Chaudhry et al. 2013), and geometric
model (Vemulapalli, Arrate, and Chellappa 2014) are of-
ten used to characterize the motion trajectories. With the
thriving of representation learning, the learning based meth-
ods, such as Hidden Markov Models (HMMs) (Xia, Chen,
and Aggarwal 2012) and recursive models (long-short term
memory, LSTM) (Liu et al. 2016; 2017; Song et al. 2017),
become predominant in the dynamic representation of skele-
tal joints, because they dedicate more promising results on
those public skeleton datasets.

Recently graph as a tool is used to represent skele-
tons (Wang et al. 2016a), although graph is popular to model
various structured objects. Nevertheless, the graph based
method (Wang et al. 2016a) still takes the conventional
technique line of graph kernel matching. In fact, in the re-
search fields of graph classification/matching, the graph rep-
resentation (e.g., the statistic on graphlet (Pržulj 2007)) and
graph metric (e.g., graph kernel (Vishwanathan et al. 2010))
have been historically well-studied. With recent successes
of deep learning on various problems, deep representation
of graphs has aroused more attention (Yanardag and Vish-
wanathan 2015; Seo et al. 2016; Li et al. 2017). But the most
crucial problem is the definition/identification of homoge-
neous graphs because the same responses should be pro-
duced from those homogeneous graphs. To this end, Niepert
et al. (Niepert, Ahmed, and Kutzkov 2016) used a greedy
strategy of sorting those nodes within a local neighbor re-
gion and then performed convolution-like filtering on the
sorted nodes. Instead of this explicit spatial definition way,
Defferrard et al. (Defferrard, Bresson, and Vandergheynst
2016) introduced a deep graph method based on spectral
filtering, inspired by the recent signal processing theory on
graph (Shuman et al. 2013). Li et al. (Li et al. 2017) intro-
duced attention mechanism into graph convolution model.
But those methods intrinsically belong to still-graph deep
learning.

For dynamic graphs, some variants of recurrent neural
network (RNN) are developed recently based on the tra-
verse way of spatio-temporal graph. Jain et al. (Jain et al.
2016) proposed a structural-RNN by casting spatio-temporal
graph as a RNN mixture for the task of action prediction.
Li et al. (Li et al. 2015) proposed gated graph sequential
neural network for the basic logical reasoning task. Seo et
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al. (Seo et al. 2016) fed the spatial filtered graph signals
into LSTM for image generation. However, these methods
do not yet absorb the essential successes of convolutional
neural networks (CNN), which have changed AI landscape
with breakthrough results on numerous applications.

In this paper, we propose a spatio-temporal graph convo-
lution (STGC) approach to represent dynamic skeletal graph
sequences. To encode the graph structure data, we design
multi-scale convolutional filters, each of which is composed
of receptive field computation and signal mapping. The re-
ceptive field is computed from the polynomial of adjacency
matrix, which makes sure the same responses for homo-
geneous graphs. We simultaneously perform local convolu-
tional filtering on temporal motions and spatial structures.
The temporal convolutional filtering recursively encodes
motion variations while the spatial filtering extracts more
robust feature of spatial structures. In theory, the frequency
responses of multi-scale convolutional filtering are equiva-
lent to an approximate graph Flourier transform following
by one linear function of feature mapping. Taking the phi-
losophy of multi-scale convolutional filtering, we develop a
recursive graph convolution model inspired by autoregres-
sive moving average (ARMA). We theoretically analyze the
stability of the proposed model and provide a theoretical
upper-bound. Finally, we stack the spatio-temporal graph
convolution into a deep architecture. To verify our proposed
method, we conduct extensive experiments on four bench-
mark skeleton-based action datasets including the largest
NTU RGB+D dataset (Shahroudy et al. 2016). The experi-
mental results demonstrate the effectiveness of our proposed
model and a more promising direction for skeleton based ac-
tion recognition.

In summary, our contributions are three folds:
• Propose a spatio-temporal graph convolution approach,

which assembles the successes of local convolutional fil-
tering and sequence learning ability of recursive learning.
The generic model is further extended to a deep architec-
ture.

• Theoretically prove the stability of the proposed model
and provide a theoretical upper-bound.

• Achieve the state-of-the-art performances on the four
benchmark datasets including the large-scale challenging
dataset NTU RGB+D.

2 Graph Preliminary

Consider an undirected graph G = (V,A) of N nodes,
where V = {vi}Ni=1 is the set of nodes, A is a (weighted) ad-
jacency matrix. The adjacency matrix A ∈ R

N×N records
the connections between nodes, where if vi, vj are not con-
nected, then Aij = 0, otherwise Aij �= 0.

The graph Laplacian matrix L is defined as L = D−A,
where D ∈ R

N×N is the diagonal degree matrix with
Dii =

∑
j Aij . A popular option is the normalized version,

i.e., each weight Aij is multiplied by a factor 1√
DiiDjj

, for-

mally, Lnorm = D− 1
2LD− 1

2 = I − D
1
2AD

1
2 , where I is

the identity matrix. Unless otherwise specified, we use the
normalized Laplacian matrix below.

As a symmetric semi-positive definite (SPD) matrix, the
graph Laplacian L has a complete set of orthonormal eigen-
vectors {φ1, · · · ,φN} satisfying Lφi = λiφi, where {λi}
are nonnegative real eigenvalues. We assume all eigenvalues
are ordered as 0 = λ1 ≤ λ2 · · · ≤ λN = λmax. For the nor-
malized Laplacian matrix, we have a bound of λmax = 2.
In matrix expression, the Laplacian matrix can be written
as L = ΦΛΦ�, where Λ = diag([λ1, λ2, · · · , λN ]) and
Φ = [φ�

1 ;φ
�
2 ; · · · ;φ�

N ]�.
According to graph theory (Shuman et al. 2013), the graph

Fourier transform (GFT) of a signal x in spatial domain can
be defined as x̂ = Φ�x, where x̂ is the produced graph fre-
quency signal. The corresponding inverse GFT is x = Φx̂.
A graph filtering H is an operator that acts upon a graph
signal x by amplifying or attenuating its graph Fourier coef-
ficients as Hx =

∑N
n=1 H(λn)x̂nφn. The graph frequency

response H : [λmin, λmax] → C controls how much H am-
plifies the signal spectra H(λn) = (φ�

nHx)/x̂n.

3 The Model

Human body skeleton is represented with a group of 3D spa-
tial coordinates of joints. Hence, one can use a graph to de-
pict spatial relation of skeletal joints. To keep the original
coordinate information, we add attributes of nodes into the
graph, i.e., G = (V,A,X), where V = {vi}Ni=1 is the set
of nodes w.r.t. skeletal joints, A is a (weighted) adjacency
matrix and X is a matrix of graph signals/attributes. Ac-
cording to the body bones between joints, we define those
connected edges, and simply assign them to 1. In addi-
tion, other strategies (e.g., Gaussian kernel) may be used
to produce the adjacency matrix. The signal matrix X =
[x1,x2, · · · ,xd] ∈ R

N×d is supported on the node set V ,
whose i-th component (or channel) xi represents a signal
of all nodes. That means, the i-th node vi ∈ V is assigned
with a signal vector of d dimensions. For skeletal data, we
define the signal of each joint with its 3D spatial coordi-
nates, i.e., xi· : V → (xi, yi, zi). Thus, for a dynamic graph
sequence of length T , we may formulate it as a stream of
graphs (G1,G2, · · · ,GT ), where Gk = (V ,Ak,Xk) denotes
the skeleton at the k-th time slice.

Multi-scale Graphical Convolutional Kernels In the
standard CNN running on images, the receptive field may
be conveniently defined as a local square spatial region, due
to grid-shaped structure. So convolutional filtering on regu-
lar structures is accessible. On the contrary, the construction
of convolutional kernels on graphs is intractable because
the same filtering responses are required for homogeneous
graph structures. Inspired by the graph theory (Shuman et al.
2013), we resort to the adjacency matrix A, which expresses
the connections between nodes. As Ak exactly records the
k-path reachable nodes, so we can construct a k-neighbor
receptive field by defining a k-order polynomial of A, de-
noted as ψk(A). Taking the simplest case, let ψk(A) = Ak,
which actually describes the k-hop neighbor nodes. In prac-
tice, we may replace A with the Laplacian matrix L to avoid
the scale effect of matrix norm during the recursive infer-
ence (see the following model). Thus, for receptive fields of
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K scales, we define multi-scale convolutional filtering as

Z = G ∗ f =
K−1∑
k=0

ψk(L)XVk, (1)

where ψk(L) expresses the receptive field of the k-th scale
and Vk ∈ R

d×d′
is the corresponding signal transformation.

The computation of ψk(L)X weightedly summarizes the
information of all nodes within the k-scale receptive field,
which thus is homogenous-invariant for graphs.

Spatio-Temporal Graph Convolution Inspired by the
design philosophy of autoregressive moving average
(ARMA) (Hannan and Deistler 2012), we construct the
spatio-temporal graphical convolutional model as follows,

Yt+1 =

K1−1∑
k=0

ψk(L)YtWk +XtV0, (2)

Ot+1 = Yt+1 +

K2−1∑
k=1

ψk(L)XtVk, (3)

where ψk(·) is a receptive field function on the k-th scale,
{Wk ∈ R

d′×d′
,Vk ∈ R

d×d′} are the signal transforma-
tion matrices with regard to the k-scale, K1 and K2 are
the number of kernels respectively in the temporal and spa-
tial domain. In the above model, Y = [y1, · · · ,yd′ ],O =
[o1, · · · ,od′ ] can be respectively viewed as the hidden state
and the output state. Along time slices, signals are recur-
sively regressed with local convolutional kernels in Eqn. (2),
thus motion variations can be sequentially encoded. The
output signals in Eqn. (3) combine spatially convolutional
graph signals as well as dynamic temporal signals. More-
over, each output signal oi is dependent on all input sig-
nals {x1, · · · ,xd}. Specifically, when signals are indepen-
dent on each other, and the spatio-temporal convolutional
filters are separately operated on a channel of signals, then
the dynamic graph convolution model can be written as

Yt+1 =

K1−1∑
k=0

ψk(L)Yt diag(wk) +Xt diag(v0), (4)

Ot+1 = Yt+1 +

K2−1∑
k=1

ψk(L)Xt diag(vk), (5)

where wk = [wk1, · · · , wkd]
�,vk = [vk1, · · · , vkd]� are

mapping parameters, and wki, vki are associated to the k-th
scale of the i-th signal. Note here the dimension of output is
assumed to be the input dimension. It is easy to extend into
d′ �= d in the case of signal independency.

Frequency Domain Analysis As the receptive field func-
tion ψk(·) is a polynomial expression, we can derive
ψk(L) = ψk(φ diag(λ)φ�) = φψk(diag(λ))φ

�. Thus
the frequency response of convolution filtering in Eqn. (1)
can be written as

Ẑ =
K−1∑
k=0

diag(ψk(λ))X̂Vk. (6)

In particular, if signals are independent as expressed in
Eqn. (4) and (5), then we can obtain the frequency re-
sponses of graphical signals as Ẑ =

∑K−1
k=0 (ψk(λ)v

�
k ) �

X̂, each frequency response of which is formally Ẑij =∑K−1
k=0 (vkjψk(λi))X̂ij . Therefore, when signals are inde-

pendent, the multi-scale convolutional filtering on graphs
may be regarded as a (K-1)-order polynomial approx-
imation of graph Flourier transform, if let H(λi) =∑K−1

k=0 vkiψk(λi).
In the signal dependency case, we can decompose Vk

into a diagonal matrix multiplied by a general matrix,
i.e., Vk = diag(αk)Ṽk. Then the frequency response of
convolution filtering in Eqn. (6) can be written as Ẑ =∑K−1

k=0 ((ψk(λ)α
�
k )� X̂)Ṽk. Therefore, in the general case

of signal dependency, the calculation of frequency responses
may be understood as two steps: (i) perform a polyno-
mial approximation of GFT on each input signal, and (ii)
transform multi-channel signals by the new mappings {Ṽk}.

Stability Analysis For any sequence of graph realizations
{G1,G2, · · · }, we can prove the stability of the recursive
model (Eqn. (2)∼(3)), which is summarized in the follow-
ing theory.
Theorem 1. Suppose the Laplacian matrix L has the eigen-
value decomposition L = ΦΛΦ�, and ψk(·) is a k-order
polynomial function satifying ‖ψk(L)‖2 ≤ 1. For the signal
mappings {W0, · · · ,WK1−1}, if their diagonal elements
are non-negative, i.e., Wk,ii ≥ 0, and

∑K1−1
k=0 ‖Wk‖∞ < 1,

the frequency response vec(Ô) in Eqn. (3) will converge to

lim
t→∞ vec(Ôt) = T · vec(X̂t−1), (7)

T = (I−ΓK1
0 (W,Λ))−1Γ1

0(V,Λ)+ΓK2
1 (V,Λ), (8)

where Γb
a(W,Λ) =

∑b−1
k=a(W

�
k ⊗ ψk(Λ)) (similar for

ΓK2
0 ). Moreover, the transformation function T has an

upper-bound:

‖T ‖2 <
‖V0‖∞

1−
∑K1−1

k=0 ‖Wk‖∞
+

K2∑
k=1

‖Vk‖∞. (9)

Proof. As ψk(·) is a polynomial function, we can transform
the recursive model (Eqn. (2)∼(3)) from spatial domain into
frequency domain by using Ŷ = Φ�Y and X̂ = Φ�X,

Ŷt+1 =

K1−1∑
k=0

ψk(Λ)ŶtWk + X̂tV0, (10)

Ôt+1 = Ŷt+1 +

K2−1∑
k=1

ψk(Λ)X̂tVk. (11)

By using the abbreviated notation Γb
a(·, ·) and ψ0(·) = I, we

can derive a vertorized style of Eqn. (10) as

vec(Ŷt+1) = ΓK1
0 (W,Λ)vec(Ŷt) + Γ1

0(V,Λ)vec(X̂t)

=
t∑

τ=0

((ΓK1
0 (W,Λ))τ )Γ1

0(V,Λ)vec(X̂t)

+ (ΓK1
0 (W,Λ))t+1vec(Ŷ0). (12)
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Next we need to prove ‖ΓK1
0 (W,Λ)‖2 < 1. The

matrix ΓK1
0 (W,Λ) is a block matrix of d′ × d′ blocks,

each of which is a diagonal matrix. Let A(ij) =∑K1−1
k=0 Wk,ijψk(Λ) denote the (i, j)-th block diagonal

matrix, where Wk,ij denotes the (i, j)-th element of the
matrix Wk. As ψk(Λ) is a diagonal matrix, we denote
ψk(Λ) = diag([λ̃k1, λ̃k2, · · · , λ̃kn]) for simplification.
Since ‖ψk(L)‖2 ≤ 1, we have λ̃ki ∈ [−1, 1]. And, since∑K1−1

k=0 ‖Wk‖∞ < 1, we have

‖ΓK1
0 (W,Λ)‖2≤max

i,r

∑

j

|A(ij)
rr |=max

i,r

∑

j

|
K1−1∑

k=0

Wk,ij λ̃kr|

≤ max
i,r

∑

j

K1−1∑

k=0

|Wk,ij | < 1. (13)

Therefore, when t → ∞, we can derive vec(Ŷt+1) as

vec(Ŷt+1)=(I− ΓK1
0 (W,Λ))−1Γ1

0(V,Λ)vec(X̂t). (14)

After a simple algebra calculation on Eqn. (11), we can
reach the conclusion of Eqn. (7)∼(8).

Now we prove the bound of the transformation function
T . First, we can derive the following two inequations,

‖(I−Aii)
−1‖−1

∞ = ‖(I−
K1−1∑
k=0

Wk,iiψk(Λ))−1‖−1
∞

= min
l

|1−
K1−1∑
k=0

Wk,iiλ̃kl| >= 1− |
K1−1∑
k=0

Wk,ii|, (15)

∑
j �=i

‖Aij‖∞ =
∑
j �=i

‖
K1−1∑
k=0

Wk,ijψk(Λ)‖∞

=
∑
j �=i

max
l

|
K1−1∑
k=0

Wk,ij λ̃kl| <
∑
j �=i

K1−1∑
k=0

|Wk,ij |. (16)

Note the above derivation uses the conditions Wk,ii ≥ 0

and λ̃kl ∈ [−1, 1]. When
∑K−1

k=0 ‖Wk‖∞ < 1, we can
further have ‖(I − Aii)

−1‖−1
∞ >

∑
j �=i ‖Aij‖∞ for ∀i =

1, · · · , d′. So I−ΓK1
0 (W,Λ) is strictly block diagonal dom-

inant (SBDD). According to Ahlberg-Nilson-Varah bound
of SSDD matrix (Morača 2007), after a series of algebra
derivations, we can reach the bound:

‖(I− Γ(W,Λ))−1‖∞ <
1

1−
∑K1

k=0 ‖Wk‖∞
. (17)

Similarly, ‖Γ1
0(V,Λ)‖∞ ≤ ‖V0‖∞, ‖ΓK2

1 (V,Λ)‖∞ ≤∑K2

k=1 ‖Vk‖∞. Finally we obtain an upper bound of T .

When signals are independent, i.e., the recursive model
takes Eqn. (4)∼(5), we can have the following corollary
based on the above theory.

Proposition 1. Suppose the Laplacian matrix L has
the eigenvalue decomposition L = Φ diag(λ)Φ� =

Φ diag([λ1, · · · , λn])Φ
�, and ψk(L) is a k-order polyno-

mial. If signals are independent, i.e., taking the recursive
model of Eqn. (4)∼(5), for ∀i = 1, · · · , d, j = 1, · · · , n,
and wki ≥ 0 and |

∑K1−1
k=0 wkiψk(λj)| < 1, then the fre-

quency response Ô in Eqn. (5) will converge to

lim
t→∞ Ôt+1 = T � X̂t, (18)

T =
1v�

0

1−
∑K1−1

k=0 ψk(λ)w�
k

+

K2−1∑
k=1

ψk(λ)v
�
k , (19)

where −,� respectively denote the elementwise division and
multiplication. Further, if |ψk(λj)| < 1, and considering T
is the elementwise multiplication, then for ∀(i, j) term of T ,
we have an upper-bound:

‖Tij‖2 <
‖v0‖∞

1− ‖
∑K1−1

k=0 wk‖∞
+

K2∑
k=1

‖vk‖∞. (20)

Proof. According to Eqn. (12) in Theory 1, let Υb
a(w,λ) =∑b−1

k=a ψk(λ)w
�
k , we can have

Ŷt+1 =

t∑
τ=0

((ΥK1
0 (w,λ))τ )�Υ1

0(v,λ)� X̂t

+(ΥK1
0 (w,λ))t+1 � Ŷ0. (21)

Since |
∑K1−1

k=0 wkiψk(λj)| < 1, when t → ∞, we can have

Ŷt+1=
Υ1

0(v,λ)

1−ΥK1
0 (w,λ)

� X̂t. (22)

Further, Eqn. (18) can be obtained after simple derivations.
The upper-bound of T can also be easily obtained..

In practice we can take some normalization strategies on
{L,W} to make them satisfy these preconditions, in order
to guarantee model stability.

Deep Stacking The above recursive convolutional model
can be easily extended into a deep architecture. Taking the
recursive model as one basic layer, we may stack it into a
multi-layer network architecture, in which the output signal
O at the bottom layer is used as the input of the top layer.
With the increase of layers, the receptive field size of con-
volutional kernels can become larger, thus the topper layer
can abstract more global information. As observed from our
experiments, this deep architecture (named deep STGC) can
improve the performance of skeleton based action recogni-
tion. Besides, we may insert the recursive model into other
networks as one basic unit to form a mixture network, ac-
cording to the requirement of solved problems.

4 Experiments

We conduct experiments on four public skeleton based
action datasets: Florence 3D (Seidenari et al. 2013),
HDM05 (Müller et al. 2007), Large Scale Combined
dataset (Zhang et al. 2016) and NTU RGB+D (Shahroudy
et al. 2016). To investigate the effectiveness of our model,
we conduct extensive experiments with different configura-
tions listed as follows:
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Table 1: Performance comparisons with different configurations for our model.

Method Florence HDM05 LSC NTU
Protocol 1 Protocol 2 Cross Sample Cross Subject Cross View Cross Subject

Accuracy Accuracy Accuracy Precision Recall Precision Recall Accuracy Accuracy
STGC (w/o L) 98.14% 73.82% 81.92%±1.04 82.51% 80.80% 82.44% 81.12% 80.87% 70.29%
STGC (w/ L) 98.60% 75.76% 82.24%±1.18 83.65% 82.04% 83.63% 80.24% 81.11% 71.00%
STGCK (indep.) 98.14% 77.08% 82.49%±1.49 84.70% 82.60% 82.08% 78.17% 79.71% 70.62%
STGCK (dep.) 97.67% 77.99% 83.40%±1.30 86.44% 85.10% 84.00% 82.12% 81.84% 72.09%
Deep STGCK (indep.) 98.60% 78.19% 86.17%±1.25 86.73% 86.18% 84.58% 81.11% 83.57% 73.60%
Deep STGCK (dep.) 99.07% 78.68% 85.29%±1.33 88.11% 87.03% 85.44% 83.42% 86.28% 74.85%

• STGC (w/o L) is the standard baseline without consid-
ering neighbor nodes, i.e., only performing channel map-
ping;

• STGC w/ L uses convolutional kernels with the receptive
filed of one hop neighborhood;

• STGCK (indep.) is the multi-scale filtering version under
the assumption of signal independency.

• STGCK (dep.) is the general multi-scale filtering version,
where signals are dependent on each other.

• Deep STGCK (indep.) is the deep scheme by stacking
STGCK (indep.).

• Deep STGCK (dep.) is the deep scheme by stacking
STGCK (dep.)

4.1 Datasets and Settings

Florence 3D (Florence) This dataset was collected from
a stationary Kinect, and each body skeleton was recorded
with only 15 joints. It contains 215 action sequences of
10 subjects with 9 actions: wave, drink from a bottle, an-
swer phone, clap, tight lace, sit down, stand up, read watch,
and bow. Due to a few skeletal joints, some types of ac-
tions are difficult to distinguish, such as drink from a bottle,
answer phone and read watch. We follow the standard ex-
perimental settings to perform leave-one-subject-out cross-
validation (Wang et al. 2016a).

HDM05 This dataset was captured by using an optical
marker-based Vicon system, and contains 2337 action se-
quences of 130 motion classes, which are acted by 5 non-
professional actors named “bd”, “bk”, “dg”, “mm” and “tr”.
Each skeleton data is represented with 31 joints. Until now,
this dataset should involve the most skeleton-based action
categories to the best of our knowledge. Due to the intra-
class variations and large number of motion classes, this
dataset is challenging in action recognition. To compare with
those previous literatures, we conduct two types of experi-
ments by following two widely-used protocols. Firstly, we
use two subjects “bd” and “mm” for training and the remain-
ing three for testing (Wang et al. 2015a). Secondly, to fairly
compare the current deep learning methods, we conduct 10
random evaluations, each of which randomly selects half of
the sequences for training and the rest for testing (Huang and
Van Gool 2017).

Large Scale Combined (LSC) This dataset combines
nine publicly available datasets (Li, Zhang, and Liu 2010;
Wang et al. 2015b; 2016b; Xia, Chen, and Aggarwal 2012;
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Figure 1: Comparisons of different convolutional kernel
scale K1,K2 on HDM05 (Protocol 1) for our SGTC.

Wang et al. 2012; Oreifej and Liu 2013; Koppula, Gupta,
and Saxena 2013; Sung et al. 2012; Bloom, Argyriou, and
Makris 2013; Bloom, Makris, and Argyriou 2012; Ni, Wang,
and Moulin 2011; Chen, Jafari, and Kehtarnavaz 2015), and
form a complex action dataset with 88 actions. As each indi-
vidual dataset has its own characteristics in action execution
manners, backgrounds, acting positions, view angles, reso-
lutions, and sensor types, the combination of a large number
of action classes makes the dataset more challenging in suf-
fering large intra-class variation compared to each individual
dataset. Following Zhang et al. (Zhang et al. 2016), we con-
duct experiments using two standard settings, i.e., random
cross subject evaluation and random cross sample evalua-
tion. For each action, half of the subjects/samples are ran-
domly selected for training while the rest for testing.

NTU RGB+D (NTU) This dataset is collected by Kinect
v2 cameras from different views. It consists of 56880 se-
quences for 60 distinct actions, including various of daily ac-
tions and pair actions performed by 40 subjects. The skele-
ton data is represented by 25 joints. As far as we know, this
dataset is currently the largest skeleton-based action recog-
nition dataset. The large intra-class and view point varia-
tions make this dataset great challenging. Meanwhile, a large
amount of samples will bring a new challenge to the current
skeleton-based action recognition methods. We follow the
two types of standard evaluation protocols (Shahroudy et al.
2016), i.e., cross-view evaluation, cross-subject evaluation,
to perform experiments.

4.2 Implementation Details

Data Processing As skeletal data is usually captured from
multi-view points and human actions are independent on the
user coordinate system, we modify the origin of the coor-

3486



Table 2: Comparisons on Florence 3D dataset.
Method Accuracy
Multi-part Bag-of-Poses (Seidenari et al. 2013) 82.00%
Riemannian Manifold (Devanne et al. 2015) 87.04%
Lie Group (Vemulapalli, Arrate, and Chellappa 2014) 90.88%
Graph-Based (Wang et al. 2016a) 91.63%
MIMTL (Yang et al. 2017) 95.29%
P-LSTM (Shahroudy et al. 2016) 95.35%
STGCK 97.67%
Deep STGCK 99.07%

Table 3: Comparisons on HDM05 dataset.
Method Accuracy Accuracy
RSR-ML (Harandi, Salzmann, and Hartley 2014) 40.0% -
Cov-RP (Tuzel, Porikli, and Meer 2006) 58.9% -
Ker-RP (Wang et al. 2015a) 66.2% -
SPDNet (Huang and Van Gool 2017) - 61.45%±1.12
Lie Group (Vemulapalli, Arrate, and Chellappa 2014) - 70.26%±2.89
LieNet (Huang et al. 2016) - 75.78%±2.26
P-LSTM (Shahroudy et al. 2016) 70.4% 73.42%±2.05
STGCK 78.0% 83.40%±1.30
Deep STGCK 78.7% 85.29%±1.33

dinate system as the orthocenter of joints for each frame of
skeleton, i.e., O = 1

N

∑N
i=1 xi, where xi ∈ R

3 is a 3D coor-
dinate of the i-th joint, N is the number of joints. Specially,
for NTU, we preprocess the joint coordinates in a way sim-
ilar to Shahroudy et al. (Shahroudy et al. 2016). To enhance
the robustness of model training, we perform data augmenta-
tion as widely used in previous deep learning literature (Liu
et al. 2016; Shahroudy et al. 2016). Concretely, for each ac-
tion sequence, we split the sequence into several equal sized
subsequences, here 12 segments, and then pick one frame
from each segment randomly to generate a large amount of
training sequences. In addition, we randomly scale the skele-
tons by multiplying a factor in [0.98, 1.02] for the sake of the
adaptive capability of scaling.

Model Configuration For the undirected attribute graph,
we simply design edge connections according to human
bones. If two joints are bridged with a bone, the edge weight
is assigned to 1, otherwise 0. The signals of each node are
set to its 3D coordinate. For the receptive field function,
we use the simplest polynomial term, i.e., ψk(L) = Lk,
which represents k-hop neighbors. According to Theory 1,
we normalize/clip L = L/λmax (λmax = 2), Wk,ii ≥
0,
∑

k |Wk|1 < 1 after the gradient update at each iteration,
to make sure the model stability. The outputs of recursive
model are concatenated into a softmax layer for classifica-
tion. In the default case, the dimension of output signals is
d′ = 32. For deep STGC, we empirically observe that stack-
ing two layers is good enough to these datasets, thus we only
employ two-layer network for Deep STGC. The outputs of
each layer in deep STGC are 32, 64 dimensions. The most
important factor of our model is the scale of convolutional
kernels, which is analyzed in the next Section 4.3.

4.3 Selection of Convolutional Kernel Size

In the STGCK model, the parameters {K1,K2} control the
receptive field sizes in temporal domain and spatial domain.
When increasing K1,K2, the local filtering region will cover

Table 4: Comparisons on Large Scale Combined dataset.
Method Cross Sample Cross Subject

Precision Recall Precision Recall
HON4D (Oreifej and Liu 2013) 84.6% 84.1% 63.1% 59.3%
Dynamic Skeletons (Hu et al. 2015) 85.9% 85.6% 74.5% 73.7%
P-LSTM (Shahroudy et al. 2016) 84.2% 84.9% 76.3% 74.6%
STGCK 86.4% 85.1% 84.0% 82.1%
Deep STGCK 88.1% 87.0% 85.4% 83.4%

Table 5: Comparisons on NTU RGB+D dataset.
Method Cross

View
Cross

Subject
Lie Group (Vemulapalli, Arrate, and Chellappa 2014) 52.76% 50.08%
Dynamic Skeletons (Hu et al. 2015) 65.22% 60.23%
HBRNN (Du, Wang, and Wang 2015) 63.97% 59.07%
LieNet (Huang et al. 2016) 66.95% 61.37%
Deep LSTM (Shahroudy et al. 2016) 67.29% 60.69%
P-LSTM (Shahroudy et al. 2016) 70.27% 62.93%
ST-LSTM (Liu et al. 2016) 77.70% 69.20%
STA-LSTM (Song et al. 2017) 81.20% 73.40%
GCA-LSTM (Liu et al. 2017) 82.80% 74.40%
Geometric Features (Zhang, Liu, and Xiao 2017) 82.39% 70.26%
Clips + CNN + MTLN (Ke et al. 2017)* 84.83% 79.57%
View invariant(Raw Samples) (Liu, Liu, and Chen 2017)* 82.56% 75.97%
STGCK 81.84% 72.09%
Deep STGCK 86.28% 74.85%

* They used the VGG-19/CNN model pre-trained on ImageNet
after converting skeletons into images.

the farther hoping neighbors. To check the effect of differ-
ent scales, we conduct an experiment on HDM05 dataset
by searching the temporal kernel scale K1 in {1, 2, 3} and
the spatial kernel scale K2 in {1, 2, 4, 6, 8}. Considering
the continuous convolution filtering is performed along time
slices like a stacking CNN, in practice we should employ
a smaller K1 than K2. The cross-comparison results are
reported in Figure 1. The best performance is obtained at
K1 = 2 and K2 = 6, which are used as the default pa-
rameters. Note that, K = 1 means STGC(w/o L), which
convolves only on the node itself without any neighbors. If
K1 = 1 and K2 > 1, only spatial filtering is taken. Con-
versely, K1 > 1 and K2 = 1 for only temporal filtering. We
can observe that the spatial and temporal filtering together
contribute the gain for action recognition.

4.4 Verification of STGC Structure

For our proposed model STGC itself, we conduct a se-
ries of experiments with different configurations on four
benchmark datasets. The results are summarized in Table 1.
They include six configurations: STGC(w/o L), STGC(w/
L), STGCK(indep.), STGCK(dep.), deep STGCK(indep.)
and deep STGCK(dep.). The standard baseline should be
STGC(w/o L), which doesn’t use any adjacent relationship,
i.e., implementing a multi-channel mapping like 1×1 convo-
lution on images. When introducing the convolutional ker-
nel with 1-neighborhood, i.e., STGC(w/ L), the performance
is improved. As discussed in Section 4.3, we set K1 = 2
and K2 = 6 as default for multi-scale STGCK(indep.),
STGCK(dep.), where the former is the version of indepen-
dent signals while the latter is the general one. STGCK(dep.)
is slightly superior to STGCK(indep.) due to the considera-
tion of signal interaction. When extending STGC into the
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deep architecture of two layers, we can achieve the best per-
formance on all four benchmark datasets.

4.5 Comparisons with State-of-the-Art

We compare state-of-the-art methods on Florence, HDM05,
LSC, NTU, respectively, which are summarized in Ta-
ble 2, 3, 4 and 5. As observed from these results, we have
the following observations.

The proposed spatio-temporal graph convolution method
is superior to the recent graph-based method (Wang et al.
2016a) and LSTM-based methods (Shahroudy et al. 2016;
Liu et al. 2016; 2017; Song et al. 2017). As shown in Ta-
ble 2, our STGC has a large improvement (more than 7%)
in contrast to the graph-based work (Wang et al. 2016a). In
principle, our STGC is very different from this work (Wang
et al. 2016a), although graph is used for both. Our method
falls into a recursively convolutional architecture, while
the work (Wang et al. 2016a) follows the conventional
graph kernel matching technique. Also, different from those
LSTM-based methods, which only model dynamics of se-
quences by revising LSTM, our method absorbs the success
of convolutional filtering into a recursive learning with a the-
oretical guarantee.

Our proposed STGC improves the current state-of-the-
art on most datasets. On the Florence dataset, our method
achieves a nearly perfect performance 99.07%. On the cur-
rent largest dataset NTU, under the same recursive idea, the
performance is pushed to the higher 86.28% and 74.85%,
from 82.80% and 74.40% for GCA-LSTM. Recently, the
CNN-based methods (Ke et al. 2017; Liu, Liu, and Chen
2017) converted skeletons into images and then employed
the sophisticated CNN feature extraction techniques by us-
ing the pre-training on ImageNet (Deng et al. 2009). Even
so, without the use of extra training data, our STGC is still
more competitive over them.

Deep learning based methods are more effective than
those shallow learning methods. The advanced nonlinear
dynamic networks, variations of LSTM (Shahroudy et al.
2016; Liu et al. 2016; 2017; Song et al. 2017) and CNN-
based models (Ke et al. 2017; Liu, Liu, and Chen 2017),
largely improve the action recognition performance, due
to their robust representation ability. For the conventional
matrix-based descriptors (e.g., covariance or its variants), al-
though the deep manifold learning strategies (Huang et al.
2016; Huang and Van Gool 2017) are developed recently, the
matrix-based representations limit their representation capa-
bility because the only second-order statistic relationship of
skeletal joints is preserved, whereas first-order statistics is
also informative (Ranzato and Hinton 2010).

Different datasets have different performances. Florence
3D is the simplest dataset with 215 sequences and 9 action
classes, thus most methods obtain a higher accuracy. The
most difficult dataset should be the largest dataset NTU,
which consists of 56880 sequences and covers various of
daily actions and pair actions. The cross subject accuracy
is still less than 80% due to various entangled actions. Cross
subject is more difficult than cross view or cross sample. The
phenomenon is observed from Table 4, Table 5, and Table 3
(the left/right column w.r.t cross subject/cross sample). It is

easy to understand, in the cross subject task, more unfore-
seeable information exists in the testing set, compared to the
other tasks.

5 Conclusion

We proposed a spatio-temporal graph convolution approach
for combining the successes of local convolution filtering
and the recursive learning power of autoregressive mov-
ing average. To locally filter on spatio-temporal structures,
we introduced multi-scale graphical convolutional kernels,
which were composed of the receptive field matrices de-
fined by polynomials of adjacency matrix, and signal map-
pings. The multi-scale convolutional kernels were simulta-
neously performed on hidden states of sequences for en-
coding the motion variations and input state for extracting
spatial graphical feature. In theory, we proved the conver-
gency of the proposed model and provided an upper-bound.
Moreover, we extended the basic model into a multi-layer
deep architecture. We verified the representation ability of
the proposed STGC and its deep version. We also demon-
strated the improvements with STGC on four public skeletal
datasets, including the current largest NTU RGB+D dataset.
As a generic model, the proposed model may be generalized
into many problems modeled by dynamic graphs, which will
be one of our future work.
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