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Abstract

Clustering is an effective technique in data mining to gen-
erate groups that are the matter of interest. Among various
clustering approaches, the family of k-means algorithms and
min-cut algorithms gain most popularity due to their simplic-
ity and efficacy. The classical k-means algorithm partitions a
number of data points into several subsets by iteratively up-
dating the clustering centers and the associated data points.
By contrast, a weighted undirected graph is constructed in
min-cut algorithms which partition the vertices of the graph
into two sets. However, existing clustering algorithms tend to
cluster minority of data points into a subset, which shall be
avoided when the target dataset is balanced. To achieve more
accurate clustering for balanced dataset, we propose to lever-
age exclusive lasso on k-means and min-cut to regulate the
balance degree of the clustering results. By optimizing our
objective functions that build atop the exclusive lasso, we can
make the clustering result as much balanced as possible. Ex-
tensive experiments on several large-scale datasets validate
the advantage of the proposed algorithms compared to the
state-of-the-art clustering algorithms.

Introduction

Clustering is a fundamental research topic in data mining
and is widely used for many applications in the field of arti-
ficial intelligence, statistics and social sciences (Jain, Murty,
and Flynn 1999; Jain and Dubes 1988a; Girolami 2002;
Wu et al. 2012b; Wang, She, and Cao 2013; Ye, Zhao, and
Liu 2007a; Nie, Cai, and Li 2017). The objective of clus-
tering is to partition the original data points into a number
of groups so that the data points within the same cluster are
close to each other while those in different clusters are far
away from each other (Jain and Dubes 1988b) (Nie, Xu, and
Li 2012) (Chang et al. 2015) (Filippone et al. 2008) (Li et al.
2017).

Among various approaches for clustering, K-means and
min-cut are two most popular choices in reality because of
their simplicity and effectiveness (Wu et al. 2012a). The gen-
eral procedure of traditional K-means (TKM) is to randomly
initialize c clustering centers, assign each data point to its
nearest cluster and compute a new clustering center itera-
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tively. Some researchers claim that the curse of dimension-
ality may deteriorate the performance of TKM (Ding and
Li 2007). A straightforward solution of this problem is to
project the original dataset to a low-dimensional subspace
by dimensionality reduction, for example, PCA, before per-
forming TKM. Discriminative analysis has been shown ef-
fective in enhancing clustering performance (Ding and Li
2007) (la Torre, Fernando, and Kanade 2006) (Ye, Zhao, and
Liu 2007b). Motivated by this fact, discriminative k-means
(DKM) (Ye, Zhao, and Wu 2007) is proposed to incorporate
discriminative analysis and clustering into a single frame-
work to formalize the clustering as a trace maximization
problem.

By contrast, the min-cut clustering is realized by con-
structing a weighted undirected graph and then partitioning
its vertices into two sets so that the total weight of the set
of edges with endpoints in different sets is minimized (Yuan
et al. 2014) (Raj and Wiggins 2010). Among several graph
clustering methods, min-cut tends to provide more balanced
clusters as compared to other graph clustering criterion. As
the within-cluster similarity in min-cut method is explicitly
maximized, solving the min-cut clustering problem is non-
trivial. The main difficulty lies in the constraint on the solu-
tion. Thus, to make this problem tractable, researchers pro-
posed to relax the constraint.

Although k-means and min-cut have achieved promis-
ing performance in many applications, they have certain
limit.Given that the distribution of the data points is bal-
anced, one would expect the clustering result to reflect such
balance. That being said, a clustering algorithm shall avoid
partitioning a minority of data points into a cluster. Nonethe-
less, both K-means and min-cut, as well as some other simi-
lar clustering algorithms, do not guarantee balanced cluster-
ing result. In many real world data mining applications, the
data from each cluster are about the same. For example, the
male and female populations in the same age range cannot
be very different. Therefore, for those data which are equally
distributed, it is more reasonable to explicitly guarantee the
clustering results balanced.

Motivated by the limit of k-means and min-cut for han-
dling balanced data, we propose to design a balanced cluster-
ing algorithm. Specifically, the exclusive lasso proposed by
Zhou et al. (Zhou, Jin, and Hoi 2010) has been exploited in
our approach to fulfill such purpose. The exclusive lasso was
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originally used for feature selection across multiple tasks. It
models the scenario when variables in the same group com-
pete with each other. With exclusive lasso, if one feature in a
group is given a large weight, it tends to assign small or even
zero weights to the other features in the same group. Sup-
pose that the exclusive lasso is applied on a bunch of data
points across multiple categories. In a similar manner, we
introduce a competition among different categories for the
same data point. If more data points are clustered into one
category, other categories would get fewer data points. The
exclusive lass, thus in a sense, measures the balance degree
of the clustering result. The smaller value the exclusive lasso
obtains, the more balanced the clustering result is. With such
insight, we formulate our clustering approach based on min-
imizing the exclusive lasso. In this paper, we particularly
incorporate the exclusive lasso into k-means clustering and
min-cut clustering, aiming to promote these two mainstream
clustering approaches with stronger ability of attaining bal-
anced clusters.

The major contributions of this paper can be summarized
as follows:

• We leverage the exclusive lasso to introduce a competition
among different categories for the same data point, thus
enhancing the balance of the clustering result.

• The exclusive lasso is particularly tailored for k-means
and min-cut. Thus, these two mostly used clustering ap-
proaches are able to achieve more balanced clustering re-
sult.

• The proposed algorithms are non-smooth and difficult to
optimize. We propose a new iterative solution to solve the
problems.

Related Work

The Traditional k-means

As one of the most efficient clustering algorithms, k-means
clustering has been widely applied to real-world applica-
tions. The centroids of clusters are utilized to characterize
the data. The objective of k-means is to minimize the sum
of the squared errors defined by:

Jk =
K∑

k=1

∑
i∈Ck

‖xi −mk‖2, (1)

where X = (x1, . . . , xn) denotes the data matrix and mk =∑
i∈Ck

xi/nk is the centroid of a cluster Ck of nk data
points.

Previous work (Wang et al. 2012) has shown that H-
orthogonal non-negative matrix factorization (NMF) is
equivalent to relaxed k-means clustering. Thus, k-means
clustering can be reformulated using the clustering indica-
tor as follows:

min
F,G

‖X −HFT ‖2F (2)

s.t. Gik ∈ {0, 1},
K∑

k=1

Hik = 1, ∀i = 1, 2, . . . , n (3)

where X ∈ R
d×n is the input data matrix with n data rep-

resented by d-dimensional features; F ∈ R
d×K is the clus-

tering indicator matrix; H ∈ R
n×K is the clustering assign-

ment matrix and each row of H satisfies the 1-of-K coding
scheme (if a data point xi is assigned to the k-th cluster then
Hik = 1 and Hik = 0 otherwise). In this paper, given a ma-
trix X = {xij}, its i-th row, j-th column are denoted as xi,
xj , respectively.

In the literature, the classical K-means and its variants
have been applied to many data mining applications. For
example, Mehrdad et al. (Wang et al. 2012) propose a har-
mony K-means (HKM) algorithm based on harmony search
optimization method and applied it to document clustering.
HKM can be proved by means of finite Markov chain the-
ory to converge to the global optimum. Zhang et al. (Zhang
and Xia 2009) propose a new neighborhood density method
for selecting initial cluster centers for K-means clustering.
Deepak et al. (Turaga, Vlachos, and Verscheure 2009) em-
ploy quantization schemes to retain the outcome of clus-
tering operations. Although these methods get good perfor-
mance, they have not considered how to achieve balanced
clustering result when the given data points are evenly dis-
tributed. By contrast, we aim to develop a balanced k-means
clustering algorithm that well addresses this issue.

Min-Cut

The principle of min-cut is rooted in graph theory. It needs
a graph based on a weight matrix W ∈ R

n×n built from
n data points {x1, . . . , xn}. The min-cut graph clustering
objective function can be generalized as:

J =
∑

1≤p<q≤K

s(Cp, Cq) + s(Cp, Cq) =
K∑

k=1

s(Ck, Ck)

(4)
where K is the number of clusters, Ck is the k-th cluster
(sub-graph in graph G), Ck is the complement of a subset
Ck in graph G, and for any set A and B

s(A,B) =
∑
i∈A

∑
j∈B

Wij , di =
∑
j

Wij . (5)

We denote qk (k = 1, . . . ,K) as the cluster indicators
where the i-th element of qk is set to 1 if the i-th data point
xi belongs to the k-th cluster, and 0 otherwise. For example,
if the data points within each cluster are adjacent,

qk = (0, . . . , 0,

nk︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)T . (6)

After simple mathematical deduction, we can find that

s(Ck, Ck) =
∑
i∈Ck

∑
j∈Ck

Wij = qTk (D −W )qk

∑
i∈Ck

di = qTk Dqk, s(Ck, Ck) = qTk Wqk, (7)
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where D is a diagonal matrix with the i-th diagonal element
as di. The objective function of min-cut method can there-
fore be reformulated as:

J =

K∑
k=1

qTk (D −W )qk (8)

Min-Cut clustering has been applied in various applica-
tions. Wang et al. (Wang and Davidson 2010) propose a
flexible and generalized framework for constrained spectral
clustering, interpret the algorithm as finding the normalized
min-cut of a labeled graph, and apply it to constrained im-
age segmentation. Dynamic graph clustering algorithm, pro-
posed by (Saha and Mitra 2006) can provide strong theoreti-
cal quality guarantee on clusters. However, none of the exist-
ing work on min-cut is capable of balanced clustering when
necessary, which shall be addressed by our newly proposed
balanced min-cut algorithm.

Exclusive Lasso

Zhou et al. propose the exclusive lasso to model the scenario
when variables in the same group compete with each other.
They apply it to multi-task feature selection and obtain good
performance. The exclusive lasso (Zhou, Jin, and Hoi 2010)
is defined as follows:

‖β‖e =
√√√√ d∑

j=1

(
m∑

k=1

‖βj
k‖)2, (9)

where ‖β‖e is a regularizer that controls the complexity of
the combination weights.

In (Zhou, Jin, and Hoi 2010), the regularizer introduces
an l1-norm to combine the weights for the same category
used by different data points and an l2-norm to combine
the weights of different categories. Since l1-norm tends to
achieve a sparse solution, the construction in the exclusive
lasso essentially introduces a competition among different
categories for the same data points.

In our work, the exclusive lasso is used as a balance con-
straint. We will prove that the value of exclusive lasso indi-
cates the balance degree of our clustering algorithms.

The proposed algorithm

Balance Constraint

Given F as a cluster indicator matrix, the exclusive lasso of
F is written as

‖F‖e =
√√√√ c∑

j=1

(
n∑

i=1

‖fij‖)2. (10)

With simple mathematical deduction, the exclusive lasso can
be rewritten as:

‖F‖e = Tr(FT11TF ). (11)
From this equation, we can observe that the value of exclu-
sive lasso equals the square-sum of the number of data points
in each class. In the following, we prove that the most bal-
anced clustering can be achieved by minimizing the exclu-
sive lasso.

Theorem 1. Given n1+n2+ · · ·+nk = N and ni|ki=1 ≥ 0,∑k
i=1 n

2
i arrives at its minimum when ni =

N
k .

Proof. According to the Cauchy inequality,

(n2
1 + n2

2 + · · ·+ n2
k)(b

2
1 + b22 + · · ·+ b2k)

≥(a1b1 + a2b2 + · · ·+ akbk)
2

Let bi|ki=1 = 1, the equality holds when n1 = n2 = · · · =
nk. Hence, we can easily have the conclusion that when
ni =

N
k ,

∑k
i=1 n

2
i get its minimal value.

According to the above theorem, by minimizing the ex-
clusive lasso, each cluster will have n

c data points. The most
balanced clustering result is thus obtained. Hence, we use
the the exclusive lasso as the balance constraint.

Balanced k-Means

In the setting of clustering, given n data points {xi}|ni=1,
we have a data matrix X = (x1, . . . , xn) ∈ R

d×n. Our
goal in balanced k-means is to partition {xi}|i = 1n into K
balanced clusters among different categories.

Noting that the exclusive lasso is capable of introducing
competition among different categories, we apply the exclu-
sive lasso to the classical k-means to obtain balanced clus-
ters. The proposed objective function of balanced k-means
is formulated as follows:

min
F∈Ind

‖X −HFT ‖2F + γ‖F‖e (12)

By substituting ‖F‖e with (9), the objective function can
be rewritten as follows:

min
F∈Ind

‖X −HFT ‖2F + γTr(FT11TF ) (13)

where F ∈ Ind means F ∈ R
n×K is an indicator matrix

used for clustering; H ∈ R
d×K is the clustering assignment

matrix; γ is a parameter.
The optimal H and F would minimize the objective func-

tion value. Since it is difficult to compute the optimal H and
F simultaneously, we present an iterative approach to opti-
mize this algorithm. To be more specific, we can obtain the
optimal H by fixing F by a simple linear equation. Simi-
larly, we can get the optimal F by fixing H .

For a fixed F , by setting the derivative of (13) w.r.t H to
zero, we obtain

H = XF (FTF )−1 (14)
Then we fix H , we update F as follows: we update one

row of F each time while fixing the other rows of the pre-
diction matrix F . Specifically, the updating of one row is
realized by finding the element being 1 that results in the
minimum of (13). We iterate the updating of each row until
convergence as shown in Algorithm 1.

Computational Analysis: The computation com-
plexity of Algorithm 1 is O(K). Since the indicator matrix
F is sparse, this inverse operation is very efficient. When
sufficient computational resources are available and paral-
lel computing is implemented, this algorithm can be solved
with desired efficiency.
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Algorithm 1 Algorithm to solve the objective function of
balanced k-means
Input: Data matrix X ∈ R

d×n

Output: Indicator matrix F ∈ R
n×K

1: Initialize the indicator matrix F randomly.
2: repeat
3: Fixing F , compute H according to H =

XF (FTF )−1

4: Fixing H , update F as follows:
Update each row of F while fixing the remaining

rows.
5: until CONVERGENCE
Return: Indicator matrix F .

Theorem 2. Algorithm 1 decreases the objective value of
Eq. (13) in each iteration.

Proof. In each iteration t of Algorithm 1, according to Step
3, we know that:

Ht+1 = min
F
‖X −HFT

t ‖2F + γTr(FT
t 11TFt) (15)

Thus, we have:

‖X −Ht+1F
T
t ‖2F + γTr(FT

t 11TFt)

≤‖X −HtF
T
t ‖2F + γTr(FT

t 11TFt)
(16)

According to step 4, we obtain:

‖X −HtF
T
t+1‖2F + γTr(Ft+111

TFt+1)

≤‖X −HtF
T
t ‖2F + γTr(Ft11

TFt)
(17)

Adding Eq. (16) and Eq. (17), we arrive at:

‖X −Ht+1F
T
t+1‖2F + γTr(Ft+111

TFt+1)

≤‖X −HtF
T
t ‖2F + γTr(Ft11

TFt)
(18)

which proves that the algorithm decreases the objective
function value in each iteration.

According to Theorem 2, we can see that the value of the
objective function (13) decrease at each iteration of Algo-
rithm 1. In addition, it is clear that (13) is lower bounded by
0. Therefore, Algorithm 1 is guaranteed to converge.

Balanced Min-Cut

We similarly aim to cluster n data points X =
{x1, . . . , xn} ∈ R

d×n into K clusters. To begin with, we
use the Gaussian function to construct a weight matrix A.
The weight Aij is defined as:

Aij =

⎧⎨
⎩

exp(−‖xi−xj‖2

δ2 ), xi and xj are k
nearest neighbors.
0, otherwise

(19)

where δ is utilized to control the spread of neighbors. Given
the weight matrix A and the cluster indicator matrix F , the

objective function of min-cut graph clustering is formulated
as follows:

min
F∈Ind

1TA1− Tr(FTAF ), (20)

which is equivalent to the following objective function:

max
F∈Ind

Tr(FTAF ) (21)

We further incorporate the exclusive lasso into min-cut
and get the following objective function:

max
F∈Ind

Tr(FTAF )− γ‖F‖e (22)

In the same manner, we substitute ‖F‖e with (9) and
rewrite the objective function as follows:

max
F∈Ind

Tr(FTAF )− γTr(FT11TF ) (23)

With a simple mathematical deduction, the objective
function is rewritten as:

max
F∈Ind

Tr
(
FT (ρI +A− γ11T )F

)
, (24)

where ρ is a large enough constant to make ρI +A− γ11T

positive-definite. Defining B = (ρI + A − γ11T )F , we
update F by solving maxF∈Ind Tr(F

TB). F is iteratively
updated until convergence as shown in Algorithm 2.

Algorithm 2 Algorithm to solve the objective function of
balanced min-cut
Input: Data matrix X
Output: Indicator matrix F

1: Compute the weight matrix A using Eq (19).
2: repeat
3: Compute B according to B = (ρI +A− γ11T )F
4: Update F by solving maxF∈Ind Tr(F

TB)
5: until CONVERGENCE
Return: Indicator matrix F

Theorem 3. Algorithm 2 increases the objective function
value of Eq. (24) in each iteration.

Proof. In the Steps 3 and 4 of Algorithm 2, we denote the
updated B and F by B̂ and F̂ , respectively. Since the up-
dated B and F are the optimal solutions of the problem
maxF∈Ind Tr(F

TB), we have:

Tr(F̂T (ρI+A−γ11T )F ) ≥ Tr(FT (ρI+A−γ11T )F ),
(25)

which proves that the algorithm increase the objective func-
tion value in each iteration.

According to Theorem 3, we can observe that the value of
objective function (24) increases at each iteration of Algo-
rithm 2. Therefore, Algorithm 2 is proved to converge.
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Experiment

In this section, extensive experiments are conducted to eval-
uate the proposed clustering methods. We give two sets of
experiments. The first one is to compare the proposed bal-
anced K-means clustering to K-means based clustering al-
gorithms, including the classical K-means (KM) clustering,
DisCluster (DC), DisKmeans (DKM) clustering (Ye, Zhao,
and Wu 2007), AKM (Wang et al. 2012) and HKM (Wang
et al. 2012). The second one is to compare the proposed bal-
anced min-cut clustering to the classical min-cut clustering,
MinMax Cut clustering, Ratio Cut clustering and Normal-
ized Cut clustering algorithms.

Datasets

A variety of datasets are used in our experiments which are
described as follows.

– MNIST Handwritten Digit Dataset: The MNIST hand-
written digit dataset (LeCun et al. 2011) is a large-scale
dataset of handwritten digits. It is widely used as a test bed
in data mining. The dataset contains 60,000 training im-
ages and 10,000 testing images. We merge all the training
and testing images in the experiments. The pixel values
are used as feature representation.

– USPS handwritten digit dataset: We additionally use the
USPS dataset to validate the performance on handwritten
digit recognition. The dataset consists of 9298 gray-scale
handwritten digit images. We resize the images to 16×16
and use pixel values as the features.

– YaleB face dataset: The YaleB dataset (Georghiades, Bel-
humeur, and Kriegman 2001) contains 2414 near frontal
images from 38 persons under different illuminations.
Each image is resized to 32 × 32 and the pixel value is
used as feature representation.

– ORL face dataset: The ORL dataset (Samaria and Har-
ter 1994) consists of 40 different subjects with 10 images
each. We also resize each image to 32× 32 and use pixel
values to represent the images.

– JAFFE Japanese Female Facial Expression dataset: The
JAFFE dataset (Lyons, Budynek, and Akamatsu 1999)
consists of 213 images of different facial expressions from
10 different Japanese female models. The images are re-
sized to 26× 26 and represented by pixel values.

– HumanEVA Motion dataset: The HumanEVA dataset is
used to evaluate the performance of our algorithm in terms
of 3D motion annotation 1. This dataset contains five types
of motions. Based on the 16 joint coordinates in 3D space,
1590 geometric pose descriptors are extracted using the
method proposed in (Chen et al. 2011) to represent 3D
motion data.

– Coil20 Object dataset: We use the Coil20 dataset (Nene,
Nayar, and Murase 1996) for object recognition. This
dataset includes 1440 gray-scale images with 20 differ-
ent objects. In our experiment, we resize each image to
32× 32 and use pixel values as the features.

1http://vision.cs.brown.edu/humaneva/

– CMU-PIE dataset: The CMU-PIE face dataset consists
of 41,368 images of 68 people. Each person was imaged
under 13 different poses, 43 different illumination condi-
tions, and with 4 different expressions. We also use the
pixel values as the feature representations.

– UMIST face dataset: The UMIST face dataset consists of
564 images of 20 individuals with mixed race, gender and
appearance. Each individual is shown in a range of poses
from profile to frontal views. The pixel value is used as
the feature representation.

Following previous works, we use the pixel value as the fea-
ture representations.

Experimental Setup

There are three parameters in our algorithms. The first one
is the number of nearest neighbors and the second one is
the parameter δ in Eq. (19). Following , we set the num-
ber of nearest neighbors to 5 in the experiments. The self-
tune clustering method is utilized to determine the param-
eter δ. For the regularization parameter γ in Eq. (13) and
Eq. (24), we tune them by a ”grid-search” strategy from
{10−6, 10−4, 10−2, 100, 102, 104, 106}. We similarly tune
the regularization parameters of all the comparison algo-
rithms from the aforementioned range. The best results of
all the comparison algorithms are reported.

Following related work, we adopt clustering accuracy
(ACC) and normalized mutual information (NMI) as our
evaluation metrics in our experiments.

Comparison among k-means based methods

In this section, we report the performance comparison us-
ing k-means, DisCluster, DisKmeans, AKM, HKM and Bal-
anced k-means in terms of clustering accuracy (ACC) and
NMI in Table 1.

From the experimental results, we have the following ob-
servations:

• When compared to the classical k-means clustering,
DisCluster and DisKmeans algorithms, DisCluster and
DisKmeans generally have better performance. This may
be because discriminative dimension reduction is inte-
grated into a single framework. Thus, each cluster is more
identifiable, which helps enhance the clustering perfor-
mance. We can therefore conclude that discriminative in-
formation is beneficial for clustering.

• HKM achieves the second best performance among the
comparison algorithms, which indicates that most active
points changing their cluster assignments at each iteration
are located on or near the cluster boundaries.

• The proposed balanced k-means always gets the best per-
formance on all the datasets. This experimental result
demonstrates that the exclusive lasso is able to pose bal-
ance constraint to k-means clustering. By minimizing the
exclusive lasso, the most balanced clustering result is ob-
tained.
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Table 1: Performance comparison using k-means, DisCluster, DisKmeans, AKM, HKM and Balanced k-means on nine bench-
mark datasets. From the experimental result, we can observe that the proposed algorithm consistently outperforms the other
comparison algorithms.

Clustering Accuracy NMI

k-means DisCluster DisKmeans AKM HKM Ours k-means DisCluster DisKmeans AKM HKM Ours

MNIST 52.6±3.3 53.7±2.4 54.2±3.4 52.2±3.3 55.4±3.1 57.3±2.4 61.7±2.5 62.5±2.8 63.1±2.6 61.9±2.1 64.3±3.1 66.1±2.9
USPS 65.8±2.5 67.4±2.8 70.4±2.6 66.3±2.9 71.5±2.3 73.4±2.8 60.8±2.3 61.4±2.5 61.9±2.1 61.0±2.6 62.5±2.2 63.7±2.5
YaleB 16.3±1.1 35.2±2.3 39.7±2.5 16.8±0.8 41.3±3.2 43.5±1.8 19.5±1.8 30.1±2.1 31.3±2.5 19.8±2.2 43.8±2.2 46.5±2.3
ORL 37.2±1.6 41.2±2.1 43.9±1.8 37.4±1.5 44.4±2.7 47.2±2.2 68.7±1.8 69.2±2.5 69.9±1.8 68.9±1.7 71.1±2.3 73.2±2.4
JAFFE 58.8±2.2 59.4±2.7 59.9±2.5 59.0±2.8 60.5±1.9 61.2±1.8 63.2±2.5 64.1±2.2 64.8±2.8 62.8±2.5 66.2±1.9 68.4±2.2
HuEVA 43.2±3.2 44.2±3.1 45.1±2.3 43.8±3.4 46.3±2.6 47.7±2.5 75.3±2.5 76.1±2.1 77.3±2.4 75.1±2.8 78.2±2.4 79.5±2.1
Coil20 68.4±2.8 65.3±2.6 61.3±2.3 67.9±2.7 70.3±2.4 73.1±2.3 59.3±2.3 60.5±2.3 61.2±2.8 59.8±2.7 63.2±2.9 65.1±2.7
PIE 19.5±0.8 49.8±2.7 55.5±2.9 21.2±1.1 56.1±2.2 57.8±2.4 24.2±2.3 25.2±2.8 25.8±2.5 24.7±1.6 57.8±2.4 59.3±2.6
UMIST 39.5±2.1 41.3±2.6 43.2±2.4 39.1±1.8 44.1±2.6 46.4±2.5 63.7±2.4 64.4±2.8 65.3±2.5 64.1±2.1 66.8±2.4 68.1±2.3

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 1: Parameter sensitivity of Balanced k-means. (a) MNIST (b) USPS (c) YaleB (d) ORL (e) JAFFE (f) HumanEVA
(g) Coil20 (h) CMU-PIE (i) UMIST. From the results, we can observe that the parameter has a significant impact on the
performance.

Comparison among graph clustering algorithms

To evaluate performance of the proposed balanced min-cut
clustering algorithm, we compare it to the classical Min-Cut
clustering, MinMax Cut clustering (Ding et al. 2001), Ra-
tio Cut clustering (Hagen, , and Kahng 1992), Normalized
Cut Clustering (Shi and Malik 2000) and Balanced Min-Cut
clustering on the nine benchmark datasets.

We have the following observations from the experimen-
tal results reported in Table 2 and Table 3:

• Compared with the k-means based clustering, the graph
clustering algorithms generally achieve better perfor-
mance. This observation indicates that it is beneficial to
utilize the pairwise similarities between all data points
from a weighted graph adjacency matrix that contains
much helpful information for clustering.

• MinMax Cut Clustering always gets the second best per-
formance, which demonstrates that min-max clustering

principle can result in more balanced partitions than the
other comparison graph clustering methods.

• The proposed balanced min-cut clustering algorithm con-
sistently outperforms the other graph clustering algo-
rithms. From this result, we can conclude that the exclu-
sive lasso is able to exert balance constraint on min-cut
clustering and thus achieves the most balanced clustering
result.

Parameter Sensitivity of the Proposed Algorithm

In this section, we study the parameter sensitivity of bal-
anced k-means and balanced min-cut. For space limitation,
we only use two datasets for example, and report the re-
sults in Figure 1 and Figure 2. From the experimental re-
sult, we can observe that γ has a significant impact on the
performance of balanced K-means. We additionally show
the parameter sensitivity of balanced min-cut. Similarly to
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Figure 2: Parameter sensitivity of Balanced Min-Cut w.r.t γ. (a) MNIST (b) USPS (c) YaleB (d) ORL (e) JAFFE (f) HumanEVA
(g) Coil20 (h) CMU-PIE (i) UMIST. From the results, we can observe that the parameter, γ has a significant impact on the
performance. To be more specific, better performance is achieved when γ is in the range of {10−2, 102}.

Table 2: Performance comparison in terms of clustering ac-
curacy using the classical Min-Cut clustering, MinMax Cut
clustering, Ratio Cut clustering, Normalized Cut cluster-
ing and Balanced Min-Cut clustering on nine benchmark
datasets. From the experimental result, we can observe that
the proposed algorithm consistently outperforms the other
comparison algorithms.

Clustering Accuracy

Min-Cut Ratio Cut Normalized Cut MinMax Cut Ours

MNIST 56.4±2.8 57.8±2.2 58.4±3.2 59.2±2.4 61.4±2.0
USPS 72.3±2.3 73.6±2.5 73.9±2.2 75.8±2.1 77.5±2.7
YaleB 37.9±2.8 38.2±2.4 38.6±2.1 42.2±2.6 46.1±2.3
ORL 45.8±1.9 46.9±2.4 47.6±2.3 48.8±1.7 50.1±2.7
JAFFE 60.4±2.6 61.1±2.3 62.5±2.8 62.8±2.1 64.3±2.4
HuEVA 47.2±2.9 48.3±2.5 48.8±2.7 49.5±3.3 50.9±2.8
Coil20 70.3±2.4 71.8±2.2 77.6±2.8 78.3±2.3 81.6±1.9
PIE 56.2±1.3 57.4±2.9 58.3±2.6 59.1±1.8 61.3±2.8
UMIST 59.6±2.5 60.1±2.2 60.8±2.1 62.9±1.4 64.6±2.3

the proposed balanced k-means, the performance is heavily
influenced by the parameter γ. To be more specific, better
performance is usually attained when γ is in the range of
{10−2, 102}.

The experiments on both algorithms suggest the impor-
tance of designing an auto-tuning method for parameter se-
lection. However, how to decide the optimal parameter is
currently out of the scope in this work. We shall focus on
this problem in the future.

Conclusion

In this paper, we have addressed the issue of balanced clus-
tering which has not been studied in data mining. The ex-

Table 3: Performance comparison in terms of NMI using the
classical Min-Cut clustering, MinMax Cut clustering, Ra-
tio Cut clustering, Normalized Cut clustering and Balanced
Min-Cut clustering on nine benchmark datasets. From the
experimental result, we can observe that the proposed algo-
rithm consistently outperforms the other comparison algo-
rithms.

NMI

Min-Cut Ratio Cut Normalized Cut MinMax Cut Ours

MNIST 65.3±2.9 66.8±2.6 67.4±3.2 68.1±2.5 69.4±2.3
USPS 66.5±2.3 67.9±2.5 68.4±2.9 69.8±2.7 71.2±2.2
YaleB 43.6±1.8 45.2±2.6 46.4±2.1 47.2±1.9 49.1±2.4
ORL 78.1±1.9 79.5±2.6 80.3±2.2 80.9±1.8 83.2±2.6
JAFFE 67.8±2.5 69.1±2.3 69.9±2.8 70.3±2.4 73.5±1.7
HuEVA 77.4±3.5 78.6±2.8 79.2±2.4 80.4±3.1 82.5±2.1
Coil20 59.8±2.9 61.4±2.3 62.7±2.5 63.6±2.8 66.2±2.6
PIE 55.5±2.1 61.4±2.6 62.3±2.7 62.8±2.3 63.1±2.8
UMIST 82.7±2.8 90.1±2.1 91.2±2.7 92.5±2.3 94.8±2.9

clusive lasso has been exploited to exert the balance con-
straint for introduce its ability to induce competition among
different categories for the same data point. Particularly, we
incorporated the exclusive lasso into k-means and min-cut
clustering algorithms, which shall facilitate these two main-
stream clustering algorithms to better cope with balanced
data points. On the other hand, our objective functions are
non-smooth and difficult to optimize. A new iterative ap-
proach is then designed to solve the problems. We have per-
formed extensive experiments on a copious of datasets to
evaluate performance of the proposed balanced k-means and
balanced min-cut in terms of clustering accuracy and NMI.
The experimental results show that our proposed algorithms
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always outperform the other comparison state-of-art cluster-
ing algorithms, which validates that utilizing the exclusive
lasso indeed helps achieve the most balanced clustering.
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