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Abstract

Label distribution learning (LDL) is a novel multi-label learn-
ing paradigm proposed in recent years for solving label ambi-
guity. Existing approaches typically exploit label correlations
globally to improve the effectiveness of label distribution
learning, by assuming that the label correlations are shared
by all instances. However, different instances may share dif-
ferent label correlations, and few correlations are globally ap-
plicable in real-world applications. In this paper, we propose
a new label distribution learning algorithm by exploiting sam-
ple correlations locally (LDL-SCL). To encode the influence
of local samples, we design a local correlation vector for each
instance based on the clustered local samples. Then we pre-
dict the label distribution for an unseen instance based on the
original features and the local correlation vector simultane-
ously. Experimental results demonstrate that LDL-SCL can
effectively deal with the label distribution problems and per-
form remarkably better than the state-of-the-art LDL meth-
ods.

Introduction

Learning with ambiguity is a hot topic in machine learning
and data mining areas. There are mainly two sophisticated
paradigms for solving label ambiguity at present, namely
single-label learning and multi-label learning (Tsoumakas,
Katakis, and Taniar 2007) respectively. In single-label learn-
ing framework, an instance is associated with a single class
label, whereas in multi-label learning, an instance may have
multiple class labels simultaneously. A great deal of re-
search (Read, Pfahringer, and Holmes 2008; Read et al.
2011) have shown that multi-label learning is an effective
and widely applied paradigm, which can be seen as an ex-
tension of single-label learning. However, multi-label learn-
ing can only model the ambiguity of “what describes the in-
stance” , i.e., it usually outputs a set of labels which are asso-
ciated with the instance. Sometimes we need to deal with the
more general ambiguity of “how to describe the instance”.
For example, in some cases, we need not only know which
labels are associated with an instance, but also the extent
to which each label describes the instance. To solve such
problems, Geng (2010) proposed label distribution learning
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(LDL), which is a further extension of multi-label learning.
Different from traditional multi-label learning to output a la-
bel set, LDL outputs a label distribution, and each compo-
nent in the distribution represents the degree of description
of the corresponding label to the instance which is called the
description degree.

After LDL has been put forward, more and more re-
searchers tried to solve label ambiguity problems by using
LDL and achieved good results. To name a few, Geng et
al. (2010) proposed the IIS-LLD algorithm and applied it
into the facial age estimation problem, in which the origi-
nal single-label dataset was transformed into a label distri-
bution dataset. In their further works, to improve the effi-
ciency of IIS-LLD, they proposed conditional probability
neural network (CPNN) algorithm (Geng, Yin, and Zhou
2013) and BFGS-LLD algorithm (Geng and Ji 2014). Yang
et al. (2015) attempted to combine LDL with deep learning
and proposed the deep label distribution learning (DLDL)
algorithm.

However, the above research does not take into account
the information of label correlations, i.e., one label may be
related to another one under certain conditions. For exam-
ple, when a movie has a high description degree on label
action, it is more likely to have a higher description degree
on label adventure than label romance. By considering the
label correlations, LDL can exploit more data information
to improve the performance. Certain studies used label cor-
relations in different ways, e.g., in (Zhou et al. 2016), the
relations of emotions were captured based on the Plutchiks
wheel of emotions (Plutchik 1980); Zhou el al. (2015) con-
sidered the label correlations by seeking Pearson’s correla-
tion coefficients between two labels. Although above algo-
rithms attempted to exploit label correlations, they usually
considered label correlations in a global way by assuming
that the correlations were shared by all instances. However,
in most real-world applications, label correlations are usu-
ally appeared in a local way, where the correlations may be
shared by only a subset of instances instead of all instances.
For example, as shown in Figure 1, we assume flower and
butterfly have a correlation. In image (b), butterfly is less
prominent and thus could be difficult to predict; in this case,
the correlation between flower and butterfly can be helpful
in learning label butterfly since the label flower is relatively
easier to predict in this image. However, for image (c), with
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(a) flower,
butterfly, water,
tree

(b) flower,
grass, cloud,
butterfly

(c) flower,
cabin, tree,
grass

Figure 1: Illustration of non-global label correlations.

the flower clearly presented, this correlation turns to be mis-
leading since butterfly is usually not appeared in a cabin.
Therefore, exploiting such correlations at the global level
will enforce unnecessary or even misleading constraints on
some samples, and may hurt the performance by predicting
some irrelevant labels.

To solve the above problem, we need to consider the label
correlations at a local level. In this paper, we propose a label
distribution learning algorithm by exploiting sample correla-
tions locally (LDL-SCL). We assume that the instances can
be separated into different clusters, and the instances in each
cluster should be as similar as possible, thus the difference
of their label distributions is as small as possible, i.e. the
instances in each cluster should share the same label cor-
relations. To reflect the influence of local samples, inspired
by (Huang and Zhou 2012), we construct a local correlation
vector as the additional features for each instance. Each item
in the local correlation vector represents the impact of each
cluster (local sample) on this instance. With the local corre-
lation vector combined original features, we formulate LDL
into a new optimization problem. Besides, we develop an al-
ternating minimization method based on gradient descent for
the optimization. Experiments on eight datasets show that
our proposed algorithm exhibits a promising performance
when considering local sample correlations.

The main contributions of this study can be summarized
as follows: 1) local sample correlations are encoded as a lo-
cal correlation vector; 2) a novel objective function and a
novel output model of LDL are proposed. The rest of the pa-
per is organized as follows. First, we discuss existing works
related to our proposed approach. Second, we introduce the
details of the proposed LDL-SCL algorithm. Finally, we re-
port the experimental results and conclude the paper.

Related Works

There are three strategies for LDL at present. The first strat-
egy is problem transformation, i.e., transforming the LDL
problem into existing learning paradigms, such as traditional
multi-label learning. The second strategy is algorithm adap-
tation, i.e., extending existing learning algorithms to deal
with label distributions. The third strategy is to design spe-
cialized algorithms according to the characteristics of LDL.
Different from the indirect strategies of problem transforma-
tion and algorithm adaptation, the specialized algorithms di-
rectly match the LDL problem. The related research (Geng
2016) have shown that the third strategy is more effective
than other two strategies.

Generally speaking, a specialized algorithm consists of
three parts, i.e., an output model, an objective function and
an optimization method. For the output model, the spe-
cialized LDL algorithms mainly use the maximum entropy
model (Berger, Pietra, and Pietra 1996), such as the IIS-LLD
algorithm and the BFGS-LLD algorithm (Geng 2016). For
the objective function, it usually chooses some functions
that can measure the similarity between two distributions.
Many divergence functions are adopted in existing research,
such as the Kullback-Leibler (KL) divergence in the IIS-
ALDL algorithm (Geng, Wang, and Xia 2014), the balanced
divergence function defined in the EDL algorithm (Zhou
et al. 2016), Jeffery divergence (Geng and Xia 2014), and
weighted Jeffery divergence (Zhou, Xue, and Geng 2015).
To solve the optimization problem, many methods were also
applied in LDL. IIS-LLD algorithm (Geng 2016) used im-
proved iterative scaling (IIS) method as the optimization
method, while BFGS-LLD (Geng 2016) used BFGS and
EDL (Zhou et al. 2016) used L-BFGS.

Similarly, our proposed LDL-SCL algorithm is also con-
structed from above three aspects. In this paper, the output
model and the objective function are improved by taking into
account the influence of local sample and an alternating so-
lution is utilized for the optimization.

The LDL-SCL Approach

The Framework

Let X = Rq denote the q-dimensional input space and
Y = {y1, y2, · · · , yL} denote the finite set of labels, where
L is the number of labels. Given a training set S =
{(x1, D1), (x2, D2), · · · , (xn, Dn)}, where xi ∈ X is an
instance and Di = {d1i , d2i , · · · , dLi } is the label distribution
associated with xi. Such dji is called the description degree
of yj to xi and satisfies

∑L
j=1 d

j
i = 1. The goal of LDL is

to learn a mapping function f : X → D which can predict
the label distributions for unseen instances.

As discussed in the introduction, we implement local sam-
ple correlations by adding additional features to each in-
stance. To be specific, we construct a local correlation vector
ci for each instance xi to reflect the influence of local sam-
ples, and expand the original feature representation with the
vector. With the previous discussion, it is obvious that the
length of the local correlation vector c is equal to the num-
ber of clusters. Generally, similar instances share the similar
label correlations, which means similar instances will have
similar c. Notice that we measure the similarity between in-
stances in the label space instead of the feature space, be-
cause (1) instances with similar label distributions usually
share similar label correlations; (2) the label space is usu-
ally much smaller than the feature space, resulting in reduc-
ing the running time. Considering both original features and
local sample correlations simultaneously, we obtain the fol-
lowing LDL output model based on the maximum entropy
model:

p(yl|xi; θ, w, c) =
1

Zi
exp(

∑

k

θl,kx
k
i +

∑

t

wl,tc
t
i), (1)
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where Zi =
∑

l exp(
∑

k θl,kx
k
i +

∑
t wl,tc

t
i) is a normal-

ization term to satisfy the sum of all label description de-
grees of an instance equals 1. To simplify the formula, we
use p(yl|xi) to represent p(yl|xi; θ, w, c). The first term in
the exponent part illustrates the information of original fea-
tures while the second term illustrates the information of
additional features, i.e., the local sample correlations. θ is
the original feature coefficient matrix, in which θl,k is the
element with respect to the k-th original feature and the l-
th label. xk

i is the k-th original feature of instance xi. w is
the additional feature coefficient matrix, in which wl,t is the
element with repect to the t-th additional feature and the l-
th label. cti is the t-th element of local correlation vector ci.
Aiming to incorporate global discrimination fitting and local
correlation influence into a unified framework, we optimize
both θ, w, c by minimizing the following objective function:

min
θ,w,c

V (θ, w, c)+λ1Ω1(θ)+λ2Ω2(w)+λ3Z(θ, w, c). (2)

V is the loss function defined on the training data. Ω1 and Ω2

are two penalty terms to control the complexity of the output
model. Z is a penalty term to enhance the local characteristic
of the correlation vector and λ1, λ2 and λ3 are regularization
parameters.

With the previous discussion, the goal of LDL is to make
the predicted distribution and the true distribution as simi-
lar as possible, therefore the loss function should be a func-
tion which can measure the similarity of two distributions.
Cha (2007) analyzed many functions that measure the sim-
ilarity between two distributions, such as K-L divergence,
Jeffery divergence, K divergence, etc. Here, we use K-L di-
vergence as the loss function defined by

DJ(Qa‖Qb) =
∑

j

Qj
a ln

Qj
a

Qj
b

, (3)

where Qj
a and Qj

b are the j-th element of the two distribu-
tions Qa and Qb, respectively. Specifically, in this paper, the
expression for V based on K-L divergence is defined as fol-
lows:

V (θ, w, c) =
n∑

i=1

L∑

l=1

(dli ln(
dli

p(yl|xi)
)), (4)

where dli and p(yl|xi) denote the true description degree and
the predicted description degree of label yl to instance xi,
respectively. For the second and the third terms of Eq. (2),
we utilize the F-norm of matrix to implement as follows:

Ω1(θ) = ‖θ‖2F , (5)

Ω2(w) = ‖w‖2F . (6)

The fourth term of Eq. (2) is utilized to enhance the
local characteristic of the correlation vector. We assume
that the training data can be divided into m clusters
{G1, G2, · · · , Gm}. Each cluster denotes a local sample, in
which all instances share a same label correlation. For easy
implementation, we use k-means (Kanungo et al. 2002) as
the clustering method. In addition, the Euclidean distance of

a cluster center and an instance is used to measure the corre-
lation between the local sample and the instance. We use the
following formula to obtain the label distribution of a cluster
center:

pj =
1

|Gj |
∑

xk∈Gj

Dk, (7)

where |Gj | is the number of instances in the local sample
Gj . Then, given an instance xi, we define cji to measure the
local influence of Gj on xi. The more similar Di and pj ,
the more likely that xi shares the same correlation with in-
stances in Gj , suggesting that the smaller the value of cji , the
smaller the impact of the local sample Gj on instance xi. We
construct a local correlation vector ci = [c1i , c

2
i , · · · , cmi ] for

each instance xi, and define the penalty term on the vector
as follows:

Z(θ, w, c) =
n∑

i=1

m∑

j=1

cji‖p(y|xi)− pj‖22, (8)

where p(y|xi) is the predicted label distribution of instance
xi. By substituting Eqs. (4), (5), (6) and (8) into Eq. (2), we
can obtain the following optimization problem:

min
θ,w,c

n∑

i=1

L∑

l=1

(dli ln(
dli

p(yl|xi)
)) + λ1‖θ‖2F + λ2‖w‖2F

+ λ3

n∑

i=1

m∑

j=1

cji‖p(y|xi)− pj‖22 s.t. cji ≥ 0,

(9)

cji measures the local influence of Gj on xi, thus, it is con-
strained to be not less than 0.

Learning by Alternating Minimization

Eq. (9) is an optimization problem with inequality con-
straints, therefore we utilize an interior point method to con-
vert it into an unconstrained problem:

min
θ,w,c

n∑

i=1

L∑

l=1

(dli ln(
dli

p(yl|xi)
)) + λ1‖θ‖2F + λ2‖w‖2F

+ λ3

n∑

i=1

m∑

j=1

cji‖p(y|xi)− pj‖22 + μ
n∑

i=1

m∑

j=1

1

cji
,

(10)
where μ is the penalty factor and

∑n
i=1

∑m
j=1

1

cji
is the bar-

rier function.
Eq. (10) can be solved by alternating minimization, i.e.,

optimizing one of the variables with the others fixed in each
iteration. Specifically, we update one of the variables in
{θ, w, c} with gradient descent, and leave the others fixed.

When we fix w and c to solve θ, Eq. (10) can be reduced
to

min
θ

n∑

i=1

L∑

l=1

(dli ln(
dli

p(yl|xi)
)) + λ1‖θ‖2F

+ λ3

n∑

i=1

m∑

j=1

cji‖p(y|xi)− pj‖22.
(11)
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We solve it with gradient decent and the gradient of the ob-
jective w.r.t. θ is

�θl,k =−
n∑

i=1

dlix
k
i +

n∑

i=1

exp(xi·θ·l + ci·w·l)xk
i∑

l′ exp(xi·θ·l′ + ci·w·l′ )

+ 2λ3

n∑

i=1

m∑

j=1

cji (p(yl|xi)− pj,l)
∂p(yl|xi)

∂θl,k

+ 2λ1θl,k,
(12)

where
∂p(yl|xi)

∂θl,k
=

exp(xi·θ·l+ci·w·l)xk
i

∑
l
′ �=l

exp(xi·θ·l′ +ci·w·l′ )
(
∑

l
′ exp(xi·θ·l′ +ci·w·l′ ))

2 , xi·
and ci· are row vectors, θ·l and w·l are column vectors, and
pj,l is the l-th element of cluster center pj .

When we fix θ and c to solve w, Eq. (10) can be reduced
to

min
w

n∑

i=1

L∑

l=1

(dli ln(
dli

p(yl|xi)
)) + λ2‖w‖2F

+ λ3

n∑

i=1

m∑

j=1

cji‖p(y|xi)− pj‖22.
(13)

Again, we use gradient descent and the gradient of the
objective w.r.t. w is

�wl,t =−
n∑

i=1

dlic
t
i +

n∑

i=1

exp(xi·θ·l + ci·w·l)cti∑
l′ exp(xi·θ·l′ + ci·w·l′ )

+ 2λ3

n∑

i=1

m∑

j=1

cji (p(yl|xi)− pj,l)
∂p(yl|xi)

∂wl,t

+ 2λ2wl,t,
(14)

where
∂p(yl|xi)
∂wl,t

=
exp(xi·θ·l+ci·w·l)cti

∑
l
′ �=l

exp(xi·θ·l′ +ci·w·l′ )
(
∑

l
′ exp(xi·θ·l′ +ci·w·l′ ))

2 .
When we fix θ and w to solve c, Eq. (10) can be reduced

to

min
c

n∑

i=1

L∑

l=1

(dli ln(
dli

p(yl|xi)
)) + μ

n∑

i=1

m∑

j=1

1

cji

+ λ3

n∑

i=1

m∑

j=1

cji‖p(y|xi)− pj‖22.
(15)

Similarly, we use gradient descent and the gradient of the
objective w.r.t. c is

�cji =−
L∑

l=1

dliwl,j +

∑
l(exp(xi·θ·l + ci·w·l)wl,j)∑

l exp(xi·θ·l + ci·w·l)

+ 2λ3c
j
i

∑

l

(p(yl|xi)− pj,l)
∂p(yl|xi)

∂cji

+ λ3‖p(y|xi)− pj‖22 − μ
1

cji
2 ,

(16)

where
∂p(yl|xi)

∂cji
= − exp(xi·θ·l+ci·w·l)

∑
l
′ �=l

exp((xi·θ·l+ci·w·l′ )wl
′
,j
)

(
∑

l
′ exp(xi·θ·l+ci·w·l′ ))

2 .

Algorithm 1: The LDL-SCL algorithm
Input: training set {X,D}, parameters λ1, λ2, λ3

and m.
Output: the label distribution Dt.

1 Train:
2 initialize θ, w, c and μ;
3 repeat
4 update θ according to Eq. (12);
5 update w according to Eq. (14);
6 update c according to Eq. (16);
7 μ ← βμ, 0 < β < 1;
8 until convergence or maximum number of iterations;
9 for j = 1 to m do

10 train a linear regression model Rj ;
11 end
12 Test:
13 for j = 1 to m do

14 predict cjt using Rj ;
15 end
16 return the label distribution Dt according to Eq. (1).

Table 1: Number of labels in eight datasets.

Dateset alpha cdc elu diau heat spo cold dtt
#Samples 2465 2465 2465 2465 2465 2465 2465 2465
#Features 24 24 24 24 24 24 24 24
#Labels 18 15 14 7 6 6 4 4

Notice that given a test instance xt, its local correlation
vector ct is unknown. We thus train m regression models
using the original features and the local correlation matrix
of training instances. Then, in testing phase, the local cor-
relation vector of the test instance can be obtained from the
outputs of regression models.

The pseudo code of LDL-SCL is presented in Algo-
rithm 1. The coefficient matrices θ and w are initialized with
all elements equal 1. The local correlation matrix c is initial-
ized with the result of k-means clustering on the label space.
In detail, cki is assigned 1 if xi is in the k-th cluster and 0
otherwise. Then, we use an alternating solution to update
the variables θ, w and c. Since Eq. (9) is a convex function,
it will converge to a global minimum. After that, m regres-
sion models are trained with the original features as inputs
and the local correlation matrix as outputs. Given a test in-
stance xt, the local correlation vector ct = [c1t , c

2
t , · · · , cmt ]

is obtained with the m regression models. Notice that the
regression models can be trained with a low computational
cost because usual the cluster number m is not large. Finally,
the label distribution Dt is obtained by Eq. (1).

Experiments

Datasets

The datasets used in the experiments were collected from bi-
ological experiments on the budding yeast Saccharomyces
cerevisiae (Eisen et al. 1998). There are 2465 yeast genes in
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Table 2: Evaluation measures for LDL algorithms.

Name Formula
D

is
ta

nc
e Euclidean↓ Dis1 =

√
c∑

j=1
(Pj − Qj)2

Sφrensen↓ Dis2 =

c∑
j=1

|Pj−Qj |

c∑
j=1

|Pj+Qj |

Squared χ2 ↓ Dis3 =
c∑

j=1

(Pj−Qj)
2

Pj+Qj

Kullback-Leibler(KL)↓ Dis4 =
c∑

j=1
Pj ln

Pj
Qj

Si
m

ila
ri

ty Intersection↑ Sim1 =
c∑

j=1
min(Pj , Qj)

Fidelity↑ Sim2 =
c∑

j=1

√
PjQj

total, each of that is represented by an associated phyloge-
netic profile vector of length 24. The labels correspond to
the discrete time points in different biological experiments.
The gene expression level (after normalization) at each time
point provides a natural measure of the description degree of
the corresponding label. There are ten datasets in total in this
series, and we just choose the datasets with the number of la-
bels greater than or equal to 4 since the datasets with fewer
labels are lack of the information of label correlations. The
details of the eight datasets are summarized in Table 1.

Evaluation Measures

In this paper, six measures are chosen as the evaluation mea-
sures for the LDL algorithms. The names and formulas of
the six measures are presented in Table 2, where Pj and
Qj are the j-th element of the ground-truth label distribu-
tion and the predicted distribution, respectively. For the for-
mer four distance measures, “↓” indicates “the smaller the
better”. For the latter two similarity measures, “↑” indicates
“the larger the better”.

Experimental Setting

The LDL-SCL algorithm proposed in this paper is compared
with seven state-of-the-art algorithms, i.e., PT-Bayes (Geng
and Ji 2014), PT-SVM (Geng, Wang, and Xia 2014), AA-
kNN (Geng, Smith-Miles, and Zhou 2010), AA-BP (Geng,
Yin, and Zhou 2013), IIS-LLD (Geng, Smith-Miles, and
Zhou 2010), BFGS-LLD (Geng, Yin, and Zhou 2013) and
EDL (Zhou, Xue, and Geng 2015). The parameter settings
of all algorithms are as follows. For PT-Bayes, maximum
likelihood estimation is used to estimate the Gaussian class-
conditional probability density functions. PT-SVM is imple-
mented as the “C-SVC” type in LIBSVM using the RBF ker-
nel with the parameters C = 1.0 and Gamma = 0.01. The
number of neighbors k in AA-kNN is set to 5. The number of
hidden-layer neurons for AA-BP is set to 60. For LDL-SCL,
the parameters in Eq. (9) are set to: λ1 = 0.001, λ2 = 0.001
and λ3 = 0.001.

Experimental Results

For each dataset, 10 times 10-fold cross-validation are em-
ployed and average results are recorded. The experimental

results are shown in Table 3.
The experimental results are presented in the form of

“mean±std (rank)”. Ranking refers to the prediction effect
of all LDL algorithms in metrics. The smaller the value the
better the performance. Furthermore, the best performance
among the 8 comparing algorithms is shown in boldface.
The 8 LDL algorithms include two algorithms obtained from
problem transformation (PT-Bayes and PT-SVM), two al-
gorithms obtained from algorithm adaptation (AA-kNN and
AA-BP) and four specialized algorithms (IIS-LLD, BFGS-
LLD, EDL and LDL-SCL). The LDL-SCL algorithm is our
proposed approach in this paper.

By analyzing the experimental results shown in Table 3, in
summary, the specialized LDL algorithms generally perform
better than those algorithms obtained from problem transfor-
mation and algorithm adaptation. Furthermore, the proposed
LDL-SCL algorithm has the best performance on datasets
alpha, cdc, elu, heat and cold, while has the sub-optimum
performance on datasets diau, spo and dtt. The result demon-
strates the effectiveness of LDL-SCL. It is worth mentioning
that, on all datasets, the LDL-SCL algorithm performs bet-
ter than the EDL algorithm which exploits label correlations
globally.

Influence of Parameters

In order to examine the robustness of the proposed algo-
rithm, we also analyze the influence of parameters in the ex-
periment, including λ1, λ2, λ3 in Eq. (9) and the number of
clusters m. We run LDL-SCL with λ1 which is set to 0.0001,
0.001, 0.01, 0.1, 1, 10, 100, 1000 and so does with λ2 and λ3.
In addition, we run LDL-SCL with m varying from 0 to 14
with step size of 2. Due to the page limit, we only present the
experimental results on dataset cold with 6 evaluation mea-
sures. The results are shown in Figure 2 and Figure 3. Notice
that, for criteria Euclidean, Sφrensen, Squared χ2 and KL,
the smaller the value, the better the performance; but for cri-
teria Intersection and Fidelity, the larger the value, the better
the performance. As for parameters λ1, λ2 and λ3 shown in
Figure 2, we can find that, the performance gets worse when
three parameters take large values since the objective func-
tion is not dominated by the first term. Besides, we can see
that the influence of λ2 is smaller than the influence of λ1

and λ3. As for the number of clusters m shown in Figure 3,
it has the worst result when m is equal to 0, which means the
influence of local samples is ignored and the result is simi-
lar to the results of IIS-LLD and BFGS-LLD. Furthermore,
when m is less than 6, the performance of LDL-SCL rises
steadily, otherwise, the performance rises slowly and tends
to be stable.

Convergency

In order to investigate the convergence of the alternating
minimization algorithm to solve LDL-SCL model, we plot
the value of objective function Eq. (10) on two datasets (al-
pha and cold) in Figure 4. It can be observed that the objec-
tive function value decreases with respect to iterations, and
the value approaches to be a fixed value after a few iterations
(about 10 iterations for alpha and cold).
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Table 3: Comparison results of different label distribution algorithms on the eight datasets (mean±std(rank)).

data algorithm Euclidean↓ Sφrensen↓ Squared χ2 ↓ KL↓ Intersection↑ Fidelity↑

alpha

LDL-SCL .0229±.0003(1) .0372±.0005(1) .0054±.0001(1) .0054±.0001(1) .9627±.0005(1) .9986±.0001(1)
PT-Bayes .2298±.0124(8) .3485±.0154(8) .3879±.0277(8) .5607±.0710(8) .6515±.0154(8) .8777±.0100(8)
PT-SVM .0276±.0006(5) .0445±0009(5) .0071±.0003(5) .0071±.0003(5) .9565±.0009(5) .9981±.0001(5)
AA-kNN .0279±.0006(6) .0449±.0012(6) .0073±.0003(6) .0074±.0004(7) .9561±.0012(6) .9980±.0001(6)
AA-BP .0871±.0070(7) .1475±.0131(7) .1399±.0501(7) .0673±.0058(6) .8538±.0117(7) .9839±.0017(7)
IIS-LLD .0269±.0004(4) .0429±.0012(3) .0069±.0004(4) .0069±.0004(4) .9571±.0012(3) .9983±.0011(4)

BFGS-LLD .0251±.0004(2) .0408±.0011(2) .0063±.0008(2) .0063±.0004(2) .9574±.0009(2) .9985±.0011(2)
EDL .0260±.0011(3) .0429±.0022(4) .0067±.0006(3) .0068±.0006(3) .9570±.0022(4) .9983±.0002(3)

cdc

LDL-SCL .0274±.0008(1) .0417±.0012(1) .0068±.0005(1) .0067±.0004(1) .9582±.0013(1) .9983±.0001(1)
PT-Baye .2399±.0103(8) .3455±.0111(8) .3853±.0210(8) .5374±.0503(8) .6545±.0111(8) .8778±.0075(8)
PT-SVM .0298±.0007(5) .0458±.0012(5) .0077±.0004(5) .0076±.0004(5) .9554±.0012(5) .9980±.0001(5.5)
AA-kNN .0301±.0009(6) .0462±.0013(6) .0080±.0004(6) .0079±.0004(6) .9538±.0013(6) .9980±.0001(5.5)
AA-BP .0769±.0081(7) .1192±.0109(7) .0842±.0281(7) .0511±.0121(7) .8829±.0134(7) .9879±.0051(7)
IIS-LLD .0290±.0010(4) .0445±.0015(3) .0073±.0005(4) .0072±.0005(4) .9556±.0015(4) .9982±.0012(4)

BFGS-LLD .0284±.0011(3) .0449±.0016(4) .0070±.0004(2) .0070±.0005(2) .9558±.0016(3) .9983±.0011(2)
EDL .0283±.0006(2) .0429±.0008(2) .0072±.0004(3) .0072±.0004(3) .9571±.0008(2) .9982±.0001(3)

elu

LDL-SCL .0278±.0005(1) .0412±.0005(1) .0063±.0003(1) .0062±.0003(1) .9587±.0005(1) .9984±.0001(1)
PT-Bayes .2588±.0203(8) .3558±.0198(8) .4081±.0408(8) .6062±.1030(8) .6442±.0198(8) .8689±.0156(8)
PT-SVM .0293±.0008(3) .0438±.0012(3) .0068±.0005(3) .0068±.0005(3) .9562±.0012(3) .9983±.0002(3)
AA-kNN .0297±.0010(4) .0443±.0014(4) .0071±.0006(5) .0071±.0006(5) .9557±.0014(4) .9982±.0002(4)
AA-BP .0733±.0037(7) .1100±.0048(7) .0731±.0026(7) .0481±.0061(7) .8891±.0064(7) .9890±.0025(7)
IIS-LLD .0307±.0009(5) .0472±.0014(5) .0071±.0004(4) .0071±.0004(4) .9528±.0015(6) .9982±.0035(5)

BFGS-LLD .0308±.0009(6) .0475±.0012(6) .0075±.0004(56) .0073±.0003(6) .9552±.0017(5) .9979±.0009(6)
EDL .0289±.0005(2) .0431±.0008(2) .0067±.0003(2) .0067±.0003(2) .9569±.0007(2) .9983±.0001(2)

diau

LDL-SCL .0531±.0008(2) .0582±.0011(2) .0125±.0005(2) .0124±.0005(2) .9417±.0011(2) .9968±.0001(2)
PT-Bayes .4027±.0183(8) .4177±.0170(8) .5280±.0281(8) .8512±.0772(8) .5823±.0170(8) .8230±.0107(8)
PT-SVM .0628±.0037(6) .0686±.0041(6) .0169±.0018(6) .0167±.0017(6) .9314±.0041(6) .9957±.0004(6)
AA-KNN .0567±.0019(4) .0622±.0022(4) .0145±.0011(4) .0145±.0010(4) .9378±.0022(4) .9963±.0003(4)
AA-BP .0802±.0051(7) .0863±.0059(7) .0276±.0013(7) .0291±.0069(7) .9142±.0067(7) .9929±.0031(7)
IIS-LLD .0539±.0031(3) .0593±.0032(3) .0144±.0014(3) .0141±.0013(3) .9407±.0033(3) .9964±.0036(3)

BFGS-LLD .0444±.0022(1) .0476±.0023(1) .0089±.0008(1) .0083±.0008(1) .9513±.0027(1) .9978±.0031(1)
EDL .0597±.0010(5) .0653±.0010(5) .0158±.0005(5) .0155±.0005(5) .9347±.0010(5) .9960±.0002(5)

heat

LDL-SCL .0592±.0016(1) .0597±.0014(1) .0127±.0009(1) .0126±.0009(1) .9402±.0014(1) .9967±.0003(1)
PT-Bayes .4500±.0231(8) .4354±.0193(8) .5450±.0361(8) .8678±.1198(8) .5646±.0193(8) .8180±.0131(8)
PT-SVM .0625±.0023(3) .0627±.0022(2) .0141±.0010(2.5) .0141±.0010(2.5) .9373±.0022(2) .9964±.0003(2.5)
AA-kNN .0624±.0020(2) .0632±.0018(3) .0141±.0010(2.5) .0141±.0010(2.5) .9368±.0018(3) .9964±.0003(2.5)
AA-BP .0793±.0068(7) .0822±.0071(7) .0235±.0047(7) .0246±.0053(7) .9198±.0061(7) .9937±.0028(7)
IIS-LLD .0703±.0036(5) .0692±.0033(5) .0182±.0016(5) .0182±.0016(5) .9309±.0033(5) .9954±.0042(6)

BFGS-LLD .0728±.0031(6) .0791±.0029(6) .0188±.0016(6) .0186±.0015(6) .9304±.0034(6) .9961±.0048(5)
EDL .0629±.0016(4) .0633±.0017(4) .0143±.0008(4) .0143±.0008(4) .9366±.0017(4) .9963±.0003(4)

spo

LDL-SCL .0809±.0019(1) .0836±.0018(2) .0243±.0010(2) .0242±.0010(2) .9164±.0019(2) .9938±.0002(2)
PT-Bayes .4038±.0162(8) .4030±.0134(8) .4972±.0246(8) .7172±.0840(8) .5971±..0134(8) .8342±.0095(8)
PT-SVM .0878±.0019(5) .0893±.0022(5) .0280±.0015(5) .0284±.0015(5) .9107±.0022(5) .9929±.0004(5)
AA-kNN .0879±.0030(6) .0899±.0024(6) .0286±.0020(6) .0286±.0002(6) .9096±.0034(6) .9927±.0005(6)
AA-BP .0979±.0041(7) .1012±.0038(7) .0344±.0038(7) .0359±.0039(7) .8982±.0037(7) .9906±.0010(7)
IIS-LLD .0863±.0041(4) .0861±.0036(3) .0251±.0036(3) .0252±.0022(3) .9139±.0036(3) .9937±.0005(3)

BFGS-LLD .0819±.0045(2) .0833±.0038(1) .0229±.0019(1) .0226±.0021(1) .9168±.0039(1) .9951±.0007(1)
EDL .0843±.0029(3) .0872±.0029(4) .0268±.0015(4) .0269±.0016(4) .9128±.0028(4) .9932±.0004(4)

cold

LDL-SCL .0675±.0003(1) .0585±.0013(1) .0121±.0006(1) .0121±.0006(1) .9414±.0013(1) .9969±.0001(1)
PT-Bayes .5252±.0224(8) .4479±.0189(8) .5873±.0352(8) .9089±.1042(8) .5521±.0189(8) .7991±.0134(8)
PT-SVM .0753±.0080(4) .0654±.0069(5) .0147±.0033(4) .0146±.0033(4) .9346±.0069(5) .9963±.0008(4)
AA-kNN .0724±.0027(2) .0630±.0024(2) .0136±.0011(2) .0136±.0011(2) .9370±.0024(2) .9966±.0003(3)
AA-BP .0838±.0045(7) .0710±.0027(7) .0178±.0011(7) .0163±.0030(7) .9328±.0029(7) .9952±.0017(7)
IIS-LLD .0767±.0004(5) .0653±.0034(4) .0157±.0015(6) .0155±.0015(6) .9347±.0034(4) .9960±.0039(6)

BFGS-LLD .0745±.0004(3) .0641±.0035(3) .0139±.0013(3) .0143±.0015(3) .9348±.0035(3) .9968±.0036(2)
EDL .0771±.0018(6) .0668±.0016(6) .0154±.0009(5) .0153±.0009(5) .9332±.0016(6) .9961±.0003(5)

dtt

LDL-SCL .0474±.0017(1) .0411±.0015(2) .0059±.0004(2) .0058±.0005(2) .9587±.0015(1) .9985±.0002(2)
PT-Bayes .4879±.0242(8) .4156±.0192(8) .5416±.0438(8) .9069±.1580(8) .5844±.0192(8) .8113±.0186(8)
PT-SVM .0516±.0029(5) .0447±.0024(5) .0071±.0009(6) .0071±.0009(6) .9553±.0024(5) .9982±.0003(5.5)
AA-kNN .0512±.0019(4) .0443±.0017(4) .0071±.0007(5) .0070±.0007(5) .9557±.0017(4) .9982±.0002(4)
AA-BP .0622±.0032(7) .0531±.0029(7) .0097±.0012(7) .0122±.0037(7) .9465±.0024(7) .9969±.0011(7)
IIS-LLD .0535±.0023(6) .0480±.0023(6) .0068±.0005(3) .0068±.0005(3) .9520±.0023(6) .9983±.0013(3)

BFGS-LLD .0495±.0019(2) .0409±.0017(1) .0058±.0005(1) .0054±.0004(1) .9584±.0023(2) .9989±.0010(1)
EDL .0508±.0022(3) .0440±.0018(3) .0069±.0007(4) .0068±.0008(4) .9560±.0018(3) .9982±.0003(5.5)

Conclusion

Label distribution learning is a generalization form of multi-
label learning, which can deal with more label ambiguity
problems. To improve the effectiveness of the approach, cer-
tain existing LDL methods exploited the label correlations in

a global way. However, it is more reasonable to exploit la-
bel correlations at a local level since different instances may
share different label correlations in most real-world appli-
cations. In this paper, we derive a local correlation vector
for each instance to encode the influence of local samples

4561



(a) Euclidean (b) Sφrensen
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(e) Intersection (f) Fidelity

Figure 2: Influence of λ1, λ2 and λ3 with 6 measures on
dataset cold.

(a) Euclidean (b) Sφrensen

(c) Squared χ2 (d) KL

(e) Intersection (f) Fidelity

Figure 3: Influence of m with 6 measures on dataset cold.

(a) alpha (b) cold

Figure 4: Convergence of LDL-SCL on alpha and cold.

and propose the LDL-SCL algorithm. The experimental re-
sults demonstrate that LDL-SCL can effectively deal with
the label distribution problems and perform remarkable bet-
ter than the state-of-the-art LDL methods. In future work,
we will try other measures to reflect the influence of local
samples and design related optimization methods with faster
convergence speed.
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