
Deep Semi-Random Features
for Nonlinear Function Approximation

Kenji Kawaguchi∗
Massachusetts Institute of Technology

Bo Xie,∗Le Song
Georgia Institute of Technology

Abstract

We propose semi-random features for nonlinear function ap-
proximation. The flexibility of semi-random feature lies be-
tween the fully adjustable units in deep learning and the ran-
dom features used in kernel methods. For one hidden layer
models with semi-random features, we prove with no unreal-
istic assumptions that the model classes contain an arbitrarily
good function as the width increases (universality), and de-
spite non-convexity, we can find such a good function (op-
timization theory) that generalizes to unseen new data (gen-
eralization bound). For deep models, with no unrealistic as-
sumptions, we prove universal approximation ability, a lower
bound on approximation error, a partial optimization guaran-
tee, and a generalization bound. Depending on the problems,
the generalization bound of deep semi-random features can
be exponentially better than the known bounds of deep ReLU
nets; our generalization error bound can be independent of the
depth, the number of trainable weights as well as the input di-
mensionality. In experiments, we show that semi-random fea-
tures can match the performance of neural networks by using
slightly more units, and it outperforms random features by us-
ing significantly fewer units. Moreover, we introduce a new
implicit ensemble method by using semi-random features.

Introduction

Many recent advances, such as human-level image classifi-
cation (Deng et al. 2009) and game playing (Bellemare et al.
2013; Silver et al. 2016) in machine learning are attributed to
large-scale nonlinear function models. There are two domi-
nating paradigms for nonlinear modeling in machine learn-
ing: kernel methods and neural networks:

• Kernel methods employ pre-defined basis functions,
k(x, x′), called kernels to represent nonlinear functions
(Scholkopf and Smola 2001; Shawe-Taylor and Cristian-
ini 2004). Learning algorithms that use kernel methods
often come with nice theoretical properties–globally opti-
mal parameters can be found via convex optimization, and
statistical guarantees can be provided rigorously. How-
ever, kernel methods typically work with matrices that
are quadratic in the number of samples, leading to unfa-
vorable computation and storage complexities. A popular
∗Equal contribution

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approach to tackle such issues is to approximate kernel
functions using random features (Rahimi and Recht 2008;
Sindhwani, Avron, and Mahoney 2014; Pennington, Yu,
and Kumar 2015). One drawback of random features is
that its approximation powers suffer from the curse of
dimensionality (Barron 1993) because its bases are not
adaptive to the data.

• Neural networks use adjustable basis functions and learn
their parameters to approximate the target nonlinear func-
tion (LeCun, Bengio, and Hinton 2015). Such adaptive
nature allows neural networks to be compact yet ex-
pressive. As a result, they can be efficiently trained on
some of the largest datasets today. By incorporating do-
main specific network architectures, neural networks have
also achieved state-of-the-art results in many applica-
tions. However, learning the basis functions involves dif-
ficult non-convex optimization. Few theoretical insights
are available in the literature and more research is needed
to understand the working mechanisms and theoretical
guarantees for neural networks (Choromanska, LeCun,
and Arous 2015; Swirszcz, Czarnecki, and Pascanu 2016;
Shamir 2016).

Can we have the best of both worlds? Can we develop a
framework for big nonlinear problems which has the abil-
ity to adapt basis functions, has low computational and stor-
age complexity, while at the same time retaining some of
the theoretical properties of random features? Towards this
goal, we propose semi-random features to explore the space
of trade-off between flexibility, provability and efficiency
in nonlinear function approximation. We show that semi-
random features have a set of nice theoretical properties, like
random features, while possessing a (deep) representation
learning ability, like deep learning. More specifically:

• Despite the nonconvex learning problem, semi-random
feature model with one hidden layer has no bad local min-
imum;

• Depending on the problems, the generalization bound of
deep semi-random features can be exponentially better
than known bounds of deep ReLU nets;

• Semi-random features can be composed into multi-layer
architectures, and going deep in the architecture leads to
more expressive model than going wide;

• Semi-random features also lead to statistical stable func-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3382

tion classes, where generalization bounds can be readily
provided.

Background

We briefly review different ways of representing nonlinear
functions in this section.

Hand-designed basis. In a classical machine learning ap-
proach for nonlinear function approximation, users or do-
main experts typically handcraft a set of features φexpert :
X → H, a map from an input data space X to a (com-
plete) inner product space H. Many empirical risk min-
imization algorithms then require us to compute the in-
ner product of the features as 〈φexpert(x), φexpert(x

′)〉H
for each pair (x, x′) ∈ X × X . Computing this inner
product can be expensive when the dimensionality of H
is large, and indeed it can be infinite. For example, if
H is the space of square integrable functions, we need
to evaluate the integral as 〈φexpert(x), φexpert(x

′)〉H =∫
ω
φexpert(x;ω)φexpert(x′;ω).

Kernel methods. When our algorithms solely depend on
the inner product, the kernel trick avoids this computational
burden by introducing an easily computable kernel function
as kexpert(x′, x) = 〈φexpert(x), φexpert(x

′)〉H , resulting in
an implicit definition of the features φexpert (Scholkopf and
Smola 2001; Shawe-Taylor and Cristianini 2004). However,
the kernel approach typically scales poorly on large datasets.
Given a training set of m input points {xi}mi=1, evaluat-
ing a learned function at a new point x requires computing
f̂(x) =

∑m
i=1 αikexpert(xi, x), the cost of which increases

linearly with m. Moreover, it usually requires computing (or
approximating) inverses of matrices of size m×m.

Random features. In order to scale to large datasets, one
can approximate the kernel by a set of random basis func-
tions sampled according to some distributions. That is,
kexpert(x

′, x) ≈ 1
C

∑C
j=1 φrandom(x; rj)φrandom(x

′; rj),
where both the type of basis functions φrandom, and the
sampling distribution for the random parameter rj are de-
termined by the kernel function. Due to its computational
advantage and theoretical foundation, the random feature ap-
proach has many applications and is an active research topic
(Rahimi and Recht 2008; Sindhwani, Avron, and Mahoney
2014; Pennington, Yu, and Kumar 2015).

Neural networks. Neural networks approximate functions
using weighted combination of adaptable basis functions
f(x) =

∑n
k=1 w

(2)
k φ(x;w

(1)
k), where both the combination

weights w(2)
k and the parameters w(1)

k in each basis function
φ are learned from data. Neural networks can be composed
into multilayers to express highly flexible nonlinear func-
tions.

Semi-Random Features

When comparing different nonlinear representaitons, we can
see that random features are designed to approximate a
known kernel, but not for learning these features from the
given dataset (i.e., it is not a representation learning). As

a result, when compared to neural network, it utilizes less
amount of information encoded in the dataset, which could
be disadvantageous. Neural networks, on the other hand,
pose a difficulty for theoretical developments due to non-
convexity in optimization.

This suggests a hybrid approach of random feature
and neural network, called semi-random feature (or semi-
random unit), to learn representation (or feature) from
datasets. The goal is to obtain a new type of basis func-
tions which can retain some theoretical guarantees via in-
jected randomness (or diversity) in hidden weights, while at
the same time have the ability to adapt to the data at hand.
More concretely, semi-random features are defined as

φs(x; r,w) = σs(x
�r)

(
x�w

)
, (1)

where x = (1, x�)� is assumed to be in R
1+d, r =

(r0, r
�)� is sampled randomly, and w = (w0, w

�)� is
adjustable weights to be learned from data (hence, it is
“semi-random”). Furthermore, the family of functions σs for
s ∈ {0, 1, 2, . . . } is defined as σs(z) = (z)sH(z), where H
is Heaviside step function (H(z) = 1 for z > 0 and 0 oth-
erwise). For instance, σ0 is simply Heaviside step function,
σ1 is ramp function, and so on. We call the corresponding
semi-random features with s = 0 “linear semi-random fea-
tures (LSR)” and with s = 1 “squared semi-random fea-
tures (SSR)”. An illustration of example semi-random fea-
tures can be found in Appendix.

Unlike dropout, which uses a data independent random
switching mechanism (during training), the random switch-
ing in semi-random feature depends on the input data x
(during both training and testing), inducing highly nonlin-
ear models with practical advantages. By further enhancing
this property, we additionally introduce linear semi-random
implicit-ensemble (LSR-IE) features in Section “Image clas-
sification benchmarks”.

Intuitively, models with semi-random features have more
expressive power than those with random features because
of the learnable unit parameter w. Yet, these models are less
flexible compared to neural networks, since the parameters
in σs(x

�r) is sampled randomly. Depending on the prob-
lems. this property of semi-random feature can result in ex-
ponential advantage over fully random feature in expressive-
ness (as discussed in Appendix), and exponential advantage
over deep ReLU models in generalization error bound (as
discussed in Section “Generalization Guarantee”).

One Hidden Layer Model

With semi-random features φs in equation (1), we define one
hidden layer model for nonlinear function as

f̂s
n(x;w) =

n∑
k=1

φs(x; rk,w
(1)
k)w

(2)
k , (2)

where rk is sampled randomly for k ∈ {2, 3, · · · , n} as de-
scribed in Section “Semi-Random Features”, and r1 is fixed
to be the first element of the standard basis as r1 = e1 =
(1, 0, 0, · · · 0)� (to compactly represent a constant term in
x). We can think of this model as one hidden layer model

3383

by considering φs(x; r,w
(1)
k) as the output of k-th unit of

the hidden layer, and w
(1)
k as adjustable parameters associ-

ated with this hidden layer unit. This way of understanding
the model will become helpful when we generalize it to a
multilayer model in Section “Multilayer Model”. Note that
f̂s
n(x;w) is a nonlinear function of x. When it is clear, by the

notation w, we denote all adjustable parameters in the entire
model.

In matrix notation, the model in (2) can be rewritten as

f̂s
n(x;w) =

(
σs(x

�R)� (x�W(1))
)
W (2), (3)

where

W(1) = (w
(1)
1 ,w

(1)
2 , . . . ,w(1)

n) ∈ R
(d+1)×n,

R = (r1, r2, . . . , rn) ∈ R
(d+1)×n, and

W(2) = (w
(2)
1 , . . . , w(2)

n)� ∈ R
n+1.

Here, (M1 � M2) represents a Hadamard product of two
matrices M1 and M2. Furthermore σs(M)ij = σs(Mij),
given a matrix M of any size (with overloads of the symbol
σs).

In the following subsections, we present our theoretical
results for one hidden layer model. All proofs in this paper
are deferred to the appendix.

Universal Approximation Ability

We show that our model class has universal approximation
ability. Given a finite s, our model class is defined as

Fs
n = {x �→ f̂s

n(x;w) |w ∈ R
dw},

where dw = (d+1)n+n is the number of adjustable param-
eters. Let L2(Ω) be the space of square integrable functions
on a compact set Ω ⊆ R

d. Then Theorem 1 states that we
can approximate any f ∈ L2(Ω) arbitrarily well as we in-
crease the number of units n. We discuss the importance of
the bias term r0 to obtain the universal approximation power
in Appendix.

Theorem 1 (Universal approximation) Let s be any fixed fi-
nite integer and let Ω
= {0} be any fixed nonempty compact
subset of Rd. Then, for any f ∈ L2(Ω), with probability one,

lim
n→∞ inf

f̂∈Fs
n

‖f − f̂‖L2(Ω) = 0.

Optimization Theory

As we have confirmed universal approximation ability of
our model class Fs

n in the previous section, we now want to
find a good f̂ ∈ Fs

n via empirical loss minimization. More
specifically, given a dataset {(xi, yi)}mi=1, we will consider
the following optimization problem:

minimize
w∈Rdw

L(w) = 1

2m

m∑
i=1

(
yi − f̂s

n(xi;w)
)2

.

Let Y = (y1, y2, . . . , ym)� ∈ R
m and Ŷ =

(fs
n(x1;w), f

s
n(x2;w), . . . , f

s
n(xm;w))� ∈ R

m. Given a

matrix M , let Pcol(M) and Pnull(M) be the projection matri-
ces onto the column space and null space of M .

Our optimization problem turns out to be characterized by
the following m by nd matrix:

D =

⎡
⎢⎣
σs(x

�
1 r1)x

�
1 · · · σs(x

�
1 rn)x

�
1

...
. . .

...
σs(x

�
mr1)x

�
m · · · σs(x

�
mrn)x

�
m

⎤
⎥⎦ , (4)

where σs(x
�
i rj)x

�
i is a 1 × d block at (i, j)-th block en-

try. That is, at any global minimum, we have L(w) =
1

2m‖Pker(DT)Y ‖2 and Ŷ = Pcol(D)Y . Moreover, we can
achieve a global minimum in polynomial time in dw based
on the following theorem.
Theorem 2 (No bad local minima and few bad critical
points) For any s and any n, the optimization problem of
L(w) has the following properties:

(i) it is non-convex (if D
= 0)1,
(ii) every local minimum is a global minimum,

(iii) if w(2)
k
= 0 for all k ∈ {1, 2, . . . , n}, every critical

point is a global minimum, and
(iv) at any global minimum, L(w) = 1

2m‖Pnull(DT)Y ‖2
and Ŷ = Pcol(D)Y .

Theorem 2 (optimization) together with Theorem 1 (uni-
versality) suggests that not only does our model class con-
tain an arbitrarily good function (as n increases), but also we
can find the best function in the model class given a dataset.
In the context of understanding the loss surface of neural net-
works (Kawaguchi 2016; Freeman and Bruna 2016), Theo-
rem 2 implies that the potential problems in the loss surface
are due to the inclusion of r as an optimization variable.

Generalization Guarantee

In the previous sections, we have shown that our model class
has universal approximation ability and that we can learn the
best model given a finite dataset. A major remaining ques-
tion is about the generalization property; how well can a
learned model generalize to unseen new observations? The-
orem 3 bounds the generalization error; the difference be-
tween expected risk, 1

2Ex(f(x) − f̂(x;w∗))2, and empiri-
cal risk, L(w). In Theorem 3, we use the following nota-
tions: �σ, x� = [σs(x

�r1)x · · · σs(x
�rn)x] ∈ R

nd and
�w� = (w

(2)
1 w

(1)�
1 , w

(2)
2 w

(1)�
2 , . . . , w

(2)
n w

(1)�
n)� ∈ R

nd.
Theorem 3 (Generalization bound for shallow model) Let
s ≥ 0 and n > 0 be fixed. Consider any model class Fs

n
with ‖�w�‖2 ≤ CW and ‖�σ, x�‖2 ≤ Cσx almost surely.
Then, with probability at least 1− δ, for any f̂ ∈ Fs

n,
1

2
Ex(f(x)− f̂(x;w))2 − L(w)

≤ (C2
Y + C2

Ŷ
)

√
log 1

δ

2m
+ 2(CY + CŶ)

CŶ√
m
,

where CŶ = CWCσx.

1In the case of D = 0, L(w) is convex in a trivial way; our
model class only contains a single constant function x �→ 0.

3384

By combining Theorem 2 (optimization) and Theorem 3
(generalization), we obtain the following remark.

Remark 1. (Expected risk bound) Let CW be values such
that the global minimal value L(w) = 1

2m‖Pker(DT)Y ‖2
is attainable in the model class (e.g., setting CW =
‖(D�D)†D�Y ‖ suffices). Then, at any critical points with
w

(2)
k
= 0 for all k ∈ {1, 2, . . . , n} and any local minimum

such that ‖�w�‖2 < CW , we have

Ex(f(x)− f̂(x;w∗))2 ≤
‖Pnull(DT)Y ‖2

m
+O

⎛
⎝
√

log 1
δ

m

⎞
⎠ , (5)

with probability at least 1 − δ. Here, O(·) notation simply
hides the constants in Theorem 3.

In the right-hand side of equation (5), the second term
goes to zero as m increases, and the first term goes to zero
as n or d increases (because null(DT) becomes a smaller
and smaller space as n or d increases, eventually containing
only 0). Hence, we can minimize the expected risk to zero.

Multilayer Model

We generalize one hidden layer model to H hidden layer
model by composing semi-random features in a nested fash-
ion. More specifically, let nl be the number of units, or
width, in the l-th hidden layer for all l = 1, 2, . . . , H .
Then we will denote a model of fully-connected feedforward
semi-random networks with H hidden layers by

f̂s
n1,...,nH

(x;w) = h(H)
w W (H+1), (6)

where for all l ∈ {2, 3, · · · , H},

h(l)
w (x) = h(l)

r (x)� (h(l−1)
w (x)W (l)) and

h(l)
r (x) = σs(h

(l−1)
r (x)R(l))

is the output of the l-th semi-random hidden layer, and the
output of the l-th random switching layer respectively. Here,
W (l) = (w

(l)
1 , w

(l)
2 , . . . , w

(l)
nl) ∈ R

nl−1×nl and R(l) =

(r
(l)
1 , r

(l)
2 , . . . , r

(l)
nl) ∈ R

nl−1×nl . Similarly to one hidden
layer model, r(l)k is sampled randomly for k ∈ {2, 3, . . . , nl}
but r(l)1 is fixed to be e1 = (1, 0, 0, . . . , 0)� (to compactly
write the effect of constant terms in x). The output of the first
hidden layer is the same as that of one hidden layer model:

h(1)
w (x) = h(1)

r (x)� (xW(1)) and h(1)
r (x) = σs(xR

(1)),

where the boldface notation emphasizes that we require the
bias terms at least in the first layer. In other words, we keep
randomly updating the random switching layer h(l)

r (x), and
couple it with a linearly adjustable hidden layer h(l)

w (x)W (l)

to obtain the next semi-random hidden layer h(l+1)
w (x).

Convolutional semi-random feedforward neural networks
can be defined in the same way as in equation (6) with
vector-matrix multiplication being replaced by c dimen-
sional convolution (for some number c). In our experiments,
we will test both convolutional semi-random networks as
well as fully-connected versions. We will discuss further
generalizations of our architecture in Appendix.

Benefit of Depth

We first confirm that our multilayer model class

Fs
n1,...,nH

= {x �→ f̂s
n1,...,nH

(x;w)|w ∈ R
dw}

preserves universal approximation ability.

Corollary 4 (Universal approximation with deep model)
Let s be any fixed finite integer and let Ω
= {0} be any fixed
nonempty compact subset of Rd. Then, for any f ∈ L2(Ω),
with probability one,

lim
n1,...,nH→∞ inf

f̂∈Fs
n1,...,nH

‖f − f̂‖L2(Ω) = 0.

We now know that both of one hidden layer models
and deeper models have universal approximation ability.
Then, a natural question arises: how can depth benefit us?
To answer the question, note that H hidden layer model
only needs O(nH) number of parameters (by setting n =
n1, n2, · · · , nH) to create around nHd paths, whereas one
hidden layer model requires O(nH) number of parameters
to do so. Intuitively, because of this, the expressive power
would grow exponentially in depth H , if those exponen-
tial paths are not redundant to each other. The redundancy
among the paths would be minimized via randomness in the
switching and exponentially many combinations of nonlin-
earities σs.

We formalize this intuition by considering concrete de-
grees of approximation powers for our models. To do so,
we adopt a type of a degree of “smoothness” on the tar-
get functions from a previous work (Barron 1993). Con-
sider Fourier representation of a target function as f(x) =∫
ω∈Rd f̃(ω)e

iω�x. Define a class of smooth functions ΓC :

ΓC =

{
x �→ f(x) :

∫
ω∈Rd

‖ω‖2|f̃(ω)| ≤ C

}
.

Any f ∈ ΓC with finite C is continuously differentiable
in R

d, and the gradient of f can be written as ∇xf(x) =∫
ω∈Rd iωf̃(ω)e

iω�x. Thus, via Plancherel theorem, we can
view C as the bound on ‖∇xf(x)‖L(Rd). See the previous
work (Barron 1993) for a more detailed discussion on the
properties of this function class ΓC . Theorem 5 states that a
lower bound on the approximation power gets better expo-
nentially in depth H .

Theorem 5 (Lower bound on universal approximation
power) Let Ω = [0, 1]d. For every fixed finite integer s,
for any depth H ≥ 0, and for any set of nonzero widths
{n1, n2, . . . , nH},

sup
f∈ΓC

inf
f̂∈Fs

n1···nH

‖f − f̂‖L2(Ω) ≥ κC

d2

(
H∏
l=1

nl

)−1/d

,

where κ ≥ (8πe(π−1))−1 is a constant.

By setting n = n1 = · · · = nH , the lower bound in The-
orem 5 becomes: supf∈ΓC

inf f̂∈Fs
n1···nH

‖f − f̂‖L2(Ω) ≥

3385

κC
d2 n

−H/d, where we can easily see the benefit of the depth
H .

However, this analysis is still preliminary for the purpose
of fully understanding the benefit of the depth. Our hope
here is to provide a formal statement to aid intuitions. To
help our intuitions further, we discuss about an upper bound
on universal approximation power for multilayer model in
Appendix.

Optimization Theory

Similarly to one hidden layer case, we consider the follow-
ing optimization problem:

minimize
w∈Rdw

L(H)(w) =
1

2m

m∑
i=1

(
yi − fs

n1,...,nH
(x;w)

)2
.

Compared to one hidden layer case, our theoretical under-
standing of multilayer model is rather preliminary. Here,
given a function g(w1, w2, . . . , wn), we say that w̄ =
(w̄1, w̄2, . . . , w̄n) is a global minimum of g with re-
spect to w1 if w̄1 is a global minimum of g̃(w1) =
g(w1, w̄2, . . . , w̄n).

Corollary 6 (No bad local minima and few bad critical
points w.r.t. last two layers) For any s, any depth H ≥ 1,
and any set of nonzero widths {n1, n2, . . . , nH}, the opti-
mization problem of L(H)(w) has the following property:

(i) every local minimum is a global minimum with respect
to (W (H),W (H+1)), and

(ii) if w(H+1)
k
= 0 for all k ∈ {1, 2, . . . , nH}, every criti-

cal point is a global minimum with respect to
(W (H),W (H+1)).

Future work is still required to investigate the theoretical
nature of the optimization problem with respect to all param-
eters. Some hardness results of a standard neural network
optimization come from the difficulty of learning activation
pattern via optimization of the variable r (Livni, Shalev-
Shwartz, and Shamir 2014). In this sense, our optimization
problem is somewhat easier, and it would be interesting to
see if we can establish meaningful optimization theory for
semi-random model as a first step to establish the theory for
neural networks in general.

Generalization Guarantee

The following corollary bounds the generalization error. In
the statement of the corollary, we can easily see that the gen-
eralization error goes to zero as m increases (as long as the
relevant norms are bounded). Hence, we can achieve gen-
eralization. In Corollary 7, we use the following notations:
�σ, x�k0,k1,...,kH

= �σ�k1,...,kH
(x)xk0

and �w�k0,k1,...,kH
=(∏H

l=1 w
(l)
kl−1kl

)
w

(H+1)
kH

. Let vec(M) be a vectorization of
a tensor M .

Corollary 7 (Generalization bound for deep model) Let
s ≥ 0 and H ≥ 1 be fixed. Let nl > 0 be fixed for
l = 1, 2, . . . , H . Consider the model class Fs

n1,...,nH
with

‖vec(�w�)‖2 ≤ CW and ‖vec(�σ, x�)‖2 ≤ Cσx almost

surely. Then, with probability at least 1 − δ, for any f̂ ∈
Fs

n1,...,nH
,

1

2
Ex(f(x)− f̂(x;w∗))2 − L(H)(w)

≤ (C2
Y + C2

Ŷ
)

√
log 1

δ

2m
+ 2(CY + CŶ)

CŶ√
m
,

where CŶ = CWCσx.
The generalization bound in Corollary 7 can be expo-

nentially better than the known bounds of ReLU; e.g., see
(Sun et al. 2016; Neyshabur, Tomioka, and Srebro 2015;
Xie, Deng, and Xing 2015). The known generalization up-
per bounds of ReLU explicitly contain 2H factor, which
comes from ReLU nonlinearity and grows exponentially in
depth H . In contrast, the generalization bound in Corollary
7 does not explicitly depend on any of the depth, the num-
ber of trainable weights, and the dimensionality of the do-
main. Note that fn1,...,nH

(x) = vec(�w�)�vec(�σ, x�) =
‖vec(�w�)‖2‖vec(�σ, x�)‖2 cos θ. Hence, even though the
dimensionality of vec(�w�) and vec(�σ, x�) grows expo-
nentially in the depth, the norm bound CWCσx would
stay near the norm of the output. Indeed, CWCσx ≈
fn1,...,nH

(x)/ cos θ. As a new related work, the generaliza-
tion bounds of standard nets trained by a novel two-phase
training procedure in a recent paper (Kawaguchi, Kaelbling,
and Bengio 2017) have this desired qualitative property sim-
ilarly to our generalization bounds of semi-random nets.

Experiments
We compare semi-random features with random features
(RF) and neural networks with ReLU on both UCI datasets
and image classification benchmarks. We will study two
variants of semi-random features for s = 0 (LSR: lin-
ear semi-random features) and s = 1 (SSR: squared
semi-random features) in σs(·) from equation (1). Addi-
tional experimental details are presented in Appendix. The
source code of the proposed method is publicly available at:
http://github.com/zixu1986/semi-random.

Simple Test Function

We first tested the methods with a simple sine function,
f(x) = sin(x), where we can easily understand what is
happening. Figure 1 shows the test errors with one stan-
dard deviations. As we can see, semi-random network (LSR)
performed the best. The problem of ReLU became clear
once we visualized the function learned at each iteration:
ReLU network had a difficulty to diversify activation units
to mimic the frequent oscillations of the sine function (i.e.,
it took long time to diversely allocate the breaking points of
its piecewise linear function). The visualizations of learned
functions at each iteration for each method are presented in
Appendix. On average, they took 54.39 (ReLU), 43.04 (ran-
dom), 45.44 (semi-random) seconds. Their training errors
are presented in Appendix.

UCI datasets

We have comparisons on six large UCI datasets.The network
architecture used on this dataset is multi-layer networks with

3386

0.003

0.006

0.009

0.012

0 100 200 300

m
ea
n
sq
ua
re
d
er
ro
r

of iterations

ReLU
random
semi random

Figure 1: Test error for a simple test function.

Table 1: Performance comparison on UCI datasets. RF for
random features, LSR and SSR for linear (s = 0) and
squared (s = 1) semi-random features respectively. mtr:
number of training data points; mte: number of test data
points; d dimension of the data.

Dataset method err (%) Dataset method err (%)

covtype ReLU 5.6 adult ReLU 15.0
mtr = 522, 910 RF 20.2 mtr = 32, 561 RF 14.9
mte = 58, 102 LSR 5.7 mte = 16, 281 LSR 14.8
d = 54 SSR 14.4 d = 123 SSR 14.9

webspam ReLU 1.1 senseit ReLU 13.6
mtr = 280, 000 RF 6.0 mtr = 78, 823 RF 16.0
mte = 70, 000 LSR 1.1 mte = 19, 705 LSR 13.9
d = 123 SSR 2.2 d = 100 SSR 13.3

letter ReLU 13.1 sensor ReLU 2.0
mtr = 15, 000 RF 14.9 mtr = 48, 509 RF 13.4
mtr = 5, 000 LSR 6.5 mtr = 10, 000 LSR 1.4
d = 16 SSR 5.6 d = 48 SSR 5.7

l = [1, 2, 4] hidden layers and k = [1, 2, 4, 8, 16]× d hidden
units per layer where d is the input data dimension.

Comparison of best performance. In Table 1, we listed
the best performance among different architectures for semi-
random and fully random methods. For ReLU, we fix
the number of hidden units to be d. On most datasets,
semi-random features achieve smaller errors compared with
ReLU by using more units. In addition, semi-random units
have significant lower errors than random features.

Matching the performance of ReLU. The top row of Fig-
ure 2 demonstrates how many more units are required for
random and semi-random features to reach the test errors
of networks with ReLU. First, all three methods enjoy lower
test errors by increasing the number of hidden units. Second,
semi-random units can achieve comparable performance to
ReLU with slightly more units, around 2 to 4 times in Web-
spam dataset. In comparison, random features require many
more units, more than 16 times. These experiments clearly
show the benefit of adaptivity in semi-random features.

Depth vs width. The bottom row of Figure 2 explores the
benefit of depth. Here, “l-layer” indicates l hidden layer
model. To grow the number of total units, we can either use
more layers or more units per layer. Experiment results sug-
gest that we can gain more in performance by going deeper.
The ability to benefit from deeper architecture is an impor-

(a) Covtype dataset (b) Webspam dataset

Figure 2: Top row: Linear semi-random features match the
performance of ReLU for two hidden layer networks in
two datasets. Bottom row: Depth vs width of linear semi-
random features. Both plots show performance of semi-
random units. Even the total number of units is the same,
deeper models achieve lower test error.

Table 2: Test error (in %) of different methods on three
image classification benchmark datasets. 2×, 4× and 16×
mean the number of units used is 2 times, 4 times and 16
times of that used in neural network with ReLU respectively.

neuron type MNIST CIFAR10 SVHN

ReLU 0.70 16.3 3.9
RF 8.80 59.2 73.9
RF 2× 5.71 55.8 70.5
RF 4× 4.10 49.8 58.4
RF 16× 2.69 40.7 37.1
LSR 0.97 21.4 7.6
LSR 2× 0.78 17.4 6.9
LSR 4× 0.71 18.7 6.4
LSR-IE 0.59 20.0 6.9
LSR-IE 2× 0.47 16.8 5.9
LSR-IE 4× 0.54 14.9 4.8

tant feature that is not possessed by random features. The
details on how the test error changes w.r.t. the number of
layers and number of units per layer are shown in Figure
3. As we can see, on most datasets, more layers and more
units lead to smaller test errors. However, the adult dataset
is more noisy and it is easier to overfit. All types of neurons
perform relatively the same on this dataset, and more param-
eters actually lead to worse results. Furthermore, the squared
semi-random features have very similar error pattern to neu-
ral network with ReLU.

Image classification benchmarks

We have also compared different methods on three im-
age classification benchmark datasets. Here we use publicly

3387

4
2

1

#
 o

f
la

y
e
rs

covtype adult webspam

1 2 4 8 16

of units per layer

4
2

1

#
 o

f
la

y
e
rs

letter

1 2 4 8 16

of units per layer

senseit

1 2 4 8 16

of units per layer

sensor

0.03

0.06

0.09

0.12

0.15

0.152

0.160

0.168

0.176

0.0105

0.0120

0.0135

0.0150

0.0165

0.050

0.075

0.100

0.125

0.150

0.175

0.136

0.144

0.152

0.160

0.02

0.04

0.06

0.08

0.10

(a) ReLU

4
2

1

#
 o

f
la

y
e

rs

covtype adult webspam

1 2 4 8 16

of units per layer

4
2

1

#
 o

f
la

y
e

rs

letter

1 2 4 8 16

of units per layer

senseit

1 2 4 8 16

of units per layer

sensor

0.225

0.250

0.275

0.300

0.325

0.150

0.156

0.162

0.168

0.174

0.08

0.10

0.12

0.14

0.16

0.30

0.45

0.60

0.75

0.165

0.180

0.195

0.210

0.2

0.3

0.4

0.5

0.6

(b) random features

4
2

1

#
 o

f
la

y
e

rs

covtype adult webspam

1 2 4 8 16

of units per layer

4
2

1

#
 o

f
la

y
e

rs

letter

1 2 4 8 16

of units per layer

senseit

1 2 4 8 16

of units per layer

sensor

0.075

0.100

0.125

0.150

0.175

0.152

0.160

0.168

0.176

0.184

0.012

0.016

0.020

0.024

0.028

0.08

0.16

0.24

0.32

0.40

0.150

0.165

0.180

0.195

0.02

0.04

0.06

0.08

0.10

(c) linear semi-random features
4

2
1

#
 o

f
la

y
e

rs

covtype adult webspam

1 2 4 8 16

of units per layer

4
2

1

#
 o

f
la

y
e

rs

letter

1 2 4 8 16

of units per layer

senseit

1 2 4 8 16

of units per layer

sensor

0.15

0.16

0.17

0.18

0.19

0.20

0.149

0.150

0.151

0.152

0.153

0.154

0.024

0.032

0.040

0.048

0.10

0.15

0.20

0.25

0.136

0.140

0.144

0.148

0.152

0.06

0.07

0.08

0.09

0.10

0.11

(d) squared semi-random features

Figure 3: Detailed experiment results for all types of neurons and on all datasets. The heat map for each dataset shows how the
test error changes w.r.t. the number of layers and number of units per layer.

available and well-tuned neural network architectures from
tensorflow for the experiments. We simply replace ReLU by
random and semi-random units respectively. The results are
summarized in Table 2.

LSR-IE Unit. To improve the practical performance of LSR
unit while preserving its theoretical properties, we addi-
tionally introduced a new unit, called linear semi-random
implicit-ensemble (LSR-IE) unit. Unlike an explicit en-
semble, LSR-IE trains only a single network and compa-
rable to a single standard network with dropout. Please
refer to our latest version for more details on LSR-IE:
https://arxiv.org/abs/1702.08882.

MNIST dataset. MNIST is a popular dataset for recogniz-
ing handwritten digits. It contains 28 × 28 grey images,
60,000 for training and 10,000 for test. We use a convolu-
tion neural network consisting of two convolution layers,
with 5 × 5 filters and the number of channels is 32 and
64, respectively. Each convolution is followed by a max-
pooling layer, then finally a fully-connected layer of 512
units with 0.5 dropout. Increasing the number of units for
semi-random leads to better performance. At four times
the size of the original network, semi-random feature can
achieve very close errors of 0.71%. In contrast, even when
increasing the number of units to 16 times more, random
features still cannot reach below 1%.

CIFAR10 dataset. CIFAR 10 contains internet images and
consists of 50,000 32 × 32 color images for training and
10,000 images for test. We use a convolutional neural net-

work architecture with two convolution layers, each with
64 5 × 5 filters and followed by max-pooling. The fully-
connected layers contain 384 and 192 units. By using two
times more units, semi-random features are able to achieve
similar performance with ReLU. However, the performance
of random features lags behind by a huge margin.

SVHN dataset. The Street View House Numbers (SVHN)
dataset contains house digits collected by Google Street
View. We use the 32×32 color images version and only pre-
dict the digits in the middle of the image. For training, we
combined the training set and the extra set to get a dataset
with 604,388 images. We use the same architecture as in the
CIFAR10 experiments.

Conclusion

In this paper, we proposed the method of semi-random fea-
tures. For one hidden layer model, we proved that our model
class contains an arbitrarily good function as the width in-
creases (universality), and we can find such a good func-
tion (optimization theory) that generalizes to unseen new
data (generalization bound). For deep model, we proved uni-
versal approximation ability, a lower bound on approxima-
tion error, a partial optimization guarantee, and a generaliza-
tion bound. Furthermore, we demonstrated the advantage of
semi-random features over fully-random features via empir-
ical results and theoretical insights.

The idea of semi-random feature itself is more general
than what is explored in this paper, and it opens up several

3388

intersecting directions for future work. Indeed, we can gen-
eralize any deep architecture by having an option to include
semi-random units per unit level. We also can define a more
general semi-random feature as: given some nonconstant
functions σ and g, φ(x; r,w) = σ(x�r)g

(
x�w

)
, where

x = (1, x) is assumed to be in R
1+d, r = (r0, r) is sam-

pled randomly, and w = (w0, w) is adjustable weights to be
learned from data. This general formulation would lead to
a flexibility to balance expressivity, generalization and theo-
retical tractability.

References

Barron, A. R. 1993. Universal approximation bounds for
superpositions of a sigmoidal function. IEEE Transactions
on Information theory 39(3):930–945.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research 47:253–279.
Choromanska, A.; LeCun, Y.; and Arous, G. B. 2015. Open
problem: The landscape of the loss surfaces of multilayer
networks. In Proceedings of The 28th Conference on Learn-
ing Theory, 1756–1760.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical im-
age database. In Computer Vision and Pattern Recognition,
2009, 248–255. IEEE.
Freeman, C. D., and Bruna, J. 2016. Topology and geom-
etry of half-rectified network optimization. arXiv preprint
arXiv:1611.01540.
Huang, G.-B.; Chen, L.; Siew, C. K.; et al. 2006. Universal
approximation using incremental constructive feedforward
networks with random hidden nodes. IEEE Trans. Neural
Networks 17(4):879–892.
Kawaguchi, K.; Kaelbling, L. P.; and Bengio, Y.
2017. Generalization in deep learning. arXiv preprint
arXiv:1710.05468.
Kawaguchi, K. 2016. Deep learning without poor local min-
ima. In Advances in Neural Information Processing Systems.
LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning.
Nature 521(7553):436–444.
Leshno, M.; Lin, V. Y.; Pinkus, A.; and Schocken, S. 1993.
Multilayer feedforward networks with a nonpolynomial ac-
tivation function can approximate any function. Neural net-
works 6(6):861–867.
Livni, R.; Shalev-Shwartz, S.; and Shamir, O. 2014. On
the computational efficiency of training neural networks. In
Advances in Neural Information Processing Systems, 855–
863.
Mohri, M.; Rostamizadeh, A.; and Talwalkar, A. 2012.
Foundations of machine learning. MIT press.
Neyshabur, B.; Tomioka, R.; and Srebro, N. 2015. Norm-
based capacity control in neural networks. In Proceedings
of The 28th Conference on Learning Theory, 1376–1401.

Pennington, J.; Yu, F.; and Kumar, S. 2015. Spherical ran-
dom features for polynomial kernels. In Advances in Neural
Information Processing Systems, 1846–1854.
Rahimi, A., and Recht, B. 2008. Random features for large-
scale kernel machines. In Advances in Neural Information
Processing Systems, 1177–1184.
Rahimi, A., and Recht, B. 2009. Weighted sums of random
kitchen sinks: Replacing minimization with randomization
in learning. In Advances in neural information processing
systems, 1313–1320.
Scholkopf, B., and Smola, A. J. 2001. Learning with ker-
nels: support vector machines, regularization, optimization,
and beyond. MIT press.
Shamir, O. 2016. Distribution-specific hardness of learning
neural networks. arXiv preprint arXiv:1609.01037.
Shawe-Taylor, J., and Cristianini, N. 2004. Kernel methods
for pattern analysis. Cambridge university press.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
Nature 529(7587):484–489.
Sindhwani, V.; Avron, H.; and Mahoney, M. W. 2014.
Quasi-monte carlo feature maps for shift-invariant kernels.
In International Conference on Machine Learning.
Sun, S.; Chen, W.; Wang, L.; Liu, X.; and Liu, T.-Y. 2016.
On the depth of deep neural networks: a theoretical view. In
Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, 2066–2072. AAAI Press.
Swirszcz, G.; Czarnecki, W. M.; and Pascanu, R. 2016. Lo-
cal minima in training of deep networks. arXiv preprint
arXiv:1611.06310.
Telgarsky, M. 2016. Benefits of depth in neural networks. In
29th Annual Conference on Learning Theory, 1517–1539.
Xie, P.; Deng, Y.; and Xing, E. 2015. On the gener-
alization error bounds of neural networks under diversity-
inducing mutual angular regularization. arXiv preprint
arXiv:1511.07110.
Xie, B.; Liang, Y.; and Song, L. 2016. Diversity
leads to generalization in neural networks. arXiv preprint
arXiv:1611.03131.

3389

