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Abstract

The large proportion of irrelevant or noisy features in real-
life high-dimensional data presents a significant challenge
to subspace/feature selection-based high-dimensional out-
lier detection (a.k.a. outlier scoring) methods. These meth-
ods often perform the two dependent tasks: relevant fea-
ture subset search and outlier scoring independently, conse-
quently retaining features/subspaces irrelevant to the scoring
method and downgrading the detection performance. This pa-
per introduces a novel sequential ensemble-based framework
SEMSE and its instance CINFO to address this issue. SEMSE
learns the sequential ensembles to mutually refine feature se-
lection and outlier scoring by iterative sparse modeling with
outlier scores as the pseudo target feature. CINFO instanti-
ates SEMSE by using three successive recurrent components
to build such sequential ensembles. Given outlier scores out-
put by an existing outlier scoring method on a feature sub-
set, CINFO first defines a Cantelli’s inequality-based out-
lier thresholding function to select outlier candidates with
a false positive upper bound. It then performs lasso-based
sparse regression by treating the outlier scores as the target
feature and the original features as predictors on the out-
lier candidate set to obtain a feature subset that is tailored
for the outlier scoring method. Our experiments show that
two different outlier scoring methods enabled by CINFO (i)
perform significantly better on 11 real-life high-dimensional
data sets, and (ii) have much better resilience to noisy fea-
tures, compared to their bare versions and three state-of-the-
art competitors. The source code of CINFO is available at
https://sites.google.com/site/gspangsite/sourcecode.

Introduction

High-dimensional data is ubiquitous in broad real-life ap-
plications, e.g., thousands of molecular or gene expression
features in bioinformatics, and millions of trading behaviors
in stock market surveillance. Identifying outliers that devi-
ate significantly from the majority of data objects can pro-
vide important insights into these applications. For exam-
ple, the detection of outlying gene expressions can facilitate
early treatment of diseases (Aggarwal 2017); and the recog-
nition of abnormal trading can signal abusive and manipula-
tive trading practices (Cao, Ou, and Yu 2012) .
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However, identifying outliers in high-dimensional nu-
meric data is a challenging task. Specifically, high-
dimensional data poses the two major challenges below. (i)
It often contains a large percentage of irrelevant features.
The irrelevant features mask outliers as normal objects and
thus they are ‘noise’ to outlier detection (a.k.a. outlier scor-
ing). Irrelevant features also form a major cause of the ‘curse
of dimensionality’ (Zimek, Schubert, and Kriegel 2012). (ii)
The number of candidate feature subsets increases exponen-
tially as the dimensionality increases, leading to great diffi-
culty in a complete search of the feature space.

To detect outliers in the above high-dimensional data, sub-
space/feature selection-based methods (Lazarevic and Ku-
mar 2005; Keller, Muller, and Bohm 2012; Noto, Brodley,
and Slonim 2012; Paulheim and Meusel 2015) are the major
solutions. They search for relevant feature subset(s) to apply
off-the-shell outlier detection methods on these relevant fea-
ture subset(s) to alleviate the negative effect brought by ir-
relevant features. However, these methods often separate the
subspace search from the subsequent outlier scoring meth-
ods. Consequently, they may retain feature subsets that are
irrelevant to the scoring methods and the resultant detection
performance of the outlier scoring methods is largely biased.
Due to the unsupervised nature of outlier detection and the
huge search space, it is challenging to involve the outlier
scoring methods when searching the feature subset(s).

In this paper, we introduce a novel SparsE Modeling-
based Sequential Ensemble learning (SEMSE for short)
framework for outlier detection in high-dimensional nu-
meric data. Specifically, SEMSE first uses a given outlier
scoring method to compute the outlier scores of data objects,
and defines an outlier thresholding function to identify a set
of outlier candidates. SEMSE then performs sparse regres-
sion on the outlier candidate set by treating the outlier scores
as a target feature and the original features as predictors
to select the most relevant features w.r.t. the outlier scores.
This process is referred to as fragmentary sparse modeling
to highlight that the sparse regression is built on a small data
subset (i.e., the outlier candidate set) rather than the full data
set. SEMSE finally applies the same given outlier detector to
the data with the selected features to produce a refined out-
lier scoring. The above three steps are iteratively performed
to produce a set of outlier scores until the loss function of
the sparse regression does not decrease.



Essentially, this learning procedure integrates the two cor-
related tasks: feature selection and outlier detection, and iter-
atively and mutually refines them, resulting in a set of depen-
dent outlier detection (or feature selection) models which
are commonly known as sequential ensemble (Freund and
Schapire 1995). This enables SEMSE to produce feature
subsets that are tailored for the outlier scoring method. Sin-
gle sequential ensemble may perform unstably in data sets
with many noisy features. We therefore have a boostrap ag-
gregating (i.e., bagging) (Breiman 1996) of the sequential
ensembles (i.e., an ensemble of sequential ensembles) to fur-
ther enhance its capability and stability.

We further implement SEMSE by defining a Cantelli’s
INequality-based Fragmentary lassO, termed CINFO, to
build the sequential ensembles. Specifically, CINFO first de-
fines a Cantelli’s inequality (Dubhashi and Panconesi 2009)
based outlier thresholding function to select the outlier can-
didates, and further applies lasso-based fragmentary sparse
regression on the outlier candidate set to obtain the rele-
vant feature subset. Two diverse subsampling-based outlier
scoring methods, namely LeSiNN (Pang, Ting, and Albrecht
2015) and iForest (Liu, Ting, and Zhou 2012) that respec-
tively work on the full space and random subspaces of the
input data, are respectively used to obtain the outlier scores
to demonstrate the flexibility of SEMSE.

Accordingly, this paper makes two major contributions:

1. We introduce a novel sequential ensemble learning frame-
work SEMSE for identifying outliers in high-dimensional
numeric data. SEMSE defines a recurrent fragmentary
sparse modeling process to build the sequential ensem-
bles, in which feature selection and outlier scoring are it-
eratively and mutually refined. It results in more reliable
outlier scores on data with many noisy features, compared
to existing subspace/feature selection-based solutions.

2. SEMSE is further instantiated to CINFO, a method
that introduces a Cantelli’s inequality-based fragmentary
lasso to learn the sequential ensembles. The Cantelli’s in-
equality provides a false positive upper bound for outlier
thresholding with no specific probability distribution as-
sumption on the outlier scores, which well guarantees the
refinement of feature selection and outlier scoring in the
later stage of sequential ensembles.

A series of empirical results shows that (i) the CINFO-
enabled LeSiNN and iForest perform significantly better
than three state-of-the-art competitors and the bare versions
of LeSiNN and iForest on 11 real-world high-dimensional
data sets; (ii) CINFO has much better resilience to noisy fea-
tures than its competitors; and (iii) CINFO has linear time
complexity w.r.t. data size and data dimensionality.

Related Work
High-dimensional Outlier Detection Methods

Subspace-based methods (Aggarwal and Yu 2005; Keller,
Muller, and Bohm 2012; Dang et al. 2014) are popular solu-
tions for high-dimensional outlier detection. They search for
a set of feature subspaces and use them to avoid the curse
of dimensionality, but the subspace search is often costly as
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it requires extensive search in identifying the feature sub-
spaces in high-dimensional data. Random subspace genera-
tion is a widely used solution to address this efficiency issue
(Lazarevic and Kumar 2005; Nguyen, Ang, and Gopalkr-
ishnan 2010), but it may include many noisy features into
subspaces while omit relevant features in high-dimensional
data with dominant noisy features.

Alternatively, feature selection-based methods aim to
identify a single optimal feature subset that reveals the ex-
ceptional behaviors of all outliers. Although feature selec-
tion has shown effective in enabling clustering and classifi-
cation for decades (Li et al. 2016), there exists limited work
on outlier detection because it is challenging to (i) define
feature relevance to outlier detection given its unsupervised
nature and (ii) find a single feature subset enabling detection
of all outliers. The method we denote it as RegFS in (Noto,
Brodley, and Slonim 2012; Paulheim and Meusel 2015) de-
fines the relevance of features by their correlation to the
other features. The assumption is that outliers correspond to
the violation of the dependency among normal objects and
independent features are not useful in capturing such depen-
dency/violation (Aggarwal 2017). This assumption may be
invalid since some features can be strongly relevant to out-
lier detection but not correlated to other features.

One shared problem for the subspace/feature selection-
based methods is that they search feature subset(s) inde-
pendently from the subsequent outlier detection methods,
and they may consequently result in feature subset(s) that
are suboptimal to the outlier detectors. Other related work
(Angiulli and Pizzuti 2005; Ghoting, Parthasarathy, and
Otey 2006; Kriegel and Zimek 2008; Li, Shao, and Fu 2015)
dedicates to more outlier-sensitive outlierness measures or
data representation. Since they work on the full space, their
performance may be still largely biased by noisy features.

There have been some subspace/feature selection methods
(Angiulli, Fassetti, and Palopoli 2009; Akoglu et al. 2012;
Pang et al. 2016; 2017a; Pang, Cao, and Chen 2016; Pang et
al. 2017b) for categorical data. We have tried popular unsu-
pervised discretization methods like equal-width and equal-
frequency to adopt these methods to numeric data, but they
performed poorly. Discretization methods need to be spe-
cially designed for outlier detection and need further careful
development. We therefore focus on comparing CINFO with
numeric data-based methods in our experiments.

Outlier Ensemble Learning

Unlike the well-established ensemble methods for cluster-
ing and classification, outlier ensemble learning attracts
wide attention only in recent years (Aggarwal 2013; Zimek,
Campello, and Sander 2013). Most existing outlier ensem-
bles (Lazarevic and Kumar 2005; Liu, Ting, and Zhou 2012;
Sugiyama and Borgwardt 2013; Pang, Ting, and Albrecht
2015) are in the parallel ensemble learning paradigm that
constructs a set of independent base models. In contrast, se-
quential ensembles construct dependent base models by us-
ing the results of the current base model to refine the next
one. It is very difficult to construct sequential ensembles for
outlier detection as class labels are often assumed to be un-
available. As far as we know, the method called CARE in



(Rayana, Zhong, and Akoglu 2016) is the only work of this
kind, which intends to reduce the masking and swamping
effects (Hadi and Simonoff 1993) by iteratively removing
potential outliers to refine the base models. This does not
help in addressing the aforementioned issues in the high-
dimensional space. SEMSE is fundamentally different from
CARE, as we explore to iteratively eliminate noisy features
to mutually refine feature selection and outlier scoring.

SEMSE for Mutual Refinement of Feature
Selection and Outlier Scoring

The SEMSE framework builds a set of sequential en-
sembles to mutually refine outlier scoring and feature se-
lection. As shown in Figure 1, SEMSE works as fol-
lows. At the t¢-th iteration, given a set of /N data ob-
jects X={x1,xXqo,- -+ ,xun} described by a set of D features
(i.e., x;={®i1, 22, -+ ,x;p}) and their outlier score vector
y'~! € R¥ obtained in the previous iteration, SEMSE first
defines an outlier thresholding function 1’ to yield a set of L

outliers Rt € RE"*(P+1) Rt contains D + 1 dimensions as
it concatenates the original D dimensions and y*~!. SEMSE
further treats y*~! as the target feature and the other D fea-
tures as predictors, and applies a sparse regression model 1)
on R! to produce a new data set S¢ with a set of M* opti-

mal features w.r.t. y'=1, iie., St € RVXM' together with
an empirical error mse’. SEMSE then uses an outlier scor-
ing function ¢' on S to re-compute an outlier score vector
y'. SEMSE repeats these recurrent steps to yield a set of
outlier score vectors until mse!*! > mset. These recurrent
steps compose a sequential ensemble model. SEMSE finally
performs bagging to aggregate a set of sequential ensemble
models to obtain the final outlier scores.

Computation at Step (t+1)

————————————————————

One Sequentlal Ensemble

Computation at Step (t)

——————————————————

______________________________________

__________________________________________

Figure 1: Our SEMSE Framework. y contains outlier scores
of all data objects. 1, 1 and ¢ are functions for outlier thresh-
olding, fragmentary sparse modeling, and outlier scoring, re-
spectively.

Essentially, SEMSE uses the pseudo target feature y*~!

to generate S* with a feature subset that is mostly correlated
to the outlier scores produced by the scoring function ‘.
Since ¢* works on S with the selected features that are tai-
lored for it, SEMSE likely obtains an enhanced score vector
v+, and it can in turn yield a better feature subset in S**! in
next iteration. This cycle enables SEMSE to obtain more re-
liable outlier scores compared to that computed on the orig-
inal feature space. The sequential ensembles help SEMSE
reduce the learning bias while the final bagging stage helps
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reduce the learning variance (Aggarwal 2017).

SEMSE has good generalizability since it can be instanti-
ated to a specific sequential ensemble method by specifying
its three components 7, ¥ and ¢. We introduce an instance
of SEMSE in next section and then verify its performance
by theoretical and empirical analyses.

A SEMSE Instance: CINFO

CINFO instantiates SEMSE by a Cantelli’s inequality-based
outlier thresholding function 7, a lasso-based fragmentary
sparse regression function 1, and a subsampling-based out-
lier scoring function ¢. After building a sequential ensemble
with these three functions, bagging is performed to obtain a
set of such sequential ensembles and combine their outlier
scores to well identify high-dimensional outliers.

Building a Sequential Ensemble

Outlier Thresholding 1 with Cantelli’s Inequality. The
outlier thresholding function 7 is to identify a set of most
likely outliers. We define a Cantelli’s inequality-based 7 as
follows, which provides an upper bound for false positives.

Definition 1 (Outlier Thresholding). Given an outlier score
vector'y € RY, in which large scores indicate high outlier-
ness, and let | and 62 be its expected value and variance,
then the outlier candidate set R is defined as follows:

R = {(Xi’yi)m(yiva') 2 0}’ Vx; € vai ey,

where 1(y;,a) = y;

This outlier thresholding is equivalent to selecting the out—
lier candidates with a false positive upper bound of 7 + -
based on Cantelli’s inequality (see our theoretical support in
next section).

(D

— 1 — ad and a is user-defined.

Fragmentary Sparse Modeling ¢ with Lasso. CINFO
performs fragmentary sparse modeling on the data subset
R € REX(P+) R is the newly created data set with re-
duced objects at the outlier thresholding stage, in which L
represents the number of data objects identified as outliers
by the 7 function and thus L < N. Specifically, CINFO
conducts an univariate sparse regression learning as follows:

(o200

where w is the coefficient vector and )\ is a regularization pa-
rameter. When A is large, solving Eqn. (2) obtains a shrink-
ing solution to the least squares model, resulting in a number
of zero-coefficient features that are not correlated to the out-
lier score y. We then obtain another newly created data set
S € RVXM with reduced features (i.e., M < D):

(R, ) = arg min

w

;— X w) —i—)\|<.u||1>7 2)

S = {xilw; £0, 1< i< D}, 3)

The parameter A is critical to the performance of lasso.
Inappropriate A will lead to overfitting or underfitting. To
address this issue, we use 10-fold cross validation on R to
choose the best A that minimizes the mean square error mse.



CINFO performs fragmentary sparse modeling for two
major reasons. (i) Restricting the sparse modeling only on
the outlier candidate set R enables CINFO to select features
that are mostly relevant to outlier identification. Since out-
liers are normally a minority of the data, sparse modeling on
the full data set can be dominated by normal objects and fail
to obtain outlier-sensitive features. (ii) It helps tune the pa-
rameter A much more efficiently. Since L < N, performing
the cross validation on R is substantially much faster than
on the full data set X

Subsampling-based Outlier Scoring ¢. To demonstrate
the flexibility of SEMSE, we use the two very different
subsampling-based outlier scoring methods LeSiNN and
iForest to specify ¢, respectively.

LeSiNN is a subsampling-based ensemble of the nearest-
neighbor outlier detector using the full dimensionality of the
input data S. Given a data object x; € S, its outlier score is
computed as the average of the nearest neighbor distances in
[ subsamples:

l
1
yi = o(x;) = YZ:: nn_dist(x;|M,), 4)

where M; C S is a random data subsample and nn_dist
returns the nearest neighbor distance of x; in M.

iForest posits that outliers are susceptible to isolation and
builds isolation trees on random subspaces in S to identify
outliers. Each tree is grown by using a random subsample
until every data object is isolated, where the feature and cut-
point at each tree node are randomly selected. The inverse
of the path length traversed from the root to a leaf node by
X; is used as its outlier score:

E(h(x;))
c(fMI)

yi = ¢(x;) = (27 ) )

where h(x;) denotes the path length of x; in a subsample

!
M, E(h(x)) = 1 '21 h;(x;|M,) is the average path length
j=
of x; from a set of [ isolation trees, and ¢(|] M) is the ex-
pected path length given the subsample size | M|.

The use of subsampling results in the linear time com-
plexities in LeSiNN and iForest, which is critical for the ef-
ficiency of CINFO. LeSiNN and iForest are the state-the-
of-art detectors and they are expected to yield fairly good
outlier scores to ensure that there are at least some outliers
in R output by 7.

Combination of Outlier Scores. CINFO performs the
above three recurrent components 17, ¢ and ¢ until the mean
squared error mse produced by 1 does not further decrease.
Assume the sequential ensemble learning terminates after 7'
iterations, i.e., t = {1,2,---,T}, we will obtain a set of
T outlier score vectors and their associated mse. We em-
ploy the commonly-used weighted summation (Freund and
Schapire 1995) to combine the outlier score vectors with
mse as weights, and define an outlier score for each data
object in the sequential ensemble as follows:
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T
seq_score(x;) = E T(yh), (6)

. . . — t
where w! is a normalized weight by w! = Zim“’t
_1]Z—mset]

with Z = Y21 mse’, and 7(y!) = H;/ i
malization function that normalizes the vector y into an unit
norm to address the heterogeneity of the outlier scores from
heterogeneous feature subsets.

Note that the initial outlier score vector yg is not inte-
grated into the above weighted combination. This is because
Yo is obtained from the original full feature space with noisy
features and is thus not as reliable as the later score vectors.

s a vector nor-

Aggregating a Set of Sequential Ensembles

Using single sequential ensemble may produce high detec-
tion errors, when the initial outlier score vector y, happens
to mislead the subsequent outlier scoring in the sequential
ensemble. We therefore further aggregate a set of sequen-
tial ensembles to address this issue by bagging. Bagging is
a representative approach for building a set of base models
independently, which can largely reduce the generalization
error (Breiman 1996). Specifically, the final outlier score of
a given object is the average over its outlier scores obtained
from a set of independent sequential ensembles:

m

Z seq_score;(X;), (7N

score(x;)

where m is the number of sequentlal ensembles we built.

The Algorithm and Its Time Complexity

Algorithm 1 presents the procedure of CINFO. Given a data
set X, Step 2 obtains the initial outlier scores. Steps 4-10 use
the three recurrent functions 7, ¢ and ¢ to build a sequen-
tial ensemble for iterative refinement of the selected feature
subset in S and outlier scores y. The lasso problem in Step
7 is implemented by alternating direction method of multi-
pliers (ADMM), and w, mse and A\ are obtained by 10-fold
cross validation on R. The outer loop in Steps 1-12 builds
a set of independent sequential ensembles by bagging, fol-
lowed by the average combination of the outlier scores from
these sequential ensembles in Step 13. CINFO then returns
an outlier ranking based on the outlier scores.

The sequential ensemble learning in Steps 4-10 often ter-
minates in a few iterations (e.g., within 10). The bagging in
the outer loop typically converges quickly, say after about
10-30 iterations. Therefore, the time complexity of CINFO
is determined by the complexity of the three functions 7, 1
and ¢. Obviously, 1 has a linear time complexity w.r.t. data
size and the number of features. The LeSiNN/iForest-based
¢ function has the similar linear time complexity (Liu, Ting,
and Zhou 2012; Pang, Ting, and Albrecht 2015). Moreover,
a linear convergence rate is expected for ADMM-based lasso
implementation according to (Hong and Luo 2017). We
therefore expect that the overall time complexity of CINFO
is linear w.r.t. data size and dimensoinality size.



Algorithm 1 CINFO

Input: X - data objects, a - outlier thresholding parameter, m -
bagging size

Output: R - an outlier ranking of objects

1: for j =1tomdo

20y’ e p(X)
3 mse’ =1,t=0
4 repeat
S: t+—t+1
6: R' < n(y'™ a)
7 w', mset «+ PY(RH A
8 8"+ {xiJw! #£0, 1 <i< D}
9 y'— o(S)
until mse’ > mse
seq-score;(X) = £ ST (w))Tr(y")
: end for
: score(X) = L L seq-score;(X)
¢ R < Sort X w.r.t. score
: return R

t—1

Theoretical Foundation

The following three subsections present some theoretical
support for the specifications of the three functions 7, ¥ and
¢ in CINFO, respectively.

Upper Bound for Outlier Thresholding

Corollary 1 (False Positive Bound). Assume the scores in'y
have the expected value . and variance §°. Let y; €y, the
outlier thresholding function n(y;,a) = y; — p — ad then
has a false positive upper bound of 1= .

Proof. We have Prob(y; > p+ ) < 521% per Cantelli’s
inequality. By replacing o = ad, we obtain

< . 8
< ®)

It states that the values in y have a maximum probability
of 17 to be greater than /i + ad. Since large y; indicates
high outlierness, this inequality implies that the probability
that we could wrongly identify normal objects as outliers is

up to H% when we define the threshold as p + ad. O

Prob(y; > 1+ ad)

Cantelli’s inequality is an one-sided Chebyshev’s inequal-
ity. Similar to Chebyshev’s inequality, it makes no assump-
tion on specific probability distributions. It holds for a wide
class of probability distributions that have statistical mean
and variance. This property enables 7 to be data-dependent
and perform well for y following different distributions.

Optimal Feature Subsets w.r.t. Outlier Scoring ¢

Since the sparse modeling in Eqn. (2) is a convex problem
(Hastie, Tibshirani, and Wainwright 2015), the feature sub-
set in S is expected to be globally optimal w.r.t. the target
y on the outlier candidate set R. In other words, the se-
lected features are customized to the outlier scoring func-
tion ¢ that produces the score vector y. This enables ¢ to
work on a more reliable feature set when re-computing the
outlier scores by using S, resulting in refined outlier scores
compared to that in the previous iteration.
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In the best case, the outlier scoring or feature selection
is iteratively refined. In another extreme, when the outlier
scores are poor, e.g., no true outliers are in the outlier candi-
dates, it can mislead the feature selection and does not help
improve the successive outlier scoring. The next section ana-
lyzes the use of subsampling to obtain quality outlier scores.

Obtaining Good Outlier Scores by Subsampling

In addition to substantial speedup, using subsampling can
well guarantee the outlier scoring quality, which is supported
by theoretical results from the perspectives of, e.g., density
estimation (Zimek et al. 2013), data distribution (Sugiyama
and Borgwardt 2013) and variance reduction (Aggarwal
2017). We provide the following analysis to further com-
plement these existing theoretical results.

Following (Zimek et al. 2013), for two data objects x;

and xo, their expected kNN distance k_dist in X can be re-

spectively approximated by E(k_dist(x1|X)) = r (Nil) v
and E(k_dist(xs|X)) = r (NL
the numbers of objects uniformly distributed in the r-radiu
sphere of x; and xs, respectively; and their expected k_dist
in a random subsample R of size L can then be given by

E(k_dist(x1|R)) = r (NkL )5 and E(k_dist(x2|R)) =
1N
k
T(M%

E(k_dist(x1|R)) — E(k_dist(x2|R))
E(k_dist(x1|X)) — E(k_dist(x2]| X))

)5, where N7 and N, are

1
D . .
. After some transformation, we can obtain:

=)

o~

€))

Eqn. (9) implies that the contrast between the kNN-
based densities in the subsamples and that in the full
data set are enlarged and are inversely proportional to
the subsampling size. This indicates that subsampling
helps enhance the contrast between AkNN/density-based
outlier scores. Moreover, it also guarantees a ranking-
stable result, i.e., F(k_dist(x1|R)) > E(k_dist(x2|R)) if
E(k_dist(x1]|X)) > E(k_dist(x2|X)). These two proper-
ties enable the subsampling-based scoring to yield better
outlier scores (Kriegel et al. 2011).

Numerous existing outlier scoring methods including
LeSiNN assume that outliers are data objects in low-density
regions. Therefore, the above results are widely applicable,
and subsampling is recommended for the specification of ¢
in CINFO when using this type of methods.

Experiments and Evaluation
Data Sets

As shown in Table 1, 11 real-world data sets are used!,
which cover diverse domains, e.g., intrusion detection,
molecular bioactivity detection, Internet advertising and im-
age object recognition. Some data sets like AD, AID362,

'They are available at http:/archive.ics.uci.edu/ml,
http://www.kdd.org/kdd-cup, http://vision.cs.uiuc.edu/attributes/
and https://people.cs.umass.edu/~marlin/data.shtml.



Probe, U2R and Thrombin contain semantically real out-
liers. For the other data sets, we follow the literature (Lazare-
vic and Kumar 2005; Pang et al. 2016; Rayana, Zhong, and
Akoglu 2016) to treat rare classes as outliers and the largest
class as the normal class. Categorical features are converted
into numeric ones by 1-of-¢ encoding (Campos et al. 2016).

Performance Evaluation Methods

All outlier detectors finally yield an object ranking w.r.t. its
outlier score, i.e., the top-ranked objects are the most likely
outliers. We evaluate the quality of the ranking by the area
under ROC curve (AUC) (Hand and Till 2001). AUC inher-
ently considers the class-imbalance nature of outlier detec-
tion tasks, making it comparable across different data sets
(Campos et al. 2016). Higher AUC indicates better detec-
tion performance. The Wilcoxon signed rank test is used to
examine the significance of the AUC performance of CINFO
against its competitors. Since LeSiNN and iForest are ran-
domized algorithms, all their AUCs are the averaged results
over 10 independent runs.

Experiment Environment

CINFO and its competitors are implemented in MATLAB.
All the experiments are executed at a node in a 3.4GHz
Phoenix cluster with 32GB memory. In all our experiments,
CINFO uses a = 1.732 (i.e., the upper bound for false posi-
tives in 7 is 25%) and m = 30 2. and the number of subsam-
ples [ and subsampling size | M| for LeSiNN and iForest are
set as the recommended settings of their authors.

Effectiveness in Real-world Data

Experimental Settings. We compare the CINFO-enabled
LeSiNN and iForest with their bare versions to evaluate
whether CINFO can eliminate irrelevant features and retain
(or improve) the performance of these two detectors.

Findings - CINFO Significantly Improving Different
Types of Outlier Detectors. Table 1 demonstrates the
feature reduction and AUC performance of CINFO-based
LeSiNN and iForest, compared to LeSiNN and iForest
performing in the original feature space. CINFO-enabled
LeSiNN and iForest work with about 10% (e.g., on AID362
and BM) to over 95% (e.g., on Isolet, SECOM and Throm-
bin) less features, while their performance is substantially
better than, or roughly the same as, their bare versions. On
average, CINFO enables LeSiNN and iForest to gain about
4% and 7% improvement, respectively. Our significance test
shows that CINFO enables LeSiNN and iForest to achieve
significantly better AUC performance at the 95% and 99%
confidence levels, respectively.

CINFO uses the sequential ensemble learning to mutually
improve its feature selection and outlier scoring, which en-
ables CINFO to safely remove noisy features in these high-
dimensional data sets. As a result, CINFO-enabled LeSiNN
and iForest work on much cleaner data sets and thus can
achieve significant performance improvement.

2CINFO performs very stably when m > 30. m = 30 is thus
used. These test results are omitted due to page limitations.

3897

Table 1: Feature Reduction and AUC Performance of
CINFO-enabled LeSiNN and iForest (denoted by LeSiNN*
and iForest*). D is the original feature number. D’ and D"
are the average numbers of features retained by LeSiNN*
and iForest*, respectively. The average iteration for sequen-
tial ensembles per data is 2 to 5.

Data Info. Feature Reduction AUC Performance

Data N D D" D" LeSiNN LeSiNN*| iForest iForest*
AD 3279 1555 197 245 0.7107  0.8666 0.6830 0.7907
AID362 4279 117 106 94 0.6704 0.6710 0.6461 0.6658
aPascal 12695 | 64 34 46 0.7308 0.8554 0.6755 0.7963
BM 41188 | 62 54 52 0.6854 0.7100 0.7316 0.7678
Caltech16 829 253 59 50 0.9861 0.9869 0.9636 0.9684
Census  299285| 500 399 422 0.6344  0.6620 0.6276 0.6616
Isolet 730 617 27 28 1.0000  1.0000 0.9996 1.0000
Probe 64759 | 34 27 25 0.9975 0.9978 0.9899 0.9908
SECOM 1567 | 590 27 18 0.5316 0.5867 0.5448 0.6506
U2R 60821 | 36 28 30 0.9879  0.9890 0.9908 0.9922
Thrombin 1909 139351 114 58 0.8997 0.8916 0.8843 0.9044

Average 0.8031 0.8379 0.7943 0.8353

Comparison to State-of-the-art Competitors

Experimental Settings. CINFO is compared with three
state-of-the-art competitors: feature bagging (FB for short)
(Lazarevic and Kumar 2005), RegFS (Paulheim and Meusel
2015), and CARE (Rayana, Zhong, and Akoglu 2016) from
three different but relevant research lines.

e Subspace-based method - FB. FB is a framework for en-
abling outlier detectors to handle high-dimensional data
by using feature bagging, i.e., working on a set of random
feature subsets of size between [ £ | and (D — 1). It can

also be seen as a random feature selection ensemble.

e Feature selection-based competitor - RegFS. RegFS
only returns a feature relevance ranking. For a
thorough comparison, RegFS selects the top-ranked
[rD] features with a wide range of r, ie., r
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. Due to page
limitations, we report the results of » = 0.7, with which
the used detectors obtain the best performance.

o Sequential outlier ensemble - CARE. CARE attempts to it-
eratively refine detection models by removing outlier can-
didates. It uses feature bagging to introduce diversity and
handle high-dimensional data.

Findings - CINFO Significantly Outperforming Three
State-of-the-art Competitors. The AUC performance of
CINFO, RegFS, FB, and CARE is reported in Table 2. The
CINFO-enabled LeSiNN and iForest obtain the best perfor-
mance on eight data sets, with three very close to the best
(having the difference in AUC less than 0.01), and they ob-
tain about 4%-7% improvement over the respective competi-
tors. The improvement is significant at the 95% (w.r.t. RegFS
and FS) or 90% (w.r.t. CARE) confidence level.

Unlike FB and RegFS that ignore the outlier scoring
methods when they perform feature selection, CINFO cou-
ples these two dependent tasks to iteratively refine their per-
formance by sequential ensembles. This enables CINFO to
substantially reduce its detection errors and obtain more than
4%-22% AUC improvement over its competitors in tough
data sets like AD, aPascal, Census, and SECOM, which
likely contain a large proportion of noisy features.



Table 2: AUC Performance of CINFO, RegFS, FB, and
CARE Empowered LeSiNN and iForest. ‘NA’ indicates the
execution cannot be completed in two weeks.

LeSiNN iForest
Data CINFO RegFS FB CARE | CINFO RegFS FB CARE
AD 0.8666 0.7058 0.7111 0.6934 | 0.7907 0.6832 0.6892 0.6989
AID362 | 0.6710 0.6371 0.6704 0.6767 | 0.6658 0.6421 0.6659 0.6752
aPascal 0.8554 0.7464 0.7319 0.7349 | 0.7963 0.7085 0.6642 0.6829
BM 0.7100 0.6943 0.6879 0.6818 | 0.7678 0.7328 0.7440 0.7444
Caltech16| 0.9869 0.9874 0.9869 0.9874 | 0.9684 0.9728 0.9670 0.9691
Census 0.6620 0.6112 0.6340 0.6198 | 0.6616 0.5638 0.6290 0.6416
Isolet 1.0000 1.0000 1.0000 1.0000 | 1.0000 0.9995 1.0000 1.0000
Probe 0.9978 0.9943 0.9974 0.9970 | 0.9908 0.9900 0.9908 0.9941
SECOM | 0.5867 0.5343 0.5294 0.5282| 0.6506 0.5636 0.5533 0.5589
U2R 0.9890 0.9645 0.9877 0.9853 | 0.9922 0.9717 0.9904 0.9903
Thrombin| 0.8916 NA  0.8995 0.9023 | 0.9044 NA 0.9024 0.9034
Average | 0.8379 0.7875 0.8033 0.8006 | 0.8353 0.7828 0.7997 0.8053
p-value - 0.0078 0.0273 0.0840 - 0.0098 0.0078 0.0840
Using LeSiNN Using iForest
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Figure 2: AUC Performance on Data with Different Levels
of Noisy Features. ‘ORG’ denotes the bare LeSiNN/iForest.
All methods obtain AUC of one with more than 32% rele-
vant features.

CINFO and CARE are two very different sequential en-
semble methods. CARE builds sequential ensembles hori-
zontally, which iteratively removes likely outliers for iden-
tifying some outliers that are otherwise masked by the re-
moved outliers. In contrast, CINFO works in a vertical
manner, which iteratively remove noisy features. Although
feature bagging FB is incorporated into CARE, the FB
method itself has limited capability in handling noisy fea-
tures. CINFO therefore obtains similarly large AUC im-
provement (i.e., 6%-24%) over CARE on the aforemen-
tioned noisy data sets.

Resilience to Noisy Features

Experiment Settings. Following (Zimek, Schubert, and
Kriegel 2012), we create a collection of 100-dimensional
synthetic data sets with different percentages of relevant fea-
tures (or noisy features). In this data, normal objects are
from a Gaussian distribution and outliers lie at two stan-
dard deviations of the distribution in relevant features, and
the other features are from uniform distribution and used as
noisy features. For each noise level, we generate 10 data sets
with the same number of noisy features and average AUC
over them to have more reliable results.

Findings - CINFO Greatly Enhancing the Resilience of
the Outlier Detectors w.r.t. Noisy Features, Especially for
Very Noise-Sensitive Detectors. The AUC performance
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Figure 3: Runtime of CINFO and Its Competitors Using
LeSiNN. ‘ORG’ denotes the bare LeSiNN. Logarithmic
scales are used. Similar trends can be expected for using
iForest as the outlier detector, since LeSiNN and iForest
have similar time complexities.

on the synthetic data sets are shown in Figure 2. CINFO-
enabled LeSiNN and iForest perform consistently better
than their four other versions in a wide range of noise lev-
els. The advantage of CINFO is much more obvious in en-
abling LeSiNN than iForest. This may be due to the fact that
LeSiNN works on the full space of the input data while iFor-
est operates on feature subspaces, and as a result, LeSiNN is
much more sensitive to the noisy features retained by the
feature subset selection methods and is more difficult to be
enhanced, compared to iForest. The substantially better per-
formance of the CINFO-enabled LeSiNN over its competi-
tors highlights its superiority in eliminating noisy features
and upgrading very noise-sensitive detectors.

Scalability Test

Experiment Settings. We generate data sets by varying
the data dimension w.r.t. to a fixed data size (i.e., 1000), as
well as varying the data size while fixing the data dimension
(i.e., 50), respectively.

Findings - CINFO Obtaining Linear Time Complex-
ity w.r.t. Data Size and Dimensionality. The runtime
of the five versions of LeSiNN is shown in Figure 3. In
the left panel, all the methods have linear time complex-
ity. CINFO is comparably fast to RegFS and CARE. These
three methods are slower than FB and the bare LeSiNN,
since they incorporate more sophisticated components to
enhance the accuracy of LeSiNN. In the right panel, the
CINFO/FB/CARE-enabled and the bare LeSiNN have lin-
ear time complexity, and they run considerably faster than
RegFS that has a quadratic complexity.

Conclusions

This paper introduces a sequential ensemble-based high-
dimensional outlier detection framework SEMSE and
its instance CINFO. They perform an iterative mutual
refinement of feature selection and outlier scoring, and can
efficiently obtain reliable outlier scores in high-dimensional
numeric data with many noisy features. Although CINFO
works on considerably smaller feature subsets, it obtains
significantly better AUC performance in 11 real-world



high-dimensional data sets, substantially better resilience to
noisy features, compared to its four competitors. CINFO
also has linear time complexity w.r.t. data size and dimen-
sionality. We are further enhancing CINFO by replacing the
lasso-based sparse modeling with other sparse constraints.
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