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Abstract

In this paper, we propose a new learning framework named
dual set multi-label learning, where there are two sets of la-
bels, and an object has one and only one positive label in each
set. Compared to general multi-label learning, the exclusive
relationship among labels within the same set, and the pair-
wise inter-set label relationship are much more explicit and
more likely to be fully exploited. To handle such kind of prob-
lems, a novel boosting style algorithm with model-reuse and
distribution adjusting mechanisms is proposed to make the
two label sets help each other. In addition, theoretical analy-
ses are presented to show the superiority of learning from dual
label sets to learning directly from all labels. To empirically
evaluate the performance of our approach, we conduct exper-
iments on two manually collected real-world datasets along
with an adapted dataset. Experimental results validate the ef-
fectiveness of our approach for dual set multi-label learning.

Introduction

In many real-world tasks, an object can be naturally associ-
ated with multiple labels. Multi-label learning is proposed
and studied to address such kind of problems. Given the
training set, multi-label learning aims to learn a predictor
which is able to classify multiple labels at the same time.
For an unseen instance, the predicator is used to answer the
relevant/irrelevant question on each label.

In this paper, we study a new setting where there are two
sets of labels, and an object has one and only one positive
label from each set. In other words, each instance always
has two labels, and the labels from each of the two sets are
exclusive. For example, as shown in Figure 1, the same Chi-
nese character pronounced as ’Zhi’ can be written by differ-
ent people in different calligraphic fonts. Given a character
from a calligraphy work, we may want to know who wrote
it and which font it belongs to. Here the candidates calligra-
pher and font correspond to two sets of labels. In fact, this
kind of problems are very common in real applications. For
instance, a car can be labeled with two labels: brand and
type. Given a car image, we may want to know which com-
pany produced it and which type it belongs to. Also, a movie
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Figure 1: A real-world example of dual set multi-label learn-
ing. It shows calligraphy works of the same Chinese charac-
ter ’Zhi’, where calligraphers and fonts are two label sets.

can be annotated according to its company and genre, where
companies and genres form the dual set of multiple labels. It
is also noteworthy that in addition to the exclusive relation-
ship among the labels within the same set, the inter-set rela-
tionship is usually available. For example, it is well-known
that the famous Chinese calligrapher Xizhi Wang is good at
running font; Porsche is good at producing sports cars; Pixar
focuses on animated movies.

Obviously, in these cases, the relationship among labels
becomes much more clear than in general multi-label learn-
ing. Directly employing traditional multi-label learning al-
gorithms to solve such problems will lead to significant dis-
advantages. On one hand, all labels will be equally treated,
which implies that algorithm needs to decide the relevance
for every label, resulting a high computational cost; on the
other hand, the algorithm neglects the exclusive relationship
within the label sets.

To address these issues, in this paper, we propose a novel
learning framework, dual set multi-label learning (DSML).
We also propose an effective algorithm to solve this problem
based on the boosting framework. Specifically, two sample
distributions are maintained for dual label sets, one for each
set. And we make two base classifiers reused by each other
to utilize the information embedded in the other label set.
Moreover, the sample distributions are jointly adjusted such
that the mistakes on one model will be made up by the other
model. In this way, the proposed algorithm is expected to
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exploit both the intra-set and inter-set label relationship si-
multaneously.

On all datasets collected or adapted for dual set multi-
label learning, the experimental results validate the superi-
ority of our proposed approach DSML to other compared
approaches. Some diagnostic experiments are done to show
the effectiveness of model-reuse and distribution adjusting
mechanisms.

The main contributions of this paper include: (1) A novel
machine learning framework named dual set multi-label
learning is proposed; (2) An approach for DSML is pro-
posed which outperforms other compared methods; (3) Mar-
gin analysis and generalization bound are presented to show
the superiority of learning with dual label set to multi-label
learning; (4) Three real-world datasets from different tasks
are manually collected or adapted for DSML.

In the following, we will briefly review related works,
then the dual set multi-label learning problem is formulated
and some approaches are proposed to address it. Next, theo-
retical and experimental analyses are provided and the paper
is concluded in the end.

Related Work
During the past decade, significant amount of algorithms
have been proposed to deal with multi-label learning tasks
(Zhang and Zhou 2014). The most straightforward way is
to decompose the original problem into a series of binary
classification problems, one for each label (Boutell et al.
2004); however, this solution neglects the label relationship.
Previous research results (McCallum 1999) show that la-
bel relationship is very helpful and should not be neglected.
Thus, some approaches (Rousu et al. 2005; Cesa-Bianchi,
Gentile, and Zaniboni 2006; Hariharan et al. 2010) rely on
external knowledge resources such as label hierarchies to
exploit label relationship. However, external label relation-
ship is often unavailable in practice, therefore, further ap-
proaches (Ghamrawi and McCallum 2005; Tsoumakas et
al. 2009) try to exploit label relationship based on label co-
occurrence. Nevertheless, directly generating label relation-
ship from training data and then applying it to model con-
struction may increase the risk of overfitting.

Some other approaches exploit label relationship in dif-
ferent ways. The basic idea of classifier chains is to trans-
form the multi-label learning problem into a chain of binary
classification problems (Read et al. 2011). Later, (Liu and
Tsang 2015) and (Liu, Tsang, and Müller 2017) studied how
to determine the appropriate label order for it. Instead of as-
suming that label correlations are shared by all instances,
(Huang and Zhou 2012) exploits label correlations locally.
In (Rauber et al. 2014), recursive dependent binary relevance
model is proposed, where the prediction label of an instance
is obtained in an iterative process.

For some algorithm adaptation methods, classical algo-
rithms are adapted to fit multi-label learning. The basic idea
behind RankSVM (Elisseeff and Weston 2002) is to fit ker-
nel learning to multi-label data. k-nearest neighbor tech-
niques are adapted as ML-KNN algorithm in (Zhang and
Zhou 2007). BP and RBF neural networks are modified to fit
multi-label learning in (Zhang and Zhou 2006) and (Zhang

2009), respectively. (Wang et al. 2016) applied linear la-
bel embedding followed by recurrent neural networks to ad-
dress multi-label image classification problems. In (Yeh et
al. 2017), a deep neural network based model is proposed
to learn deep latent spaces for multi-label classification. Re-
cently, (Liu and Tsang 2017) proposes a sparse coding tree
framework for multi-label problems.

Boosting refers to a family of ensemble methods that
are able to convert weak learners to strong learners (Zhou
2012), among which AdaBoost (Freund and Schapire 1995)
is well studied and proved to be efficient in many tasks. Two
boosting approaches for multi-label learning, AdaBoost.MH
and AdaBoost.MR, were proposed in (Schapire and Singer
1999).

The DSML Formulation and Approaches

Problem Formulation

Let X = R
d denote the d-dimensional input space and

Y = {Yj |j ∈ {a, b}} be the label space where Ya =
{1, · · · , L1} denotes the label space of the first label set with
L1 possible labels and Yb = {1, · · · , L2} denotes the label
space of the second label set with L2 possible labels.

Let D = {(xi, y
a
i , y

b
i )|1 ≤ i ≤ m} denote the training

set, where xi is the feature vector for the i-th instance and
yai ∈ Ya, ybi ∈ Yb are two labels from the two label sets
respectively.

The dual set multi-label learning problem is defined as:

Definition 1. (Dual Set Multi-Label Learning) Given the
training set D, the task is to learn a mapping function from
the input space to the output space,

h : X → Ya × Yb.

For an unseen instance x ∈ X , the mapping function h(·)
predicts h(x) ⊆ Ya × Yb as the dual labels for x.

Benchmark Approaches

In this part, we briefly introduce three benchmark ap-
proaches to deal with dual set multi-label learning. These
approaches are based on some observations or adapted from
traditional multi-label learning. All of them are problem
transformation methods. Due to the page limits, more de-
tailed information will be provided in a longer version.

Independent Decomposition is the most straightforward
way to deal with dual set multi-label learning tasks. Simi-
lar to binary relevance in traditional multi-label learning, it
decomposes the original dual set multi-label learning prob-
lem into two classification sub-problems where each sub-
problem corresponds to one label set of the original label
space. Two multi-class classifiers are learned from each la-
bel set. In this way, two new classification sub-problems are
independent from each other.

Generally, in multi-label learning, if the total number of
labels is L, there may be up to 2L label cases. If one wants
to count all these cases and then decompose the original task
into multiple multi-class problems, a huge computation cost
is unavoidable. Fortunately, in dual set multi-label learning,
there are up to L1 × L2 label cases. Co-Occurrence Based
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Algorithm 1 The DSML algorithm
Input: Training set D = {(xi, y

a
i , y

b
i )|1 ≤ i ≤ m}, base

learning algorithm A, number of rounds T , weight tuning
parameter B
Training process:

1: wa
1,i = wb

1,i = 1/m;
2: for t = 1 to T do
3: (Xa

s , y
a
s ) ← Sample(D, wa

t )
4: (Xb

s , y
b
s) ← Sample(D, wb

t )
5: Training three models hraw

t , ha
t and hb

t with model-
reuse mechanism by Eq. (1), (2) and (3)

6: Calculating error rate εat and εbt by Eq. (4) and (5)
7: if εat > (L1 − 1)/L1 or εbt > (L2 − 1)/L2 then
8: Break
9: end if

10: Updating model weight αa
t and αb

t by Eq. (6) and (7)
11: Updating sample distribution wa

t+1 and wb
t+1 by αa

t ,
αb
t and B with distribution adjusting mechanism ac-

cording to Eq. (8) and (9)
12: Performing normalization to wa

t+1 and wb
t+1

13: end for

Output: Predict labels for dual set: fa(x) and f b(x) by Eq.
(10) and (11)

Decomposition is raised based on this observation. It de-
composes the task into a multi-class problem based on co-
occurrence of labels. The method enumerates all the cases
of label co-occurrence, and takes each case as a class label
of the transformed multi-class problem.

Moreover, we can transform dual set multi-label learning
problem into two multi-class classification problems where a
task depends on the previous one. We call it the Label Stack-
ing approach. Specifically, a multi-class classifier is trained
on one label set, and the other multi-class classifier is trained
on the other label set along with labels from the previous la-
bel set.

The DSML Approach

In this section, we propose a novel algorithm named DSML
specifically designed for the dual set multi-label problem. As
shown in Algorithm 1, DSML maintains the general outline
of boosting. It decomposes the original problem into two de-
pendent classification problems in the boosting framework.
In this way, base classifier is responsible for dealing with
the intra-set label relationship. At each boosting round, the
models on two labels sets interact and help each other with
the proposed model-reuse and distribution adjusting mecha-
nisms, which could effectively exploit the inter-set label re-
lationship.

Model-Reuse Mechanism Since DSML decomposes the
original problem into two dependent sub-problems, only one
sample distribution is not enough. Therefore, different from
standard boosting approach designed for traditional super-
vised learning, during the training process of DSML, two
sample distributions are maintained, one for each label set.
In detail, in the t-th round of boosting, we have two m-
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Figure 2: Five steps of model-reuse mechanism. Each white
block represents the instance space. Each black strip refers
to real labels and each gray strip stands for pseudo-label ma-
trix predicted by learned classifiers.

dimensional sample distributions wa
t and wb

t , where the i-th
value wa

t,i and wb
t,i is the weight for the i-th instance with

respect to label set a and b, respectively. Then, two datasets
(Xa

s , y
a
s ) and (Xb

s , y
b
s) are sampled from the original train-

ing set according to the distribution wa
t and wb

t . Here Xa
s

and Xb
s are instance matrices, and each row of them is an

instance. yas and ybs are label vectors associated with them.
Inspired by (Huang, Yu, and Zhou 2012), we then propose
a model-reuse mechanism to make two label sets help each
other. Without loss of generality, we assume that L1 ≥ L2,
starting with the label set with fewer labels, i.e., we train a
base classifier for label set b from the sampled set:

hraw
t ← A(Xb

s , y
b
s). (1)

Then the model hraw is used to make predictions for Xa
s ,

i.e., we have Ŷ b = hraw
t (Xa

s ). After that, this pseudo-label
matrix is concatenated with the original features to form the
new features for the task corresponding to label set a. That
means the classifier on label set a is trained according to:

ha
t ← A([Xa

s , Ŷ
b], yas ). (2)

Similarly, the predictions Ŷ a = ha
t ([X

b
s , Y

b
s ]) is concate-

nated with Xb
s to train the model for label set b:

hb
t ← A([Xb

s , Ŷ
a], ybs). (3)

Here, Ŷ a and Ŷ b are 0-1 matrices, where each 1 indicates
the instance is associated with th certain label, 0 otherwise.

In this way, the information embedded in the model of
one label set can be reused by the other model, and they
are expected to help each other improve their performance
These steps are illustrated in Figure 2.

Afterwards, the error rates εat and εbt on each sample sets
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are calculated by:

εat =
m∑
i=1

[[ha
t ([X

a
s , Ŷ

b]i) 	= (yas )i]], (4)

εbt =
m∑
i=1

[[hb
t([X

b
s , Ŷ

a]i) 	= (ybs)i]], (5)

where [[·]] is the indicator function which outputs 1 when ·
is true, 0 otherwise. And the model weights αa

t and αb
t are

updated by:

αa
t =

1

L1

[
log

1− εat
εat

+ log(L1 − 1)

]
, (6)

αb
t =

1

L2

[
log

1− εbt
εbt

+ log(L2 − 1)

]
. (7)

Here, L1 and L2 are used to make model weights fit
the multi-class problem. The extra items log(L1 − 1) and
log(L2 − 1) are not artificial (Zhu et al. 2006); they make
the new algorithm equivalent to fitting a forward stage-wise
addition model using a multi-class exponential loss function.
And we put 1/L1 and 1/L2 in front of the log(·) operation
to make the training process smoother. It is worth noting that
when L1 = L2 = 2, the weights for models are identical to
that of standard AdaBoost algorithm. If εat > (L1 − 1)/L1

or εbt > (L2−1)/L2, the classifier ha
t or hb

t is considered too
weak to get a better performance in the boosting framework,
and the algorithm stops.

Distribution Adjusting Mechanism To better exploit the
inter-set label relationship, we further propose a new mech-
anism to adjust the distribution of training data for each la-
bel set. In the classical AdaBoost algorithm, an instance on
which the model has made mistake will be emphasized by
assigning a higher weight. In our setting, if an instance xi

was misclassified by the model on label set a, then we also
increase the weight wb

i . In this way, the instance xi will be
emphasized when training the model on label set b, and it
is expected that the model on set b can provide more accu-
rate information about xi in the next round. As a result, the
model on set a will get additional help information from set
b and may avoid the mistake on xi.

Based on the above motivation, the sample distribution
wa

t+1 and wb
t+1 are updated according to:

wa
t+1,i = wa

t,iexp(α
a
t · [[yai 	= ŷai ]])(B · [[ybi 	= ŷbi ]]), (8)

wb
t+1,i = wb

t,iexp(α
b
t · [[ybi 	= ŷbi ]])(B · [[yai 	= ŷai ]]), (9)

where ŷai and ŷbi are predicted by ha and hb, respectively.
The items exp(αa

t · [[yai 	= ŷai ]]) and exp(αb
t · [[ybi 	= ŷbi ]])

mean that only the weights of instances misclassified in-
crease while the other weights remain the same as before.
B ≥ 1 is the distribution adjusting parameter to increase the
weight of an instance on one label set which is misclassi-
fied on the other label set. At the end of training process, the
sample distributions wa

t+1 and wb
t+1 are normalized to form

a valid distribution.

During the testing phase, labels are predicted for instance
x according to:

fa(x) = argmax
l1

T∑
t=1

αa
t · [[ha

t ([x, h
raw
t (x)]) = l1]], (10)

f b(x) = argmax
l2

T∑
t=1

αb
t · [[hb

t([x, h
a
t ([x, h

raw
t (x)])]) = l2]],

(11)

where l1 = 1, · · · , L1 and l2 = 1, · · · , L2. Obviously, the
model-reuse mechanism is employed again just like that in
the training phase.

Theoretical Results
In this section, we provide some theoretical analyses for the
dual set multi-label learning, in particular, we are interested
in the effect of splitting the total label set into dual sets. Due
to the page limits, some preliminary definitions and proofs
for theorems are omitted, which will be provided in a longer
version.
Theorem 1. For dual set multi-label learning problems, ha

and hb are classifiers trained on the instance space X and
label space Ya, Yb respectively. h is a classifier trained di-
rectly from X × [Ya × Yb], namely,

h : x → argmax
ya,yb∈[Ya×Yb]

h(x, y),

where y = [ya, yb], then margin of learning from dual label
set is larger than that of directly learning from all labels:

min{ρ̄ha(x, ya), ρ̄hb(x, yb)} ≥ ¯̄ρh(x, y),

where ρ̄ is margin for multi-class classification defined in
(Mohri, Rostamizadeh, and Talwalkar 2012), and ¯̄ρ is de-
fined as,
¯̄ρh(x, y) = min{g(x, ya), g(x, yb)}− max

y′ �=ya∧y′ �=yb
g(x, y′).

Remark. From Theorem 1, we can see that the margin of
h is bounded by the minimum of margin of ha and hb. The
margin is the larger the better. Thus, this bound implies the
effectiveness of splitting the whole label set into two disjoint
label sets. This exactly accords with our intuition, that we
should consider the hierarchical structure in label sets.

Consider the approach that splits label sets into dual sets,
we name it as splitting approach:

hspl(x) = [ha(x), hb(x)],

then we give the definitions of empirical margin loss and
risks based on hamming loss as follows:
Definition 2. (Empirical Margin Loss (Mohri, Ros-
tamizadeh, and Talwalkar 2012))

R̂ρ(h) =
1

m

m∑
i=1

Φρ(ρh(xi, yi)),

where Φρ(·) is the margin loss function defined as:

Φρ =

⎧⎨
⎩
0, if ρ ≤ x

1− x/ρ, if 0 ≤ x ≤ ρ

1. if x ≤ 0
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Remark. Since margin loss function is a monotonously
non-increasing function, it means that the larger margin is,
the less loss will be.

Definition 3. (Risks Based on Hamming Loss)

R(h) = E(x,y)∼D

[
1

L1 + L2

L1+L2∑
�=1

[[h�(x) 	= y�]]

]
,

R(ha) = E(x,ya)∼D

[
1

L1

L1∑
�=1

[[ha
� (x) 	= ya� ]]

]
,

R(hb) = E(x,yb)∼D

[
1

L2

L2∑
�=1

[[hb
�(x) 	= yb� ]]

]
.

Observation. The losses of these approaches satisfy,

[[h�(x) 	= y�]] ≤ max{[[ha
� (x) 	= ya� ]], [[h

b
�(x) 	= yb� ]]}.

Proof. Since [[·]] is either 1 or 0, we only need to bound the
case when the right hand side is equal to 0.

As we know that h(x) = [ha(x), hb(x)] and y = [ya, yb],
when [[ha

� (x) 	= ya� ]] = 0 ∧ [[hb
�(x) 	= yb� ]] = 0, we have left

hand side as [[h�(x) 	= y�]] = 0.

Based on Definition 2 and 3, we have the following gen-
eralization bound of the approach that splits the total label
set into dual label sets:

Theorem 2. Let H = {(x, ya, yb) ∈ X × [Ya × Yb] →
wTφ(x)|∑L1+L2

�=1 ‖w‖2
H

≤ Λ2} be a hypothesis set with
ya = 1, · · · , L1, y

b = 1, · · · , L2, where φ : X → H is a
feature mapping induced by some positive definite kernel κ.
Assume that S ⊂ {x : κ(x,x) ≤ r2}, and fix ρ > 0, then
for any δ > 0, with probability at least 1 − δ, the following
generalization bound holds for all hspl = [ha, hb] ∈ H:

R(hspl) ≤ R̂ρ(h
spl) +

2rΛ

ρ

√
max{L1, L2}

m
+ 3

√
log(2/δ)

m
.

Remark. From Theorem 2, we can see that it makes sense
to split label sets to deal with dual-set multi-label learning
since the convergence rate of generalization error is standard
as O(1/

√
m). Besides, the error bound exhibits a radical de-

pendence on the maximal number of labels in dual sets. This
also implies a relatively balanced splitting on the label sets
may improve the performance.

Table 1: Statistics of the datasets, where M , D, L1, and L2

denote the number of instances, dimensions, size of first la-
bel set, and size of second label set in each dataset, respec-
tively.

Dataset M D L1 L2

Calligrapher-Font 23195 512 14 5
Brand-Type 2247 4096 7 3

Frequency-Gender 3157 19 5 2

Experiments

Experimental Settings

Datasets We manually collect two real-world datasets and
adapt one publicly available dataset for dual set multi-label
learning. Details of them can be found in a longer version.
Here we summarize their statistics in Table 1.

Evaluation Measures In dual set multi-label learning, we
care about the performance on each individual set of labels
as well as the overall performance, so we can evaluate the
performance of compared algorithms with accuracy. For-
mally, we can define three kinds of accuracies as follows:
Definition 4. Let Z = {zi, yai , ybi |1 ≤ i ≤ n} denote the
testing set where n is the total number of testing instances
and let ha, hb be the underlying classifiers learned from the
training process associated with two label sets respectively.
Three accuracies are defined to evaluate the performance,

Accuracya =
1

n

n∑
i=1

[[ha(zi) = yai ]],

Accuracyb =
1

n

n∑
i=1

[[hb(zi) = ybi ]],

Accuracyall =
1

n

n∑
i=1

[[ha(zi) = yai ]] · [[hb(zi) = ybi ]].

In words, Accuracya and Accuracyb evaluate the per-
formance on the first and second label set, respectively.
Accuracyall measures the overall performance.

Compared Methods In this part, all algorithms are eval-
uated on the same five-fold partition of the same datasets.
Benchmark approaches are evaluated and compared. For In-
dependent Decomposition, Co-Occurrence Based Decom-
position, Label Stacking, and DSML, radial basis function
(RBF) neural networks are used as their base classifiers with
same hyper-parameters. For DSML, the number of boosting
rounds T is set to 10, and B is set to 1.05.

Moreover, since dual set multi-label learning is a specific
case of general multi-label learning, traditional multi-label
algorithms can be used for this case. Four of these algo-
rithms are compared, which are ML-KNN (Zhang and Zhou
2007), ML-RBF (Zhang 2009), BP-MLL (Zhang and Zhou
2006), and RankSVM (Elisseeff and Weston 2002). Due to
the different settings of dual set multi-label learning and tra-
ditional multi-label learning, a little modification should be
done to change the output of multi-label learning to fit dual
set multi-label learning, which is firstly dividing labels into
two sets and then choosing the label with the highest proba-
bility within each set as the final prediction label. For these
methods, hyper-parameters are set according to the sugges-
tions given by their papers.

Experimental Results

Algorithms Comparison Table 2 gives the five-fold
cross-validation performance of all compared algorithms on
the datasets. No accuracy on individual label set of the Co-
Occurrence Based Decomposition is shown, because after
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Table 2: The five-fold cross-validation performance of each compared algorithm (mean ± std.) on Calligrapher-Font, Brand-
Type, and Frequency-Gender datasets. Best accuracies on each dataset are marked in bold font. N/A indicates no result of a
certain block.

Dataset Measure Algorithms

DSML Ind. Dec. Co-Occ. Dec. Label Stacking ML-KNN ML-RBF BP-MLL RankSVM

Cal.-Font
Accy.a .6562 ± .0059 .5967 ± .0082 N/A .6019 ± .0088 .6337 ± .0075 .6372 ± .0045 .1493 ± .0051 N/A
Accy.b .7223 ± .0079 .6751 ± .0040 N/A .6801 ± .0078 .7101 ± .0030 .7100 ± .0087 .4104 ± .0670 N/A
Accy.all .5672 ± .0087 .4836 ± .0099 .5609 ± .0050 .4889 ± .0094 .5570 ± .0048 .5396 ± .0066 .0764 ± .0077 N/A

Brand-Type
Accy.a .5723 ± .0226 .5661 ± .0129 N/A .5968 ± .0254 .4722 ± .0160 .5207 ± .0223 .1206 ± .0182 .5238 ± .0352
Accy.b .7730 ± .0249 .7677 ± .0092 N/A .7637 ± .0225 .7245 ± .0115 .7405 ± .0126 .3000 ± .0509 .7517 ± .0137
Accy.all .4949 ± .0227 .4744 ± .0105 .4784 ± .0294 .4735 ± .0302 .3912 ± .0078 .4201 ± .0160 .0538 ± .0053 .4183 ± .0345

Freq.-Gndr.
Accy.a .8521 ± .0091 .8321 ± .0212 N/A .8375 ± .0170 .5879 ± .0091 .7570 ± .0144 .4004 ± .1464 .0326 ± .0135
Accy.b .9547 ± .0061 .9579 ± .0067 N/A .9550 ± .0051 .6953 ± .0196 .9661 ± .0047 .5014 ± .0271 .5382 ± .0643
Accy.all .8220 ± .0082 .8039 ± .0214 .8068 ± .0187 .8096 ± .0183 .4587 ± .0161 .7387 ± .0134 .1704 ± .0847 .0127 ± .0116

Table 3: The five-fold cross-validation performance of DSML (mean ± std.) on Calligrapher-Font, Brand-Type, and Frequency-
Gender datasets when B increases from 1.00 to 1.20 with T fixed at 10. Best accuracies on each dataset are marked in bold
font.

Dataset Measure Distribution Adjusting Parameter B

1.00 1.01 1.02 1.03 1.05 1.10 1.15 1.20

Cal.-Font
Accy.a .6536 ± .0054 .6576 ± .0064 .6567 ± .0051 .6557 ± .0067 .6562 ± .0059 .6541 ± .0033 .6546 ± .0076 .6528 ± .0060
Accy.b .7225 ± .0060 .7244 ± .0062 .7249 ± .0043 .7263 ± .0046 .7223 ± .0079 .7246 ± .0041 .7210 ± .0037 .7230 ± .0054
Accy.all .5656 ± .0078 .5697 ± .0062 .5674 ± .0043 .5690 ± .0058 .5672 ± .0087 .5698 ± .0043 .5659 ± .0078 .5660 ± .0045

Brand-Type
Accy.a .5710 ± .0296 .5657 ± .0259 .5706 ± .0303 .5706 ± .0206 .5723 ± .0226 .5648 ± .0185 .5710 ± .0201 .5603 ± .0343
Accy.b .7784 ± .0142 .7668 ± .0185 .7659 ± .0193 .7650 ± .0212 .7730 ± .0249 .7641 ± .0107 .7788 ± .0182 .7699 ± .0182
Accy.all .4905 ± .0324 .4847 ± .0227 .4856 ± .0257 .4882 ± .0231 .4949 ± .0227 .4824 ± .0073 .4922 ± .0228 .4833 ± .0340

Freq.-Gndr.
Accy.a .8413 ± .0110 .8432 ± .0107 .8432 ± .0177 .8413 ± .0140 .8521 ± .0091 .8435 ± .0137 .8473 ± .0162 .8476 ± .0119
Accy.b .9541 ± .0071 .9531 ± .0041 .9512 ± .0073 .9554 ± .0074 .9547 ± .0061 .9515 ± .0040 .9557 ± .0054 .9560 ± .0038
Accy.all .8131 ± .0060 .8134 ± .0118 .8134 ± .0158 .8119 ± .0166 .8220 ± .0082 .8128 ± .0151 .8172 ± .0153 .8175 ± .0155

label co-occurrence counting, all dual labels are transformed
into new multi-class labels. Also, the result of RankSVM is
absent on Calligrapher-Font dataset, because no result is ob-
tained after 10 times the running time of DSML.

From Table 2, we can see that DSML is significantly bet-
ter than the other algorithms. It achieves the best overall ac-
curacies on all datasets. On the largest dataset Calligrapher-
Font, DSML is the best on all of the three criteria. It is
worth noting that DSML performs much better than In-
dependent Decomposition, which shows the effectiveness
of boosting, model-reuse and distribution adjusting mech-
anisms. On Brand-Type dataset, DSML only loses to Label
Stacking on the accuracy of the first label set. On Frequency-
Gender dataset, DSML only loses to ML-RBF with a small
gap on the accuracy of the second label set.

Among Independent Decomposition, Co-Occurrence
Based Decomposition and Label Stacking, Independent De-
composition performs the worst on all datasets. By con-
trast, Co-Occurrence Based Decomposition performs better
than Independent Decomposition, which validates that uti-
lizing inter-set label relationship is helpful. However, it ex-
ploits this relationship in a rough way, which leads to dif-
ferent ranges of improvement on three datasets. Label co-
occurrence relationship is more significant for Calligrapher-
Font and Brand-Type datasets. But on Frequency-Gender
dataset, whose label relationship mainly lies in label dis-
tribution rather than co-occurrence, the improvement is not

significant. For Label Stacking, it has a similar performance
to Independent Decomposition over the second label set,
nevertheless, its accuracy is improved with respect to the
first label set. Thus, it has a better overall accuracy. From
these results, we can know that utilizing both inter-set and
intra-set label relationships are important in dual set multi-
label learning.

Among multi-label learning approaches, ML-RBF per-
forms better than other methods except ML-KNN on the
overall accuracy on Calligrapher-Font dataset. This is prob-
ably because that ML-KNN tends to perform better on large
dataset, where more instances can be compared. BP-MLL
performs the worst of all these approaches. Performance of
RankSVM is relatively good on Brand-Type dataset, but it
performs poorly on Frequency-Gender dataset, especially
on the accuracy on the first label set and the overall ac-
curacy. All these approaches perform worse than DSML,
which proves that treating all labels equally is not an ap-
propriate way to address dual set multi-label learning.

Study on Model-Reuse Mechanism In order to show the
effectiveness of model-reuse mechanism, we perform exper-
iments of DSML with and without model-reuse mechanism
on all datasets. Results are given in Figure 3. T is set to be
10, with every round reported, and B is set between 1.00 and
1.20 with an interval of 0.05.

Obviously, DSML with model-reuse mechanism signifi-
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(1a) B = 1.00
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(1b) B = 1.05


 ) + , �-
-.(

-.)

-.*

-.+

-./

-.,

0

�	�����
��'�1

2
��
�
��
�3

2������3� 
�� ������ ��	� ��

2������3� 
�� ������ ��	� ��

2������3�
��������	�

(1c) B = 1.10
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(1d) B = 1.15
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(1e) B = 1.20
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(2a) B = 1.00
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(2b) B = 1.05
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(2c) B = 1.10
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(2d) B = 1.15
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(2e) B = 1.20
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(3a) B = 1.00
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(3b) B = 1.05
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(3c) B = 1.10
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(3d) B = 1.15
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(3e) B = 1.20

Figure 3: The five-fold cross-validation performance of DSML (mean) on Calligrapher-Font (sub-figures (1a) to (1e)), Brand-
Type (sub-figures (2a) to (2e)), and Frequency-Gender (sub-figures (3a) to (3e)) datasets change with and without model-reuse
mechanism when T increases with fixed value of B. The solid lines represent the performance with model-reuse mechanism,
dotted lines otherwise.

cantly outperforms the one without it, which validates that
model-reuse mechanism plays a key role in improving the
performance of DSML. On Brand-Type and Frequency-
Gender datasets, though some green solid lines are below
the dotted ones, the improvement of overall accuracies is
significant, with most red solid lines above the dotted ones.

In addition, from Figure 3, we can observe that when B
is fixed, the performance of DSML is unstable in the initial
increasing phase of T , especially when T = 2. After that,
DSML improves remarkably especially on Calligrapher-
Font dataset. Then, the performance of DSML tends to be
stable in the remaining increasing phase of T . This phe-
nomenon accords with our intuition since DSML is an ap-
proach with a boosting framework.

Study on Distribution Adjusting Mechanism Since B
controls the effect of distribution adjusting mechanism,
in order to illustrate the positive influence of it, we per-
form experiments of DSML with different B settings. It is
worth mentioning that B = 1.00 means DSML performs
without distribution adjusting mechanism. Table 3 reports
how DSML performs on all different datasets with five-
fold cross-validation as B increases from 1.00 to 1.20. The
boosting round T is fixed at 10.

We can observe that the better performance can be
achieved when B is larger than 1.00 over all datasets, which
validates that adjusting the distribution according to the in-
formation from the other label set can improve the perfor-

mance. It also implies the importance of exploiting the inter-
set label relationship. In practice, we can see that smaller or
larger B does not improve the performance very much. On
all datasets used in this paper, we find that B = 1.05 or 1.10
may be a relatively proper setting.

Conclusion

In this paper, we propose a novel learning framework named
dual set multi-label learning, where an object is associated
with two labels, each of which comes from one of the dual
label sets. We also propose a boosting style algorithm to
solve this problem. On one hand, a base classifier is used
to utilize the exclusive relationship among labels within the
same set; on the other hand, model from each label set is
reused by the other one, and data distributions are jointly
adjusted such that the mistakes on one model will be made
up by the other one. Moreover, theoretical analyses are pre-
sented to show the superiority of learning from dual label
sets to learning directly from all labels. Experimental stud-
ies on three real-world datasets validate the effectiveness of
our proposed approach. It is worth noting that since model-
reuse mechanism plays a key role in DSML, it can be ex-
tended to problems with multiple label sets. As a boosting
style approach, DSML can be more powerful with stronger
base classifiers. In the future, more applications will be stud-
ied under the framework of dual set multi-label learning and
it will be extended to multiple label sets cases.
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