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Abstract

A temporally abstract action, or an option, is specified by
a policy and a termination condition: the policy guides the
option behavior, and the termination condition roughly de-
termines its length. Generally, learning with longer options
(like learning with multi-step returns) is known to be more
efficient. However, if the option set for the task is not ideal,
and cannot express the primitive optimal policy well, shorter
options offer more flexibility and can yield a better solu-
tion. Thus, the termination condition puts learning efficiency
at odds with solution quality. We propose to resolve this
dilemma by decoupling the behavior and target terminations,
just like it is done with policies in off-policy learning. To this
end, we give a new algorithm, Q(f), that learns the solution
with respect to any termination condition, regardless of how
the options actually terminate. We derive Q(/3) by casting
learning with options into a common framework with well-
studied multi-step off-policy learning. We validate our algo-
rithm empirically, and show that it holds up to its motivating
claims.

1 Introduction

Abstraction is essential for scaling up learning, and there
has been a renewed interest in methods that extract, or
leverage it (Vezhnevets et al. 2016; Kulkarni et al. 2016;
Tessler et al. 2017). The options framework (Sutton, Pre-
cup, and Singh 1999) is the standard for modeling temporal
abstraction in reinforcement learning. The temporal aspect
of an option is determined by its fermination condition (3,
which roughly determines its length. Learning and planning
with longer options is known to be more efficient (Mann,
Mannor, and Precup 2015). This is partly due to an op-
tion having similar properties to the familiar multi-step A-
returns,! which are known to yield faster convergence (Bert-
sekas and Tsitsiklis 1996). The key qualitative difference be-
tween (3 and A\, however, is that /3 directly affects the solution
rather than, like A, just the rate of convergence. If 3 is not
trivial, this couples the quality of the solution with the qual-
ity of the options at hand. This can be restrictive especially
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'The similarity is particularly relevant since a full (-
model (Sutton 1995) is at the basis of both paradigms.
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if the options are not perfect, which of course is likely. In-
deed, when a set of options is given, we can show that the
more they terminate, the more optimal the resulting policy is
at the primitive action level. This poses a challenge: on the
one hand, we wish for the options to be long to yield fast
convergence and meaningful exploration, but on the other, if
these options are not ideal, the more we commit to them, the
poorer the quality of our solution. Interrupting suboptimal
options is one way of addressing this (Sutton, Precup, and
Singh 1999), but like “cutting” traces in off-policy learning,
it may prevent us from following a coherent policy for more
than a couple of steps.

To this end, we propose to terminate options off-policy,
that is: decouple the behavior termination condition that the
options execute with, from the farget termination condition
that is to be factored into the solution. The behavior ter-
minations then solely become a means of influencing con-
vergence speed. We describe a new algorithm, Q(f3), that
achieves this by leveraging connections to several old and
new multi-step off-policy temporal difference algorithms.

The paper is organized as follows. After introducing rele-
vant background, we will derive the fixed point of the clas-
sical call-and-return option operator. Using its shape for in-
tuition, we will then incrementally build up to our proposed
off-policy termination option operator, starting from the clas-
sical intra-option equations. We will analyze the conver-
gence properties of this operator for both policy evaluation
and control, and state the corresponding online algorithm
Q(p). Finally, we will validate Q() empirically, and show
that it can (1) learn to evaluate a task w.r.t. options terminat-
ing off-policy, and (2) learn an optimal solution from subop-
timal options quicker than the alternatives.

2 Framework and notation

We assume the standard reinforcement learning setting (Sut-
ton and Barto 2017) of an MDP M = (8,A,p,r,7), where
S is the set of states, A the set of discrete actions; p :
8§ x A x 8 — [0,1] the transition that specifies the en-
vironment dynamics, with p(s’|s,a) (or p?,, in short), de-
noting the probability of transitioning to state s’ upon tak-
ing action @ in s; r : 8 X A — [—Tmax,Tmax] 1S the
reward function, and ~ the scalar discount factor. A pol-



icy is a probabilistic mapping from states to actions. For
a policy 7, and the MDP transition matrix p, let the ma-
trix p™ denote the dynamics of the induced Markov chain:
pT(s,8") = > ,cam(als)p(s’|s,a), and r™ the reward ex-
pected for each state under 7: 77 (s) = > . 4 7(als)r(s,a).
Consider the Q-function ¢ as a mapping 8 x A — R, and
define the one-step transition operator over Q-functions as:

(P™q)(s,0) € Z Z (a'[s")q(s",a"). (1)

s'eSa’eA

s'|s,a)m

Using operator notation, define the Q-function correspond-
ing to the value of policy 7 as:

r def ’Yt('Pﬂ)tT’:T+”y'Pﬂqﬂ:(I*’}/'Pﬂ-)il
t=0

the recursive form of which defines the Bellman equation for
the policy 7 (Bellman 1957). The corresponding one-step
Bellman operator can be applied to any Q-function:

T™q(s,a) = r(s,a) + P q(s,a), @)

and its repeated applications are guaranteed to produce its
fixed point ¢ (Puterman 1994). The policy evaluation set-
ting is concerned with estimating this quantity for a given
policy 7.

The Bellman optimality operator introduces maximiza-
tion over the set of policies: T¢q E P ymax,P"q, and
its repeated applications are guaranteed to produce its fixed
point, ¢* o max,q™ = ¢" , which is the value of the opti-
mal policy 7*. The control setting is concerned with finding
this value. A policy is greedy w.r.t. a Q-function if at each
state it picks the action of maximum value. The optimal pol-
icy 7* is greedy w.r.t. the optimal Q-function ¢*.

Throughout, we will write 1 and 0 for the vectors with 1-
or O-components. For a policy 7°, we will use E_+[-] as a
shorthand for the expectation Eg,,__ 4, |+ (-] W.r.t. the tra-
Jectory So = 5,40 = a,51,A;1,..., with A; drawn according
to 7°(+|S;) and S; 1 drawn accordmg to p(+|St, A). We will
occasionally use R;11 to denote r(S;,A;), and write argu-
ments in subscripts (i.e. use z(s) and =, equivalently). In the
learning setting, the algorithms often update with a sample
of the residual 7" ¢ — q:

0t = Re1 +74(Se41,A41)

which is referred to as a temporal difference (TD) error.

2.1 Multi-step off-policy TD learning

One need not only consider single-step operators, and may
apply 77 and 7T repeatedly. The A-operator is a particularly
flexible mixture of such multi-step operators:

- q(St7At)7

Ta=1-XN)D_X(T™)"q = q+(I-MP™) " (T"q—q).

In the learning setting, this corresponds to considering multi-
step returns, rather than one-step samples for updating the
estimate, and A trades off the bias of bootstrapping with an
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approximate estimate with the variance of sampling multi-
ple steps. A high intermediate value of A is typically best in
practice (Kearns and Singh 2000).

Off-policy learning is the setting where the behavior and
target policies are decoupled. That is: 7 # 7. Multi-step
methods pose a challenge when considered off-policy, and
advances have recently been made in this direction (Munos
et al. 2016; Mahmood, Yu, and Sutton 2017). To this end,
Munos et al. (2016) unified several off-policy return-based
algorithms under a common umbrella:

REg(s.0) gfo.) + B [ 3" (ﬁci)aﬂ E)
t=0 i=1

6 = Riy1 +VExq(Se41,7) —q(St, Ar).
where "
Erq(s) = > m(als)q(s,a),
acA

and the frace c; is a state-action coefficient, whose spe-
cific shapes correspond to different algorithms. In par-
ticular, Tree-Backup()\) sets ¢; to Amp(A;]S;) (Precup,
Sutton, and Singh 2000), while Retrace(\) sets c¢; to

Amin(1, 25130 ) (Munos et al. 2016).

Unifying algorithm Recently, Asis et al. (2017) formu-
lated an algorithm that encompasses the ones discussed so
far even more generally. Instead of the binary taxonomy of
on-and off-policy algorithms, the authors introduce a param-
eter o that smoothly transitions between the two. This algo-
rithm can also be expressed via Eq. (3) with:

67" = Rep1 +7(0q(St41,A111)
+(1=0)Erq(Si41,7))
C; = )\((1 - O')ﬂ'b(AlISZ) +0’)

In particular, 0 = 1 corresponds to the on-policy SARSA(\)
algorithm, while o = 0 to Tree-Backup()\).

—q(S,Ar),

2.2 Options
An option o is a tuple (J°,(°,x°), with J° C § the initia-
tion set, from which an option may start, ¢° : § — [0,1],
the probabilistic termination condition, and 7°, the option
policy with which it navigates through the environment. Just
like the MDP reward and transition models r and p, options
can be seen to induce semi-MDP (Puterman 1994) models

R and P as follows (Sutton, Precup, and Singh 1999):

P:s’ difIE:D:s—>s’\o [’VD]
=B +7 > piu(l

s'’ego

— B )P,

D
Ro defED oo Z,yz 17’7r (St+z)|5t—5

=7 +vngs By

s'eJe

“4)

where Ep.g,[-] and Ep.s_, 4, [-] are the expectations of the
option duration D from state s and the travel time between



states s and s’, respectively, w.r.t. option dynamics p™ and
the termination condition 3°.

In the call-and-return model of option execution, an op-
tion is run until completion (according to its termination
condition), and only then a new option choice is made (Pre-
cup, Sutton, and Singh 1998). This suggests the following
state-option analogues of the state-action transition operator
from Eq. (1), and the Bellman operator from Eq. (2). For a
policy over options /i

(Pha)(s,0) = > P°(s,8)> _u(d|s)g(s',0))  (5)

def

T5'a(s,0) = RS+ Pya(s,o). (©)

It will also be relevant to consider the marginal flat policy s
over primitive actions:

k(als) dérzlt(o\s)ﬂo(a\s). (7)

For simplicity, we assume that options can initiate any-
where: J° = §,Vo € O. Finally, in the main departure from
the standard framework, we will distinguish between the tar-
get termination condition [ that is to be estimated, and a
behavior termination condition ( (“zefa”) that the options
actually terminate with.

3 The call-and-return operator

Before proceeding to describe our key idea and algorithm,
let us quantify the role of 3 in the target solution of planning
with options. To do this, we plan to derive this solution at
the primitive action resolution.

Let v be an arbitrary policy over options, and ¢ : § x O —
[0,1] a coefficient function. Consider the following transition
operator and its corresponding Bellman operator:

(Pq)(s,0) 2 3 ple(s',0) 3 1(o'|s)a(s' 0",

s'e8
Tq Lrer™ 4+ ~yP¥q,

o'

where 77 is the |8| x |O]-vector of 7™ for all options. Note
that 7<, like 77, is a one-step operator, whereas 7'(!)” is an
option-level operator. The transition operator P in partic-
ular defines the following operators corresponding to option
continuation and termination, respectively:

PUr(5,0) = > pTo (1 - B°(5)a(s' ),

s'€8
def 4
P(s,0) = > ploB°(s) > pu(d']s)a(s',0).
s'es o’

That is: ¢ (“iota”) is the policy over options that maintains
the current (argument) option. Using these operators, we can
express Pg from Eq. (5) and the reward model from Eq. (4)
concisely for all state-option pairs:

Phg = (I—yPU=D4)~1yPiig,
R= (I —yPU=Puy=Lpm,
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and rewrite the option-level Bellman operator from Eq. (6):
Toa= I —yPU D)0 +9Pg).  (8)

The following proposition derives the fixed point of 7" in
terms of the one-step operators P ~#)* and PA#,

Proposition 1. The fixed point of the operator T} is the

same as the fixed point of the operator T8 4 TP1 and
writes:

qg,b — (I _ ,Y(pﬂu _ 'Pﬂb) _ ,y'])lL)—l,rﬂ' 9)

Thus, the termination scheme directly affects the conver-
gence limit: in the extreme, if 5 = 0, options never ter-
minate, and we have the fixed point of 7': ¢5"*(s,0) =
Eroq™ (s,-), the value of the option o. In the other extreme,
B = 1, the options terminate at every step and we have
the fixed point of T, which can be shown (Theorem 1 in
(Bacon and Precup 2016)) to correspond to the value of the
marginal policy x from Eq. (7):

a1 (s,0) = Exq"(s,7),Yo € O. (10)

4 Off-policy option termination

We would like to decouple the farget termination condition
[ that factors into the solution from the behavior termina-
tion condition ( that governs for how long the options are
followed. Apart from the theoretical appeal of the freedom
that this allows, a key motivation is in the fact that on the
one hand just like with multi-step returns, the less options
terminate the faster the convergence, but on the other the
more options terminate, the better the control solution (as
we show formally in the next section). Being able to decou-
ple the two allows one to achieve the best of both worlds,
and is exactly what we propose to do in this paper.

The critical insight in our approach is the off-policy-ness
at the primitive action level that is introduced by the dis-
crepancy between policies y (that picks a new option) and ¢
(that maintains the current option) in Eq. (9). The degree of
this off-policy-ness is modulated exactly by the termination
condition 3, and is usually implicit. We propose to leverage
multi-step off-policy learning and to impose a desired de-
gree explicitly, independent of the behavior terminations (.
In the extreme, we can learn the marginal policy « directly.
In the other extreme, we can learn the value of the current
option. The two extremes are traded off via 3. The algorithm
we propose is analogous to the unifying algorithm Q(o) in
which ¢ modulates the degree of off-policy-ness (Asis et al.
2017).

To highlight the parallels between learning with options
and learning off-policy from multi-step returns, this section
will incrementally build the technical intuition towards the
proposed off-policy termination operator, starting from the
classical intra-option equations. The next section will ana-
lyze the convergence of this operator.

Technically this should be referred to as off-termination learn-
ing, since the difference is indeed in termination conditions, of
which the induced policies are a consequence: the “behavior pol-
icy” ¢ takes the current option w.p. 1, while the “target policy” is
the actual policy over options fi.



4.1 From one step intra-option learning to
General Q()\)

To begin, let us first re-derive the target from Proposition 1
starting from the familiar intra-option equations (Sutton and
Precup 1998). At this point let us assume that the options
execute w.r.t. some behavior condition (. Letting A denote
the update on the estimated Q-function, we have at time ¢
and the current option o:

Aq(S,0) o< r(Se, Ar) +7q(St+1,0) — q(Se,0),  (11)
Q(S,O) = (1 - CO(S))Q(&O) + CO(S)ENQ(&-),
where as before we write E,,¢(s, ) e > o 1(0]s)q(s,0). No-

tice that this is exactly a sample of the one-step update cor-
responding to 79 4 T<# 1In fact, if we roll it out over
multiple steps, and take an expectation, we obtain Eq. (8) for
the behavior ¢ exactly:

Ero [27 (ZH 1-¢7(50)

[T(Stht)+"Y<O(St+1>E/Lq(St+17')]:|5 (12)
from which some simple algebra yields:

Aqg(s,0) =77(s) +1Euq(Set1,) — q(s,0)

+Eﬂo[2v (H L-¢(s)err, a3)

61" =1(Sk Ar) +YEuq(Set157) — Epa(Se,-).

This is the same (expected) update as Peng’s Q(\) for greedy
policies (Peng and Williams 1996) or General Q()\) (i.e. off-
policy Expected SARSA(\) (Van Seijen et al. 2009)) for ar-
bitrary policies, with 1 — ¢°(.S;) being the state-option ana-
logue of A from those algorithms. The fixed point of both of
those algorithms is given in Proposition 1 in (Harutyunyan
et al. 2016) and is indeed analogous to that given in Propo-
sition 1 in this paper.

4.2 General Q()\) to Tree-Backup()\)

The update (13) converges to the fixed point from Prop. 1,
which is an on-/off-policy mixture, regulated by the behav-
ior terminations (. We wish to reweigh this mixture by the
desired target terminations /3. Let us now begin introducing
the off-policy machinery that will allow us to do so. It will
be useful to cast the multi-step intra-option update (13) in
the form of the general off-policy operator (3). This can be
done by replacing the second expectation in the TD-error
with the point-estimate ¢(S¢,0), which introduces off-policy
corrections:

o =7(Sk,Ar) + YELq(Seq1,) — a(St,0).

This update will converge to the “off-policy” fixed point of
T only if p and ¢ are close (Harutyunyan et al. 2016),
which, in our particular case of the indicator behavior policy
L, is not a very interesting scenario. If we further augment
the “trace” 1 — ¢°(S;) with the policy probability coeffi-
cient ;(0|S;), we obtain option-level Tree-Backup(\) (Pre-
cup, Sutton, and Singh 2000) whose target policy is p, and
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behavior policy is ¢, and with 1 — ¢°(S
option analogue of A:

;) being the state-

=K. [fy (UIC) 51(So = s} ,
cf = (o] S;)(1—¢?(S:))-

From the convergence guarantees of Tree-Backup, we know
that this update converges to the fixed point of 7 '#, which
in turn corresponds to ¢ (Eq. (10)).

Ag(s,o (14)

4.3 The off-policy termination operator

We are now ready to present the operator underlying the
Q() algorithm, which is the main contribution of this paper.
Eq. (14) can be considered a special case where we correct
all of the off-policy-ness, thus implicitly assuming 5 = 1.
To obtain the general case, we need to split the target in each
TD-error into two off- and on-policy terms:

Rﬁq(s 0) = q(s,0 —|—Z’y E o [(Hc )(55”‘} (15)
071 = 1(St, Ar) +710(Se41,0) — a(St,0),
q(s;0) = (1= B%(s))q(s,0) + B°(s)E.q(s,"),
cf =(1-¢°(5))(1—pB°(S )+ﬁo( i) p(0]S;))-

Inspecting these updates, it is clear that the parameter /3
controls the degree of partial “off-policy-ness”: in the next
state, with a weight 1 — 3°(S;+1) the option continues and
the update considers the “on-policy” current option value
q(S¢+1,0), and with a weight 5°(S;y1), the option termi-
nates, and the update considers the “off-policy” value w.r.t.
the policy over options »_ _, 1(0'|s)q(S¢41,0"). Note that,
these coefficients appear in the correction terms ¢ as well,
since in order for the algorithm to converge to the cor-
rect on-/off-policy mixed target, the 5°(S;11)-weighted off-
policy portion needs to be corrected. Finally, note that in
the learning setting, the second factor in ¢ is explicit, while
1—¢°(.S;) is sampled from the current option. Algorithm 1
presents the forward view of the algorithm underlying this
expected operator, for the general case of an evolving se-
quence of policies (px)gen-

This algorithm is very similar to the recently formalized
Q(o) (Asis et al. 2017; Sutton and Barto 2017), with (3 being
a state-option generalization of 1 — ¢. In Q(o), the param-
eter o controls the degree of off-policy-ness: ¢ = 1 corre-
sponds to (on-policy) SARSA, and ¢ = 0 to (off-policy)
Tree-Backup. Analogously, Q(3) with 8 = 0 learns the “on-
policy” value of the current option policy 7° (i.e. the policy
1), and Q(B) with 8 = 1 learns the “off-policy” value of the
marginal policy x (i.e. the policy p). The behavior termina-
tions ¢ on the other hand have a role analogous to that of the
eligibility trace parameter .

4.4 Relationship with intra-option learning

The off-policy-ness discussed so far is different than that in
the more familiar off-policy intra-option setting. The intra-
option learning algorithm suggests applying the update (11)



Algorithm 1 Q(5) algorithm

Given: Option set O, target termination function [, initial
Q-function gy, step-sizes () ken, start state sg
1: SO < So
2: for k=0,1,...do
3:  Sample an option o from /i (+|.So)
Sample the return R;,51,Rs...,Sp, from 7°. Dy, is
determined by sampling 1 — °(S;).
5 fort=0,1,...D; —1do
6: 07 = Ri1 + G, (Se41,0) — a(S:,0)
7
8

»

G (5,0) = (1= B(3))q(s,0) + B°(5)E, q(s,")
g =1-p°(8;) + B°(S;)u(0]S;)

Dr—1_i—t (17 i
90: A=y t(H;:tHc;.)éf i

10: q1§+1(Sta0) — Qk(StaO) + OékAt
11:  end for

12: So +— SDk

13: end for

to all options o “consistent with” the experience stream
S1,A1,... (Sutton and Precup 1998). When considering mul-
tiple steps, this amounts to introducing importance sampling
into Eq. (12). That is, given a behavior option b, the trace co-
efficient 1 — ¢°(S;) from Eq. (12) now becomes

ob _ T(AilSi) 0

V= ————=(1—-(°(5)).

= ey <)

And hence, writing (¢, ; for (°(S1), the value of option o
from Eq. (12) writes:

[e%s} t
q(5,0) =By 7 [(HC?b) (R + vaﬂEuq(Sm,-)]}
t=0 =1

(16)

Now, notice that there are two sources of off-policy-ness in
these formulas. One is 7° vs. 7°, the contrast between op-
tion policies, and the other is in the target: ¢ vs. u itself, as
discussed before. Indeed if we write the above in the form
from Eq. (13) we get a different correction:

Aq(s,0) =1 (5) +YEuq(Sey1,-) —q(s,0)

SEL[3 (ﬁc;’b) (1= c(5)57"],
t=1 =1
TI'O(At|St)

m(A¢|S)
Since the corrections for the two sources of off-policy-ness
are orthogonal, it could be possible to combine them. We
leave this for the future.

67 = [Riv1+YELq(Stq1,-)] —ELq(St,-).

S Analysis

In this section we will analyze the convergence behavior of
the off-policy termination operator in both policy evaluation
and control settings, and show that learning about shorter
target options off-policy is generally asymptotically more ef-
ficient than on-policy. We will then consider the relationship
of the solution quality in control with option duration, and
show that shorter options generally yield better solutions.
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5.1 Policy evaluation

We will prove that the evaluation operator ’Rg is contractive
around the appropriate fixed point, and that its contraction
factor is less than that of the respective on-policy operator,
given the target options are longer than the behavior ones.

Theorem 1 (Policy evaluation). The operator Rg defined in
Eq. (15) has a unique fixed point q}y'*, as defined in Eq. (9).
Furthermore, if for each state S; € 8 and option o € O
we have ¢§ < (1 — 5°(S;)) + B°(S:)p(0|S;), then for any
QO-function q:

|qu(8,0) - Qg7b(3a0)| <n(s,0)|lq(s,0) — qg7b(870)||’

where 1(5,0) £ 1 — (1 — %) Eqo [Ziolyt (Hf:lcf)} =

Proof. The proof is analogous to that of Theorem 1 from
(Munos et al. 2016) and is given in appendix. O

The contraction coefficient 1 controls the convergence
speed of this operator: the smaller 7 (and the larger szl cy
the fewer iterations are needed to converge, but the larger the
computational expense when planning, or the variance when
learning (Bertsekas and Ioffe 1996; Munos et al. 2016).
Since ¢§ < 1, and options terminate eventually, the variance
is less significant here, and generally, larger ¢ will yield
faster convergence. In our case, since a behavior option is
assumed (i.e. the 1 — ¢°(S;) factor in Eq. (15) is fixed), the
additional S-term in ¢{ can only reduce the existing trace.
However, since we are interested in learning about a differ-
ent target, we ought to compare these traces to the setting
in which that same target is learnt on-policy. The following
corollary derives a sufficient condition for Q(/3) to maintain
larger traces than its on-policy counterpart.

Corollary 1. If for all states s and options o we have:

p(ols)(1 = ¢%(s))
piols)(1—¢(s)) +¢(s)”

then the iteration (15) converges faster than if 3° was used
on-policy, in place of (° in iteration (12).

In particular if (°(s) = 0, any 5°(s) > 0 satisfies this,
irrespective of p. If p is deterministic, this holds for all
B°(s) > ¢°(s) for the chosen o. In general, the intuition here
is that it’s easier to learn from longer option traces about
shorter options than vice versa.

po(s) > 1

5.2 Control

Let us now formulate the control analogue of Theorem 1. Its
proof is a simpler version of that of Theorem 2 from (Munos
et al. 2016), and we omit it here.

Theorem 2 (Control). Consider a sequence of policies over
options (i )ken that are greedy w.rt. the sequence of esti-
mates (qi)ken, and consider the update:

Gr+1 = RY" qrs

where the operator Rg’“ is defined by Eq. (15) for the k-
th policy . Let TB“’Lq = TO=Brg 4+ TPrq, and let ¢* =



o . beta=01  peta=05
S 40- _5- e—e plain
@ @ ®-e gbeta
v 30- - o- :
> 2
B2 .5
] ]
E E
S 10- - 5.
o o
0- - - I g
zeta zeta @
_beta=0.8 _beta=1.0 2
z

Cumulative error
Cumulative error

00 02 04 06 08 1.0
zeta

00 02 04 06 08 10
zeta

0.20 -y

zeta = 0.5

plain, beta = 0.1
plain, beta = 0.5
plain, beta = 0.8
plain, beta = 1.0
qgbeta, beta = 0.1
gbeta, beta = 0.5
gbeta, beta = 0.8
gbeta, beta = 1.0

00 ' ' ' ' ' ' ' ' r
5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Step

Figure 1: Prediction error on the 19-state chain task. Each variant is an average of 10 seeds. Left: Sum error for each (-
combination. Q(/3) always gets more efficient as { decreases (the options get longer). Right: Example learning curves. The lines
corresponding to 3 = 0.1 are outside the axes’ bounds. The shaded region covers standard deviation.

max,, " Suppose that T3 qo > qo. 3 Then for any k > 0,

lar1 = q" [ < llge — |-
It follows that qr. — q* as t — oc.

We do not give a proof of online convergence at this time,
but verify it empirically in our experiments.

5.3 Option duration and solution quality

Our convergence results show that learning about shorter op-
tions off-policy is more efficient than on-policy. Here, we
motivate why one would want to learn about shorter options
in the first place. In particular, we will show that given a
set of options, the more they terminate, the better the result-
ing control solution at the primitive action resolution. Intu-
itively, this is because upon termination, the learner picks the
current best option, whereas during option execution, the tar-
get value includes the potentially suboptimal current option
(Proposition 1). The following theorem (proof in appendix)
formalizes this intuition, and may be of independent interest.

Theorem 3 (The more options terminate, the better the so-
lution.). Given a set of options O, and a greedy policy over
options . Let B > ( be two termination conditions for the
options in O. Then: qjy" > q¢".

Note that this result refers to the target solution. During
learning, the more decisions there is to make, the more po-
tential there is for error. As such, in reasonably complex
tasks we expect the performance to obey a tradeoff on .

6 Experiments

Finally, let us evaluate our algorithm empirically. We aim to
illustrate the following claims:

e The learning speed improves as ¢ gets smaller (behavior
options get longer);

For simplicity, we assume that options terminate deter-
ministically in a set of goal states. We hence reduce 3 and ¢
to single parameters that determine the likelihood of termi-
nating before reaching the goal. The “plain” variant refers to
the on-policy intra-option update from Eq. (12). The com-
plete experimental details are provided in appendix E.

NN NN
.h®\_/®u® - @\_/\*/ﬁ

Figure 2: The 19-state random walk task. The agent starts in
the middle. Transitions are deterministic, and the task termi-
nates in each end.

6.1 Policy evaluation

First, we show that Q(3) learns the correct values on the 19-
state random walk task (Fig. 2). There are two options: one
leads all the way to the left, the other to the right. The pol-
icy over options is uniform. The task is to estimate the value
function w.r.t. target terminations (3. The results are given
in Figure 1. Q(p) is able to learn the correct values (up to
an irreducible exploration-related error). As expected, Q(/3)
gets more efficient as behavior options get longer ({ gets
smaller). The opposite is true for the plain algorithm, since
without interrupting sufficiently, it does not have a chance to
update the intermediate states with anything other than the
option policy. There is a small inflection point in the perfor-
mance of the plain algorithm at the on-policy value of (.

6.2 Control

To demonstrate the benefit of decoupled off- and on- pol-

icy terminations, we compare our algorithm with the plain
on-policy variant (labelled: onpolicy-plain) that uses ¢ = (3
during both learning and evaluation. In order to demonstrate
that the learning target plays a role, we also compare it with
the plain algorithm that uses [ at evaluation only (labelled:
offpolicy-plain). The behavior ( = 0, unless specified other-
wise.

e The control performance improves, as 3 gets larger (target
options get shorter);

e Q(() converges with off-policy terminations.

3This can be attained by pessimistic initialization: qo <
Tmax/(1=7).
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Figure 3: Control performance. (a) Cliffwalk. Each variant is evaluated on 5 seeds for 10 runs each. Left: Average performance
per value of (8 on all seeds. Right: Learning curves for the best seeds per variant. Notice how Q(/3) is the only variant that
escapes the plateau of the suboptimal policy. (b) Pinball. Each variant is evaluated on 20 independent runs. 7op row: Influence
of B and ¢ on Q(5): performance improves as ¢ gets smaller. Overall, intermediate target 5-s are best, but 3 = 1 reaches slightly
better performance at the end of learning. Bottom row: Comparison within the variants for select values of 3
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Figure 4: Left: The modified cliffwalk task. Shaded regions
are cliffs. Right: Pinball domain configuration used. The red
ball must be moved to the blue hole. Each black diamond
indicates an option landmark.

Modified Cliffwalk We illustrate the benefits of off-policy
termination on a modified Cliffwalk example (Fig. 4, left).
The agent starts in a position inside a n x n grid with the
goal of getting to a corner where a positive reward is given.
The step reward is zero, but there are small cliffs along the
border that aren’t fatal, but induce a penalty. We have four
options, one for each cardinal direction, that take the agent
up until the corresponding border (and cliff). Thus, while
these options are able to learn to reach the goal in an op-
timal number of steps, they are unable to learn the optimal
policy which only moves inside the grid, so as to not en-
counter cliffs. To ensure adequate exploration we consider
€opt-soft option policies, as well as a usual e-greedy policy
over options during learning (but not during evaluation). The
results are plotted in Fig. 3a. Q(3) outperforms the alterna-
tives in all cases, and its performance improves with larger
(. Note that it is the only variant able to surpass the value of
the suboptimal upper bound of the naive approach.

Pinball We finally evaluate our algorithm on a variation
of the Pinball domain (Konidaris and Barto 2009). Here,
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a small ball must be maneuvered through a set of obsta-
cles into a hole. Observations consist of four continuous
variables describing the ball’s x,y positions and velocities.
There are five primitive actions: the first four apply a small
force to either the x or y velocity, the final action leaves all
velocities unchanged. There is a step penalty and a final re-
ward. We define a set of landmark options (Mann, Mannor,
and Precup 2015) that move the ball near a target goal loca-
tion on the board. The agent can initiate and terminate each
option from within some initiation and termination distances
from the respective landmark. To illustrate the benefits of
terminating suboptimal options, landmarks were placed in
such a way that the paths from start to the goal via the land-
marks are suboptimal (Fig. 4, right). The results are plotted
in Fig. 3b. As expected, the performance of Q(/5) drastically
improves with longer behavior options. The influence of /3
is more subtle: intermediate §-s perform best overall, but
B = 1 reaches slightly better eventual performance.

In a comparison, Q(3) outperforms the on-policy variant
that learns with ( = (. However, in this domain, the off-
policy variant (that learns with { = 0, but evaluates with 3)
performs comparably to Q(/3). This may in part be due to
the use of function approximation, which allows the plain
update to generalize meaningfully within the option trajec-
tory, and in part due to the noisy nature of Pinball, in which
there are many optimal policies of similar values. Since, as
we have seen, Q() is the only variant to learn accurate val-
ues, we expect it to stand out more in settings where the
reward scheme is more intricate.

7 Related work

Much of the related work has already been discussed
throughout. We mention a few more relevant works below.
Mann, Mankowitz, and Mannor (2014) propose an algo-
rithm for multi-step option interruption that stems from the
same motivation of mitigating poor-quality options. In order



to avoid the resulting options being too short, they introduce
a time-regularization term. Our approach bypasses the need
to do so by interrupting off-policy and the ability to explic-
itly specify target terminations.

Ryan (2002) also considers the problem of termination
improvement, or interrupting options when they are no
longer relevant, in a hybrid decision-theoretic and classical
planning setting. The intuitions in that work are particularly
aligned with the ones here — in particular the tradeoff be-
tween efficiency and optimality is hinted at, and it is even
suggested that “persistence [with an option] is a kind of off-
policy exploration, at the behavior level.” In this work, we
formalize and exploit this intuition.

Yu and Bertsekas (2012) consider general A-operators
with state-dependent A. In the case of options, 1 — (° takes
the role of a state-option-dependent A. White (2017) pro-
poses to consider 1 — ( as part of the transition-based dis-
count instead.

8 Discussion

We propose decoupling behavior and target termination con-
ditions, like it is done with policies in off-policy learning.
We formulate an algorithm for learning target terminations
off-policy, analyze its expected convergence, and validate it
empirically, confirming the theoretical intuition that learn-
ing shorter options from longer options is beneficial both
computationally and qualitatively. More generally, we cast
learning with options into a common framework with well-
studied multi-step off-policy temporal difference learning,
which allows us to carry over existing results with ease.

Learning longer options from shorter options. We have
assumed here that the options are given, but may not express
the optimal policy well. This scenario applies when the op-
tions describe simple rules of thumb, or are transferred from
a different task. If the options are not given, but learnt end-
to-end, our wish typically is to distill meaningful behavior
in them. However, instead, the result often ends up reduc-
ing to degenerate options (Bacon, Harb, and Precup 2017;
Mann, Mankowitz, and Mannor 2014). Being able to im-
pose longer durations on the target off-policy may mitigate
this. Though it should be noted that our convergence results
suggest that learning may not be as efficient then.

Action-level importance sampling. The option policy
term in the trace is ambivalent to the action choice. Thus if
1(0]S;) is small, ¢? will be small, even if the taken action is
consistent with the option policy 7. It would be interesting
to replace this term with the importance sampling ratio at the

primitive action level, like %, which corresponds to
another multi-step off-policy algorithm, Retrace(\) (Munos
et al. 2016). Another direction towards this goal is to incor-

porate the intra-option correction from Eq. (16).

Online convergence. Proving online convergence of Q(/3)
remains an open problem. Supported by reliable empirical
behavior, we hypothesize that it holds under reasonable con-
ditions and plan to investigate it further in the future.
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Future. A natural direction for future work is to learn
many (-s in parallel as is done in classical off-policy learn-
ing (Sutton et al. 2011), or learn a new kind* of a universal
option model using the ideas from (Schaul et al. 2015). It is
also worthwhile to extend the convergence results to approx-
imate state spaces, perhaps similarly to (Touati et al. 2017).
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A Proof of Proposition 1
Proof. From Eq. (8), and writing ¢ for ¢j;"* for less clutter:

q= (I —yPU D) rT 4 Pog),
g =P g =1" 4 4PPlg,
q=1"+yPPrg+yPUI-Aly
=7 +yPPrg+~Pq—~yPPq
=17+ (PPE —PPYg+yPlg.

Solving for g yields the result.

B Proof of Theorem 1

Proof. Write R for Rg . The fact that the fixed point is the

desired one is clear from Eq. (15) and Proposition 1. Recall
that:

(1=B2(8i) + B°(Si)u(o]Si)) (1 = ¢°(S:)),
(1=5°(s))q(s,0) + B°(s)Epq(s,).

(o)
G

q(s,0)

Now, let us derive the contraction result. Eq. (15) can be
written:

Rq(s,0) = th]Ewo [(ﬁc‘;)Tfo}
t=0 i=1
def

Ty =r(Se, Ar) +7(4(St+1,0) — ¢£414(St+1,0))

Let Aq(s,0) £ ¢(s,0) — q5'" (s,0), and Aq(s,-) be defined
analogously. Since Rqj;"* = g3, and after shifting the sum
index forward, we have:

Rq(s,0) — g5 (s,0) = ifyt]Eﬂo Kﬁcé’) ATfO} ,
=1 i=1

ATy

(1—B7)Aq(St,0) + BYE, Aq(St,-) — ¢ Aq(St,0)

(1= B¢ = ) Aq(Se,0) + B Y (bl Se) Aq(Si,b)
beO

= 3 (T = 87 = ) + B2ub1S1)) Aq(S1.b),
b

where we write I,—, for the indicator function. Since
¢ < (1 - Bg) + Beu(olS,) and Bru(d]Sy) > O,
Vb # o, we have a linear combination of Ag(S:,b)
weighted by non-negative coefficients w, ;, defined as:

Wy = L2y B [(TI2162) Mool = BF = ) +



Bfu(bwt))ﬂst:y} , whose sum is:

S =3 0 e [(ﬁcs) > Tomo(1 =B}~ cf)
beO t=1 i=1 beO
+ B n(b1Sy)]
=S [(TTef) - - )
t=1 1=1
+ > nblS)5]
beO
00 t—1
= > B [(TTe8) (=7 =)+ 7))
t=1 i=1
_ iytﬂzﬂo [(Hcg) (1—c))]
t=1 =1
e’} t—1 00 t
=E,. Zyt( cf) —Z’}’t(HCfﬂ
t=1 i=1 t=1 1=1
=7C-(C-1) <y

where C' = E . {Zfiofyt (szlcg’ﬂ, and the last inequal-

ity is due to C' > 1. It follows that R is a y-contraction

around gj5". O]

C Proof of Corollary 1

Proof. We would like for the off-policy trace ¢? = (1— 32+
B2u(o]s))(1—¢2) to be larger than the equivalent on-policy
trace 1 — 39.

1 B2 < (1— 82+ Aulols)(1— C9)
(1 B2)C2 < Bop(ols)(1—C2)
€2 < B2(u(ols)(1 - C0) +¢2)
) o
P52 - Co) T e
uols)(1— ¢2)
(ols)(1—C9) + G2

Thus, if 3° obeys this bound, it is more beneficial to learn it
off- rather than on- policy, from the point of view of conver-

gence speed. O
D Proof of Theorem 3
Proof. First notice that Proposition 1 rewrites:
g = (I —~(P = PP) —yPl)~1rT
=(I— 77)/3# _ 77)(1—/3)L)—17~7r
— Z,yt(Pﬂ/L +P(1—,B)L)trﬂ'. (]7)

t=0
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G def g
Let AB =gy

— qé"b. From the above (17), we have:
Ag — Zayt(('pﬁﬂ _|_7D(1—,3)L)t _ (pw _|_1P(1—C)L)t),r7r

t=1

— (’[)ﬁu 4+ pA=F) _plu _ P(l_C)L)Z’ytAtr”,

t=1

where A; = (pﬁu 4+ pA=P) _pln _ p(l—C)L)—l((pﬁu +
PU=Byt — (pSr — PA=OE) Let f =372 v Ar™ be
a Q-function. Then simple manipulations yield:

Ag — Zw _ qéw _ (p(B—C)u +p(1—6—1+<))b)f
_ (p(ﬁ—()# _ 'p(ﬁ—C)L)f

=P =P")(B—)f
> (P =P f>0,

since the operators P* and P'* are monotone, 3 > ¢ and
Pl f = max, PV f > P f for any Q-function f. O

E Experimental details

The setting is as follows: an option o is picked according
to i, and a trajectory s,R1,S2,Rs,...,Rp_1,Sp is gener-
ated according to 7 and (°. Then for each state .S; in the
trajectory, ¢(S;,0) is updated according to the considered
algorithm.

E.1 19-chain

The termination conditions § and ( are evaluated in the
range of {0.1,0.5,0.8,1}, with the first value being positive
to ensure adequate state visitation. The step-sizes set via a
linear search over a € {0.1,0.2,0.3,0.4}. The discount fac-
tor v = 0.99.

E.2 Modified Cliffwalk

The reward scheme is: rgoq; = 10 and 7475 = —2, and
the grid size n = 10. We set € = 0.1, and ¢,,; = 0.3, and
determine the step-size for each variant from a linear search
over o € {0.1,0.2,0.3,0.4}, behavior ¢ = 0, and target 3 is
evaluated on the range of {0,0.5,0.8,1}. The discount factor
v =0.99.

E.3 Pinball

The reward is —1 on every step, except the final step which
receives a reward of 10000. We use initiation distance of
0.3 and termination distance of 0.03. The state option value
function was approximated using tile coding with 16, 10 x
10 tilings. All algorithms used a learning rate a = 0.01,
discount v = 0.99 and an exploration rate ¢ = 0.05 and
€opt = 0.01 during learning. The target /3 is evaluated on the
range of {0,0.3,0.5,0.8,1}.



