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Abstract

Lifelong learning intends to learn new consecutive tasks de-
pending on previously accumulated experiences, i.e., knowl-
edge library. However, the knowledge among different new
coming tasks are imbalance. Therefore, in this paper, we
try to mimic an effective “human cognition” strategy by ac-
tively sorting the importance of new tasks in the process of
unknown-to-known and selecting to learn the important tasks
with more information preferentially. To achieve this, we con-
sider to assess the importance of the new coming task, i.e., un-
known or not, as an outlier detection issue, and design a hi-
erarchical dictionary learning model consisting of two-level
task descriptors to sparse reconstruct each task with the �0
norm constraint. The new coming tasks are sorted depending
on the sparse reconstruction score in descending order, and
the task with high reconstruction score will be permitted to
pass, where this mechanism is called as “watchdog”. Next,
the knowledge library of the lifelong learning framework en-
code the selected task by transferring previous knowledge,
and then can also update itself with knowledge from both
previously learned task and current task automatically. For
model optimization, the alternating direction method is em-
ployed to solve our model and converges to a fixed point. Ex-
tensive experiments on both benchmark datasets and our own
dataset demonstrate the effectiveness of our proposed model
especially in task selection and dictionary learning.

Introduction

Multi-task learning (MTL) (Caruana 1997) is a learning
paradigm designed to learn multiple tasks such as classifi-
cation or regression task simultaneously. One of the basic
assumptions for MTL is that taking into account the related
/ shared information among different tasks can lead to a bet-
ter generalization performance than independently learning
single task. In this setting, dramatic successes have been
achieved in many areas by utilizing MTL, such as medi-
cal diagnosis (Bi et al. 2008), handwritten character recogni-
tion (Obozinski, Taskar, and Jordan 2007), relative attributes
learning (Chen, Zhang, and Li 2014) and text classification
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Figure 1: Demonstration of our active lifelong learning
framework with a pool of m candidate tasks, where differ-
ent shapes and colors denote different task base and weights,
respectively. Whether each coming task is unknown or not
is determined via the reconstruction score, and the one with
higher reconstruction score will be marked as the next task.

(Zhang, Ghahramani, and Yang 2008). However, when en-
countering a new task, such MTL learning system must be
capable of efficiently and continually acquiring knowledge
over a serial tasks, i.e., lifelong learning.

In the context of lifelong learning framework, most state-
of-the-arts (Saha et al. 2011; Ruvolo and Eaton 2013b;
Ammar et al. 2014) intend to learn tasks sequentially while
maximizing its performance across all learned tasks. The
major procedure in these methods is to transfer knowledge
from the previously learned tasks to the next coming task,
where new task arrives in a stochastic manner. Further,
nearly equivalent model performance has been demonstrated
in comparison with batch multi-task learning (Kumar and
Daumé 2012) while also exhibiting impressive speedups.
However, tasks in a candidate pool do not have equal knowl-
edge. Some new tasks that are similar to tasks learned before
are well-known and further being redundant, while other ir-
relevant / strange tasks are unknown. To accumulate knowl-
edge rapidly in “human learning”, it is reasonable to filter
the well-known tasks out automatically, and pay more ex-
ogenous attention (And and Yantis 1997) to the unknown /
novel information. Take birds categorization task as an ex-
ample: suppose that we have only learned different species
of Gull, e.g., Ring billed Gull. When a pool of candidate
tasks contains California Gull, Herring Gull and Cardinal,
categorization task of whether a bird is California Gull or
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not can be learned easily by transferring previously accumu-
lated knowledge such as does it have webbed feet like Ring
billed Gull? On the contrary, a Cardinal will be marked as
unknown category since similar knowledge has not been col-
lected over learned tasks. Therefore, selecting Cardinal from
these candidate tasks as next task can acquire more available
knowledge and information for the lifelong learning system.

Motivated by above analysis, as depicted in Figure 1,
we propose a new Active Lifelong Learning (AcLL) frame-
work in the context of Efficient Lifelong Learning Algo-
rithm (ELLA) (Ruvolo and Eaton 2013b), where AcLL in-
tegrates a hierarchical dictionary in a perspective of outlier
detection scenario, called “watchdog”. Specifically, the hi-
erarchical dictionary is learned over the previously learned
tasks with the help of two-level task descriptor, i.e., high-
dimensional subdictionary and low-dimensional one. As a
pool of candidate tasks arrives at the “watchdog”, the new
task models can be best sparse reconstructed over this hi-
erarchical dictionary via �0 norm. Whether a coming task
is unknown (outlier) or not is detected by sorting the re-
construction cost in descending order (i.e, the tasks with
higher reconstruction cost are considered as unknown, and
vice versa), and the task with profound knowledge will be al-
lowed to pass. Afterwards, the selected task can be encoded
by the knowledge library, and knowledge in the new task
will then refine the base of both knowledge library and hi-
erarchical dictionary. For model optimization, the alternat-
ing direction strategy is presented to solve our task selection
framework. Finally, we evaluate our proposed AcLL model
against several active selection methods on several multi-
task datasets, and several dictionary learning methods on
extended Yale B dataset. The experimental results strongly
support our proposed framework.

The novelty of our proposed framework is threefold:

• Benefitting from outlier detection scenario, called “watch-
dog” in this paper, we design a lifelong machine learn-
ing framework, referred to as Active Lifelong Learning
(AcLL), to autonomously judge whether the coming task
is unknown or not to learn instead of human beings.

• A hierarchical dictionary framework consisting of high-
dimensional and low-dimensional subdictionaries is pro-
posed in the “watchdog” to select the tasks actively, which
can sparsely reconstruct new coming tasks while preserv-
ing the previous task distribution well.

• Experimental results on multi-task datasets and extended
Yale B dataset show that our proposed AcLL frame-
work outperforms the state-of-the-art active task selection
methods and dictionary learning methods, respectively.

The rest of the paper is organized as follows. The first sec-
tion gives a brief review of some related works. The second
one introduces our proposed active lifelong machine learn-
ing framework. Then, how to solve the proposed model effi-
ciently via alternating direction method of multipliers is pro-
posed. The last two sections report the experimental results
and conclusion of this paper.

Related Works

In this section, we firstly provide a brief review of the most
related works on learning tasks from “easy” to “hard”: Self-
paced / Curriculum learning, and then introduce some
state-of-the-art methods related to Active Learning.

For the Self-paced Learning based MTL, the represen-
tative methods (Li et al. 2017; Murugesan and Carbonell
2017) aim to first learn the more “simple” or “easy” in-
stances or tasks, and then add “complex” or “hard” ones
gradually, inspired by the established human educational
process. However, simple incorporation of self-paced learn-
ing into the multi-task learning may cause intractable in-
creasing in the number of learning parameters and thus in-
duce computation and storage requirements to grow grad-
ually. For the Curriculum Learning based MTL, instead
of learning all tasks jointly, the state-of-the-art approaches
(Pentina, Sharmanska, and Lampert 2015) firstly sort mul-
tiple tasks in the best order, and then solve each task via
transferring useful information between subsequent tasks.
The objective function of searching next task which is not
included in the task order π is given as:

min
wk

:
∥∥wk − wπ(k−1)

∥∥2
2
+ L(wk), (1)

where wk is the task parameter of most similar one. How-
ever, such method may be not flexible since it contains a
fixed task order, and only transfer knowledge between local
subsequent tasks instead of the global task relationship.

For the Active Leaning, the representative methods (Tong
and Koller 2001; Cohn, Ghahramani, and Jordan 1996) typ-
ically focus on the most uncertain or informative samples.
(Saha et al. 2010) has extended active learning into MTL
via adopting an adaptive matrix to evaluate the informa-
tiveness of an incoming sample across all the tasks. It has
also been shown to generally reduce the size of training
data (Saha et al. 2011; Zhang 2010). In the context of life-
long learning, (Ruvolo and Eaton 2013a) proposes to em-
ploy two effective active task selection mechanisms for se-
lecting the next best task: Information maximization and Di-
versity heuristic. Unlike most existing active MTL models
which intend to enhance the model performance, (Ruvolo
and Eaton 2013a) focuses on providing maximal benefit to
learning future tasks. However, (Ruvolo and Eaton 2013a)
aims to learn the knowledge library efficiently, which may
cause the loss of original task parameter details. Therefore,
in order to alleviate the problem of existing models, we ex-
tend outlier detection scenario (Cong, Yuan, and Liu 2011)
to lifelong learning system by introducing an efficient hi-
erarchical dictionary for reconstructing coming tasks, and
further select the next unknown task to learn.

Active Lifelong Learning

Preliminaries

In this paper, we firstly begin by introducing batch multi-
task learning (MTL). Suppose that we have m batch learning
tasks {(xt

i, y
t
i)}nt

i=1 (t = 1, ...,m), where xt
i ∈ R

d, yti and
nt denote the i-th sample of the t-th task, the corresponding
output of the i-th sample and the total number of samples of
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the t-th task, respectively. Let us define ft : Xt → Y t as
the associated predictor for the t-th learning tasks, such as
Y t ∈ {−1, 1} for binary classification problem and Y t ∈ R

for regression problem. Moreover, the objective function for
batch MTL is summarized as:

min
W

:
m∑
t=1

nt∑
i=1

L(wT
t x

t
i, y

t
i) + Φ(W ), (2)

where the weight matrix W is defined as [w1, ..., wm] ∈
R

d×m with each column wt ∈ R
d corresponding to the t-

th task. The first term in Eq. (2) is the loss function for re-
gression or classification problem, and second term Φ(W ) :
R

d×m → R
+ is the regularization term to shrink model

complexity. However, batch MTL cannot adapt to a new task
without accessing to previous training data, which may re-
sult in a computation and storage burden.

Background on Lifelong Learning

Different from the traditional batch MTL, the lifelong learn-
ing could incrementally learn new tasks. More specifically,
the learner has not enough prior knowledge about the total
number of tasks, task order or their distributions. When the
learner receives data from the t-th task at each time step (ei-
ther a new task or learned tasks), it needs to optimize the
model performance across all the tasks encountered so far.
The following section provides a common lifelong learning
framework without active task selection: Efficient Lifelong
Learning Algorithm (ELLA) (Ruvolo and Eaton 2013b).

The key idea of ELLA is that the model vector wt of each
coming task can be represented as a linear combination of
k basis tasks, i.e., shared knowledge library L ∈ R

d×k.
More specifically, the model parameters for task t are given
by wt = Lst, where st is the sparse coefficients over the
knowledge library. Therefore, the tasks with the same basis
can be considered as belonging to the same group, while
the tasks whose basis are orthogonal between each other
are concerned from different groups. Meanwhile, the par-
tially overlapping of base to model the online tasks which
has something in common but not in the same group. Under
this assumption, the lifelong learning objective function for
ELLA is:

eT (L) =
1

T

T∑
t=1

min
st

{
1

nt

nt∑
i=1

L(f(xt
i;Lst), y

t
i) + μ ‖st‖1

}

+ λ ‖L‖2F ,
(3)

where μ and λ provide a trade-off with the loss function, and
loss function L can be squared loss, logistic loss, etc. Simi-
larly, this optimization problem is extended from GO MTL
(Kumar and Daumé 2012), which focuses on the batch MTL
in practical applications. Even through ELLA has achieved
dramatic improvement across reinforcement learning (e.g.,
(Ammar et al. 2014)), the learner in ELLA has no control
over the order in the coming tasks. In the next section, we
consider an active lifelong leaning framework which can se-
lect the unknown tasks to learn.

Our Active Lifelong Learning (AcLL)

This subsection introduces our Active Lifelong Learning
framework (AcLL) in the perspective of outlier detection
scenario, called “watchdog”, i.e., we consider that the com-
ing tasks in a pool are not equally in the lifelong learning.

We firstly formalize this problem following the basic set-
ting of active task selection (Ruvolo and Eaton 2013a).
Given a pool of candidate tasks ft+1, . . . , ftpool

, where
t + 1 ≤ tpool ≤ tmax (the value of tmax could be a fixed
value or be set dynamically during learning), the learner
should actively choose the index tnext of the next task from
{t + 1, . . . , tpool}. Once the learner decides the index of
next task, the corresponding training dataset are transmit-
ted to the learner, allowing knowledge library L to learn the
new task. Obviously, lifelong learning system needs judge
mechanism like “watchdog”, which can detect whether the
coming tasks are known or unknown, e.g., the coming per-
sons are familiar or strange, and update the accumulated
knowledge in the “watchdog” real-timely. Since the ba-
sic assumption of MTL is that the learned tasks share
the common relationship and information, there exists
an optimal dictionary playing the same role as “watch-
dog”. Specifically, it can reconstruct the coming tasks, and
the tasks which can not be well represented are regarded as
unknown / outlier. Motivated by (Cong, Yuan, and Liu 2011;
2013), in this paper, we focus on “watchdog” based task se-
lection framework by considering it as an outlier detection
problem, i.e., AcLL. Generally, there are two steps for this
challenge:
• Online Dictionary Learning: Given the previously

learned tasks pool as W = [w1, w2, . . . , wt] ∈ R
d×t,

where each column vector wi ∈ R
d denotes a learned

task model. Our goal is to establish a dictionary D such
that it is well adapted to represent learned tasks W and re-
construct a set of candidate tasks. Formally, the objective
function of learning D can be formulated as:

min
D

:
1

2
‖W −DR‖2F +Φ(D), (4)

where D = [d1, d2, . . . , dk] ∈ R
d×k has the same size

as the library L, R = [ri, r2, . . . , rt] ∈ R
k×t is the cor-

responding sparse representation matrix, and second term
Φ(D) : Rd×k → R

+ is the regularization term. Due to the
fact that two-level task descriptor can improve knowledge
transfer between multiple tasks in (Isele, Rostami, and
Eaton 2016), we propose to learn a two-level dictionary
called hierarchical dictionary in this paper. More specifi-
cally, we assume that there are two components contained
in the hierarchical dictionary: one component is high-
dimensional global dictionary, and the other component
is a parameterized low-dimensional local dictionary for
capturing shared subspace among multiple atoms. There-
fore, the dictionary D over the previously learned tasks
can be expressed as:

D = D′ +ΘA, (5)

where the dictionary map Θ is cast as the form of an d×k
matrix with orthonormal columns, i.e., ΘTΘ = Ik, which
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is imposed to make the problem tractable. D ∈ R
d×k, D′

and ΘA correspond to the full dictionary space, the high-
dimensional global dictionary, and the low-dimensional
local dictionary, respectively. In order to model shared
subspace over Θ, we impose a �2,0-norm constraint on
matrix A in the setting of dictionary selection (Cong et
al. 2017). Since the knowledge in “watchdog” should be
online updated as the new task comes, we describe an on-
line hierarchical dictionary learning framework in this pa-
per. Mathematically, given the sparse reconstruction coef-
ficient ri’s, the dictionary learning problem can be formu-
lated as:

min
D′,A,ΘTΘ=Ik

:
1

2

t∑
i=1

‖wi − (D′ +ΘA)ri‖22 + λ1 ‖D′‖2F
s.t. : ‖A‖2,0 ≤ τ,

(6)
where λ1 ≥ 0 and τ ≥ 0 are tuning parameters to in-
dicate the importance of the corresponding regulariza-
tion component. As we can see, the proposed formula-
tion in Eq. (6) subsumes several dictionary learning meth-
ods as special cases: by setting τ = 0, the formulation
in Eq. (6) falls back to the common online dictionary
learning (Mairal et al. 2009) in some extent; by setting
λ1 =∞, it reduces to coupled dictionary learning (Zhu et
al. 2016).

• Sparse Reconstruction Cost: When a pool of candidate
tasks comes, each task can be linearly constructed by
only a few bases in the hierarchical dictionary D, i.e.,
wt+1 =

∑
j djrj , where rj ∈ R is the coefficient corre-

sponding to dj . Motivated by (Cong, Yuan, and Liu 2011;
2013), whether wt+1 is unknown or not is determined by
the linear reconstruction cost, defined as:

S(wt+1) =
1

2
‖wt+1 −Dr∗‖22 , s.t. : ‖r∗‖0 ≤ μ1, (7)

where r∗ is the optimal sparse coding coefficients, μ ≥
0 controls the sparsity of r∗, and S(wt+1) can estimate
how easily the coming task wt+1 can be modeled by the
knowledge library L.

When the “watchdog” detects the tnext-th task with higher
reconstruction cost as the unknown task and allows it pass,
the learner in lifelong system will be updated as:

stnext
← arg min

stnext

�(Lt, stnext
, wtnext

,Ωtnext
),

Lt+1 ← argmin
L

gt(L),

gt(L) =
1

T

T∑
t=1

�(L, stnext , wtnext ,Ωtnext),

(8)

where �(L, s, w,Ωtnext) = ‖w − Ls‖2Ωtnext
+ μ2 ‖s‖1,

knowledge library Lt corresponds to the beginning of the
t-th iteration, Ωtnext denotes the Hessian matrix of the loss
function L with respect to wtnext , tnext is the index of cur-
rent task. Additionally, wtnext and Ωtnext are from the train-
ing data of the tnext-th task using a single task learner:
(wtnext

,Ωtnext
)← singleTaskLearner(Xtnext , Y tnext).

(9)

Algorithm 1 Active Lifelong Learning (AcLL)

1: Input: λ1 > 0, λ2 > 0, μ1 > 0, μ2 > 0, t = 0.
2: Initialize: L0, D0, Θ0, A0 and Σ0.
3: while isMoreTrainingDataAvailable() do
4: {Xi, Y i, wi, i}tmax

i=t+1 ← getCandidateTaskData()
5: {Xnew, Y new, wnew} ← OutlierSelection() via

Eq. (7)
6: (wnew,Ωnew)← singleTaskLearner(Xnew, Y new)
7: snew ← argminsnew

�(Lt, snew, wnew,Ωnew)
8: Lt+1 ← argminL gt(L)
9: Update Dt+1 via Algorithm 2

10: Update At+1 via Eq. (16)
11: Update Θt+1 via Eq. (20)
12: end while
13: Return: Lt+1, St+1, Dt+1, Θt+1 and At+1.

where singleTaskLearner(·, ·) can be defined as linear re-
gression or logic regression. Generally, we summarize our
Active Lifelong Learning framework (AcLL) in Algorithm
1.

Model Optimization

This section describes how to achieve online dictionary
learning since it is the main optimization problem in Algo-
rithm 1. Specifically, the optimization problem in Eq. (6) is
non-convex due to its orthonormal constraints and penalty
term with respect to Θ, and A. In order to envelop �0-norm,
we replace it with �1-norm in our formulation, and convert
our proposed formulation as:

min
D,A,

ΘT Θ=Ik

1

2

t∑
i=1

‖wi −Dri‖22 + λ1 ‖D −ΘA‖2F + λ2 ‖A‖2,1 ,

(10)
where D = D′ + ΘA, and the regularization term ‖A‖2,1
guarantees that the optimal solution of A is row sparsity,
which can select the discriminative features in the latent
space Θ to encode coming tasks. In the following, we in-
troduce the proposed update rules in brief.

Online Dictionary D Update: Assuming we have se-
lected the t + 1-th task as the most unknown one, and the
decomposition rt+1 of wt+1 over the dictionary Dt obtained
at the previous iteration. To store the previous knowledge,
we then introduce two statistical records:

Mt+1 = Mt + rt+1r
T
t+1, Ct+1 = Ct + wt+1r

T
t+1, (11)

where Mt =
∑t

i=1 rir
T
i , and Ct =

∑t
i=1 wir

T
i . Therefore,

information of new task is stored as rt+1r
T
t+1 and wt+1r

T
t+1.

By adopting Dt as a warm start, we then have:

Dt+1 = argmin :
1

2

t+1∑
i=1

‖wi −Dri‖22 + λ1 ‖D −ΘtAt‖2F ,

= argmin :
1

2

(
Tr(DTD(Mt+1 + λ1Ik))

− Tr(DT (Ct+1 +ΘtAt))
)
.

(12)

4110



Algorithm 2 Online Dictionary Update

1: Input: New task parameter wt+1, corresponding coeffi-
cient rt+1; D = Dt, Mt, Ct; λ1 > 0.

2: for i = 1 : d do
3: M i

t+1 ←M i
t + (rt+1r

T
t+1)

i

4: Ci
t+1 ← Ci

t + (wt+1r
T
t+1)

i

5: Solve linear system via Eq. (13).
6: end for
7: Return: Dt+1, Mt+1 and Ct+1.

After evaluating the derivative of Eq. (12) and setting it to
zeros, the global optimum of Dt+1 can be obtained and fur-
ther lead to the following linear problem:

(Ct+1 +ΘtAt)
i = D(i, :)(Mt+1 + λ1Ik)

i. (13)
With this configuration, Dt+1 can be updated via Algorithm
1 in an online manner.

Coefficient A Update: With fixed matrix Dt+1 and Θt,
A is the single variable in this subproblem, where the opti-
mization function can be rewritten as:

min
A

: λ1 ‖Dt+1 −ΘtA‖2F + λ2 ‖A‖2,1 . (14)

A simple idea is to set the derivative of A as 0, and adopting
the property that ΘT

t Θt = Ik, we have:

λ1(Θ
T
t ΘtA−ΘT

t Dt+1) + λ2ΣA = 0, (15)
where Σ is a diagonal matrix (Nie et al. 2010) of At with
Σii =

1
2‖ai‖2

, i = 1, . . . , k. Therefore, the solution of A can
be given as:

A = λ1(λ1Ik + λ2Σ)
−1ΘT

t Dt+1. (16)
Dictionary Map Θ Update: With fixed matrix Dt+1 and
At+1, the optimization function with respect to Θ can be
rewritten as:

min
ΘTΘ=Ik

: λ1 ‖Dt+1 −ΘAt+1‖2F + λ2 ‖At+1‖2,1 . (17)

After substituting At+1 with Eq. (16), the objective function
is written as follows:

min
ΘTΘ=Ik

: λ1

∥∥Dt+1 − λ1ΘV −1ΘTDt+1

∥∥2
F

+ λ2Tr(λ
2
1D

T
t+1ΘV −1Dt+1V

−1ΘTDt+1),
(18)

where V = λ1Ik + λ2Σ. After using simple linear algebra,
we then can rewrite Eq. (18) as:

min
ΘTΘ=Ik

: λ1Tr
(
DT

t+1(Id − λ1ΘV −1ΘT )Dt+1

)
. (19)

By eliminating Tr(DT
t+1IdDt+1), Eq. (18) is equivalent to:

max
ΘTΘ=Ik

: λ2
1Tr(D

T
t+1ΘV −1ΘTDt+1),

⇔ max
ΘTΘ=Ik

: λ2
1Tr(V

−1ΘTDt+1D
T
t+1Θ),

⇔ max
ΘTΘ=Ik

: λ2
1Tr

(
(λ1Ik + λ2Σ)

−1ΘTDt+1D
T
t+1Θ

)
,

⇔ max
ΘTΘ=Ik

: λ2
1Tr

(
ΘT (λ1Id + λ2ΘΣΘT )−1Dt+1D

T
t+1Θ

)
.

(20)

It is well-known that the solution of Θ can be re-
laxedly achieved by the eigen-decomposition of ( 1

λ1
Id +

λ2

λ2
1
Θt−1ΣΘ

T
t−1)

−1DtD
T
t . Note that although the input pa-

rameters in Eq. (20) contain Θ, the above solution is also ef-
fective since the proposed algorithm converges very quickly
in the online style.

Computational Complexity Analysis The main compu-
tational cost in our AcLL model involves the online dic-
tionary learning except for Eq. (8), i.e., the updating of
D, Θ and A in each iteration. Specifically, the updating of
D involves a k × k matrix, and the computational cost is
O(d2k + k3). A has a closed-form solution and the com-
putational complexity is O(k3 + dk2 + d2k). The cost of
computing Θ is O(d3 + d2k + dk2), in which the computa-
tional cost of matrix inversion and eigen-decomposition are
O(d3). Therefore, the total computational cost of dictionary
learning is O(T (d3+d2k+dk2+k3)), where T denote the
total number of tasks in the lifelong learning system. Recall
that, when the size of dictionary D is smaller than d (i.e.,
k 	 d), the computational cost approximates to O(T (d3)).

Experiments

In this section, we carry out empirical comparisons and sev-
eral experiments to validate the proposed model.

Competing Algorithms and Measurements

In our experiments, we evaluate our proposed AcLL frame-
work on six well-known task selection strategies:

1. (Ruvolo and Eaton 2013a) concludes: Random (ELLA-
Rand): the next task arrives randomly; Information Maxi-
mization (ELLA-Info): the next task should be maximize
the expected information gain over the knowledge library
L; Diversity (ELLA-Diver): the next task is chosen as
the one that current library L obtains the worst perfor-
mance; Diversity++ (ELLA-Diver++): a stochastic ver-
sion of ELLA-Diver.

2. Curriculum learning (CL): this method for multiple tasks
proposes to learn subsequent tasks based on the estab-
lished best order.

3. Self-paced Multitask Feature Learning (spMTFL) (Mu-
rugesan and Carbonell 2017): spMTFL presents to firstly
select the easy tasks via parameter τ , and the objective
function is given as:

min
W,Ω∈Sd

+

:

m∑
t=1

τt
(
L(wT

t Xt, yt) + γ〈wt,Ω
−1wt〉

)
+ λr(τ),

(21)
where the value of τt controls the importance of a task
in feature relathionship matrix Ω via assigning different
weights.

We also compare our results with independent task learning
(ITL), where multiple tasks are trained in an independent
way. For the evaluation, we adopt the RMSE (root mean
squared error) and AUC (area under curve) for the regres-
sion and classification problems, respectively.
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Figure 2: Results on six datasets with ELLA-Rand, ELLA-Info, ELLA-Diver, ELLA-Diver++ and Ours in terms of first tasks
(around 1

2 tmax). Each subfigure corresponds to a dataset, the corresponding legend gives the mean performance of each model,
and AUC or RMSE of different models are shown by difference color lines.

Table 1: Comparisons between our method and state-of-the-arts in terms of AUC or RMSE on six datasets: mean and standard
errors averaged over ten random runs. Methods with the best performance are bolded.

Evaluation #TaskNumber ITL ELLA-Rand ELLA-Info ELLA-Diver ELLA-Diver++ spMTFL CL Ours
Yeast AUC 14 65.716±0.49 67.734±1.11 68.230±1.14 68.134±0.59 68.246±0.62 58.720±0.26 64.070±0.71 68.238±0.35
SmartMeter AUC 16 51.193±0.31 70.471±0.26 70.725±0.60 70.860±0.24 70.820±0.21 56.330±0.50 50.481±0.61 71.112±0.14

Landmine AUC 29 73.857±0.60 76.003±1.58 77.366±0.51 76.427±1.82 77.342±0.59 76.667±0.86 74.100±1.34 78.190 ±0.68

Parkinson-Total RMSE 42 2.833±0.03 2.477±0.02 2.448±0.03 2.463±0.03 2.463±0.03 2.513±0.03 NaN 2.421±0.01

Parkinson-Motor RMSE 42 2.253±0.01 2.035±0.03 2.021±0.02 2.025±0.02 2.032±0.02 2.058±0.02 NaN 1.995±0.01

School RMSE 138 10.294±0.07 10.129±0.03 10.126±0.08 10.138±0.12 10.088±0.06 10.290±0.08 NaN 9.982±0.03

Real-World Datasets

We use six benchmark datasets for our experiments:
London School Data (School1) contains examination

scores from 15,362 students in 139 schools, where each stu-
dent has 27 binary features (e.g., student-specific features,
school-specific features, etc), plus 1 bias feature. The corre-
sponding response is the examination score. Therefore, we
have 139 tasks in total by treating each school as a task.

Parkinson Data2 consists of Parkinsons disease symp-
tom score of 5,875 observations for 42 patients. Each task
is a symptom score prediction problem and each sample
consists of 16 biomedical features. We thus have 42 tasks
in total with the number of samples for each patient vary-
ing from 101 to 168. Since the output of this dataset is a
score consisting of Total and Motor, we establish two re-
gression datasets in this experiment: Parkinson-Total, and
Parkinson-Motor.

Landmine Data which can be modeled as a binary classi-
fication problem consists of 14,820 samples for 29 different
geographical regions. Specifically, each task intends to de-
tect whether or not a landmine is presented in a region based
on 9-dimensional feature vector, and the corresponding bi-

1http://cvn.ecp.fr/personnel/andreas/code/mtl/index.html
2https://archive.ics.uci.edu/ml/datasets/parkinsons+

telemonitoring

nary label are: landmine (1) and clutter (-1). We thus have
29 classification tasks in total.

Yeast Data3 consists of phylogenetic profiles of 2,417
genes for 14 functional categories. The input for each gene
is micro-array expression data with 103-dimensional feature
vector. In this experiment, we have 14 tasks in total by treat-
ing each functional category as a task.

SmartMeter Data4 which is collected during a smart me-
tering trial conducted in Ireland by the Irish CER, and the
goal is to research the influence of consumption on house-
hold characteristics. In this experiment, we establish a new
dataset by extract 81 features (such as daily consumption
figures, statistical aspects, etc) from consumption data and
16 characteristics (such as household income, cooking style,
etc) from questionnaires, i.e, the total number of task is 16.

For each task, we randomly split 50%-50% train-test set
for our experiments, and the tmax is set as the task number
of each dataset. Specifically, the lifelong learner used in our
AcLL is same as the ELLA (Ruvolo and Eaton 2013b), i.e.,
Eq. (8). The experimental results averaged over ten random
repetitions are presented in Table 1, and we can conclude:

• Compared with other competing methods, our proposed

3http://mulan.sourceforge.net/datasets-mlc.html
4http://www.ucd.ie/issda/data/commissionforenergyregulation

cer/
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Table 2: Runtime (seconds) on a standard CPU of all compared methods.

ITL ELLA-Rand ELLA-Info ELLA-Diver ELLA-Diver++ spMTFL CL Ours
Parkinson(s) 0.32±0.06 0.74±0.03 0.79±0.05 0.69±0.05 0.68±0.02 1.49±0.02 NaN 1.29±0.06
Landmine(s) 0.39±0.26 0.97±0.40 1.15±0.08 1.12±0.02 1.15±0.04 8.54±0.19 773.01±3.22 1.50±0.08

AcLL framework does well on almost all datasets, which
verifies the effectiveness of the proposed “watchdog” idea
to mimic “human cognition”. Furthermore, the original
algorithm ELLA outperforms MTFL may leads to the fact
that the performance of self-paced / curriculum learning
frameworks is worse than task selection based on ELLA.

• For the task selection method based on ELLA, as shown
in Figure 2, our AcLL framework outperforms other
strategies (such as ELLA-Rand, ELLA-Info, etc) in most
datasets, due to the fact that we adopt the original task
parameter to select the next task and further provide the
maximal benefit to future tasks.

• For the six real datasets, Table 1 also show that when
the task number in the lifelong system increases gradu-
ally (e.g., task number of Yeast, SmartMeter, Landmine,
Parkinson and School is 14, 16, 29, 42 and 139, respec-
tively), the performance of our proposed AcLL frame-
work is improved gradually since the hierarchical dictio-
nary can accumulate more useful knowledge as the task
number becomes large.

Comparison in term of Runtime: We adopt the Parkin-
son and Landmine datasets to test the time consumption
of our proposed AcLL with the state-of-the-arts as shown
in Table 2. Specifically, we adopt 50%-50% train-test split
on both two datasets. Generally, the task selection methods
based on ELLA are more efficient than self-paced / curricu-
lum learning methods, i.e., spMTFL and CL. This is because
ELLA does not need to process the original features with
knowledge library L. For all the strategies based on ELLA,
because we adopt the eigen-decomposition for model opti-
mization, our method is a little slower than others, but has
lower error than others. All the experiments are performed
using Matlab on the computer with 12G RAM, i7 CPU.

Convergence Analysis: In order to investigate the con-
vergence of the alternating direction method to solve our
proposed AcLL framework, we plot the value of the recon-
struction cost on the Parkinson-Motor dataset and School
dataset, respectively. Specifically, we randomly select 70%
of the total number of tasks as training set and the rest as
the test set. The reconstruction cost is calculated on the test
set with the learned task number increasing. As depicted in
Figure 3, the cost values decrease with respect to number of
learned tasks. The performance lends further evidence that
our framework to select unknown task is effective.

Effect of Dictionary Learning Method

We further investigate our dictionary learning method on ex-
tended Yale B dataset in this subsection. Specifically, the ex-
tended Yale B dataset consists of 2,414 frontal face images
for 38 persons under 64 illumination conditions and expres-
sions, i.e., each person has 64 images. The original images
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Figure 3: Convergence analysis of our proposed framework
on the Parkinson (Left) and School (Right) dataset.

Table 3: Average classification accuracies on extended Yale
B dataset.

Method Dictionary Size Accuracy (%)
TraDL 570 95.70
KSVD 570 95.54

LC-KSVD1 570 93.61
LC-KSVD2 570 94.48
D-KSVD2 570 93.58

ORDL 570 89.17
Ours 494 95.89

are cropped to the resolution 192 × 168 and then extracted
into a 504-dimensional feature vector using a random ma-
trix. For evaluation, we randomly split the dataset into 50%-
50% train-test set, i.e., 32 images for each person are ran-
domly selected for training the dictionary and the rest are
for test.

The state-of-the-art methods used in this paper include:
traditional dictionary learning (TraDL) (Mairal et al. 2009),
K-SVD (Aharon, Elad, and Bruckstein 2006), LC-KSVD1
and LC-KSVD2 (Jiang, Lin, and Davis 2013), D-KSVD
(Zhang and Li 2010) and ORDL (Lu, Shi, and Jia 2013).
The parameters for these methods are selected via cross
validation. The experimental results averaged over ten ran-
dom repetitions and dictionary size among used methods are
presented in Table 3, and we can conclude that: our pro-
posed dictionary learning framework can achieve the best
performance. Note that the dictionary size of ours is 494
(i.e., 13 items for person on average), which is smaller
than other state-of-the-arts (15 items for person on aver-
age). The reason why ours can perform well with small dic-
tionary size is that we adopt two-level dictionary structure,
and it can capture more useful information among the Yale
B face dataset. Additionally, we also evaluate the effect of
local dictionary ΘA by fixing λ1 = 1 and adjusting λ2

in [0.001, 0.01, 0.1, 1, 10, 100, 1000]. As illustrated in Fig-
ure. 4, accuracy changes with different values of λ2, i.e., ap-
propriate local dictionary can make the performance better.
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Figure 4: Illustration of accuracy by varying the value of λ2.

Conclusion

In this paper, we propose an Active Lifelong Learning
framework (AcLL) based on outlier detection scenario,
where it can mimic an effective “human cognition” behavior,
i.e., unknown-to-known. Specifically, whether the knowl-
edge of coming tasks is unknown or not can be detected
via a sparse reconstruction cost over a hierarchical dictio-
nary, which consists of two-level task descriptors. The task
with higher cost will be permitted to pass and further be
analytically encoded by the knowledge library in the life-
long system. For dictionary optimization, we adopt the al-
ternating direction method to solve our optimization prob-
lem. We have conducted experiments on several real-world
datasets and extended Yale B dataset; the experimental re-
sults demonstrate the effectiveness of our proposed AcLL
framework. In the future, we plan to apply the hierarchical
dictionary to construct more useful knowledge library.
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