
Doubly Approximate Nearest Neighbor Classification

Weiwei Liu,† Zhuanghua Liu,‡ Ivor W.Tsang,‡ Wenjie Zhang,† Xuemin Lin†
†School of Computer Science and Engineering, The University of New South Wales

‡Center for Artificial Intelligence, University of Technology Sydney
{liuweiwei863, liuzhuanghua1991}@gmail.com, ivor.tsang@uts.edu.au,

wenjie.zhang@unsw.edu.au, lxue@cse.unsw.edu.au

Abstract

Nonparametric classification models, such as K-Nearest
Neighbor (KNN), have become particularly powerful tools
in machine learning and data mining, due to their simplicity
and flexibility. However, the testing time of the KNN classi-
fier becomes unacceptable and the KNN’s performance dete-
riorates significantly when applied to data sets with millions
of dimensions. We observe that state-of-the-art approximate
nearest neighbor (ANN) methods aim to either reduce the
number of distance comparisons based on tree structure or
decrease the cost of distance computation by dimension re-
duction methods. In this paper, we propose a doubly approx-
imate nearest neighbor classification strategy, which marries
the two branches which compress the dimensions for decreas-
ing distance computation cost as well as reduce the number of
distance comparison instead of full scan. Under this strategy,
we build a compressed dimensional tree (CD-Tree) to avoid
unnecessary distance calculations. In each decision node, we
propose a novel feature selection paradigm by optimizing the
feature selection vector as well as the separator (indicator
variables for splitting instances) with the maximum margin.
An efficient algorithm is then developed to find the globally
optimal solution with convergence guarantee. Furthermore,
we also provide a data-dependent generalization error bound
for our model, which reveals a new insight for the design of
ANN classification algorithms. Our empirical studies show
that our algorithm consistently obtains competitive or better
classification results on all data sets, yet we can also achieve
three orders of magnitude faster than state-of-the-art libraries
on very high dimensions.

Introduction

Nonparametric models have played a vital role in machine
learning and data mining as a result of their simplicity and
flexibility. One of the most popular nonparametric classifi-
cation methods is called K-Nearest Neighbor (KNN), and
is identified as one of the top 10 data mining algorithms.
KNN classification has shown promising results to various
real world applications, such as face recognition, document
annotation and image processing. However, its linear depen-
dence on the number of instances and features hinders its
use as a practical algorithm for large scale high dimensional
settings.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Recently, the emerging trends of ultrahigh dimensional-
ity have been analyzed in (Tan, Wang, and Tsang 2010;
Zhai, Ong, and Tsang 2014; Tan, Tsang, and Wang 2014;
Liu and Tsang 2016; 2017; Liu, Shen, and Tsang 2017). For
example, the Web continues to generate quintillion bytes of
data daily, leading to a great challenge for KNN classifica-
tion on the WEBSPAM data set with 16,609,143 features,
collected from (Wang, Irani, and Pu 2012). The testing time
of KNN on this data set is unacceptable. Furthermore, KNN
achieves degenerated performance on the WEBSPAM data
set, because all vectors are almost equidistant to the testing
instance in 10 millions of dimensions. Therefore, KNN suf-
fers from the curse of dimensionality (Beyer et al. 1999), and
how to precisely and efficiently scale the KNN classifier to
very high dimensional settings poses a serious challenge.

It is desirable that an approximate nearest neighbor
(ANN) classification algorithm, designed for very high di-
mensional settings, should meet two principles: 1) The num-
ber of distance computations should be reduced. 2) The cost
of each distance computation should be decreased. Unfor-
tunately, the state-of-the-art ANN techniques fall short in
either of these two principles. Many tree-based algorithms,
such as KD-Tree and K-Means Tree (Muja and Lowe 2014),
have been developed to reduce the number of distance com-
putations. However, such approaches still depend on the
original feature dimensions, which lead to high distance
computational cost and degenerated performance for very
high dimensions; the authors in (Weber, Schek, and Blott
1998) have already demonstrated the underperformance of
tree-based methods on high dimensions. In addition, hash-
ing (Gionis, Indyk, and Motwani 1999; Charikar 2002;
Andoni et al. 2015; Shen et al. 2017) is one of the widely-
studied dimension reduction methods for decreasing the cost
of distance computation by mapping high-dimensional data
into a short binary code and using Hamming distance as the
distance metric. Product quantization (PQ) (Jégou, Douze,
and Schmid 2011) is then proposed to obtain more pre-
cise distance than hashing and reduce the quantization error.
However, due to the non-convexity of binary embedding and
orthogonal constraints, the main drawback of most learning-
based hashing and PQ is that they usually get stuck in local
minimum for their optimization problem.

This paper proposes a doubly approximation strategy
for nearest neighbor classification, which marries the ad-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3683

Table 1: Comparison between the existing methods and ours. (r: maximum number of points to examine for K-Means Tree and
KD-Tree. b: # bits used for KBE. ϑ: # dictionaries used for KPQ. ς: the length of each dictionary used for KPQ. T : the total
selected feature set for CD-Tree. The distance computation is abbreviated to DC.)

METHOD K-MEANS TREE (MUJA AND LOWE) KD-TREE (MUJA AND LOWE) KBE (ZHANG ET AL.) KPQ (ZHANG ET AL.) CD-TREE (OURS)
REDUCE # OF DC

√ √ × √ √

REDUCE DC COST × × √ × √

SPACE COST O(nm) O(nm) O(nb) O(nϑlog(ς) + mς) O(n|T |)
TRAINING COST O(nmlogn) O(nlogn) O(nmlog2m) O(nmlog2m) O(mlogB + nlogn + t�B)
TESTING COST O(rmlogn) O((logn + r)m) O(nb) O(nϑ + mς) O(log(n

Nmin
)�B + Nmin�B)

vantages of the dimension reduction and tree-based meth-
ods, and simultaneously remedies the defect of these ap-
proaches. Table 1 demonstrates the comparison between
the existing methods and ours. Specifically, KD-Tree has
been an efficient space-partitioning data structure for or-
ganizing data in low dimensions. However, KD-Tree only
chooses a single feature with the maximum variance in
each node as the hyperplane to split the data. On the other
hand, Ram et al. (Ram, Lee, and Gray 2012) have pro-
posed the max-margin tree (MMT) to learn a better hyper-
plane, and demonstrated that large margin partitions can im-
prove tree search performance. Unfortunately, the distance
computational cost of these methods on very high dimen-
sions is prohibitive. To break the bottleneck of tree-based
methods, motivated by hashing and PQ, we build a com-
pressed dimensional tree (CD-Tree), which is inspired by
the name of KD-Tree, to learn an informative and compact
feature subset as well as the sparse hyperplane for split-
ting the data with the maximum margin (Yang et al. 2017;
Liu, Tsang, and Müller 2017). To avoid being stuck in lo-
cal minimum, we employ the tight convex relaxation tech-
nique (Li et al. 2013) and develop an efficient algorithm to
find a globally optimal solution with convergence guarantee.
Lastly, we analyze generalization error bound for the pro-
posed doubly approximate nearest neighbor classification.
Experiments on a wide spectrum of data sets show that our
proposed method excels in all data sets, yet we obtain three
orders of magnitude faster than state-of-the-art libraries on
very high dimensions.

Compressed Dimensional Tree

This section first introduces the notion of the compressed
dimensional node and then presents the CD-Tree.

We denote the transpose of the vector/matrix by the super-
script ′ and the logarithms to base 2 by log. Let � represent
the elementwise product sign and Nmin be the constant. If Q
is a set, |Q| denotes its cardinality. Let R represent real num-
ber and || · ||2 denote the l2-norm. Given a set of instances
{xi}ni=1, where xi ∈ R

m×1. w ∈ R
m×1 denotes the weight

vector. A vector with all entries equal to one is represented
as 1 ∈ R

n×1. We define {si}ni=1, si ∈ {±1}, as the sepa-
rator variables, which are used as the indicators for splitting
instances. Let S = {s = [s1, · · · , sn]′ ∈ {±1}n| − β ≤∑n

i=1 si ≤ β} be the domain of s, where β is a small con-
stant controlling the imbalance of partitions.

Algorithm 1 CD-Tree
Input: A set of instances {xi}ni=1, where xi ∈ R

m×1. Out-
put: CD-Tree.

1: while CDN contains more than Nmin instances do
2: Learn the classifier for this CDN.
3: Split the instances of this node into left child if these

instances are learned to be positive and call Algo-
rithm 1 with split data the input.

4: Split the remaining instances of this node into right
child and call Algorithm 1 with the remaining in-
stances the input.

5: end while
6: Return the complete CD-Tree.

Before deriving the CD-Tree, we first introduce the notion
of the compressed dimensional node (CDN):
Definition 1 (Compressed Dimensional Node (CDN)). In
order to learn a sparse hyperplane, we introduce a feature
selection vector d = [d1, · · · , dm]′ ∈ D, where D = {d =
[d1, · · · , dm]′ ∈ [0, 1]m|

∑m
j=1 dj ≤ B} is the domain of d

and B controls the sparsity of d. A compressed dimensional
node contains a linear decision function F(x) = w′(xi �√
d+b), where

√
d = [

√
d1, · · · ,

√
dm]′ and the parameters

are obtained by solving the following problem:

min
d∈D

min
s∈S

min
w,ξ

1

2
||w||22 +

C

2

n∑
i=1

ξ2i

s.t. siw
′(xi �

√
d+ b) ≥ 1− ξi, i = 1, · · · , n

(1)

Remark. The task of Problem (1) is to find the optimal
sparse hyperplane as well as the optimal separator with the
maximum margin.

We build a compressed dimensional tree in a top-down
approach. Starting from the root, we solve Problem (1) on
each CDN and then use the learned separator to split the
instances into two child nodes. This process continues until
the remaining data at the node cannot be further split by the
induced classifier. The details are stated in Algorithm 1. We
follow (Ram, Lee, and Gray 2012) to do prediction.

Learning the CDN

We develop the technique for learning the classifier at CDN
in this section. For the sake of clarity, we consider the func-
tion without an offset, although the algorithm can be ex-
tended to the function with offset. Given d and s, the in-
ner minimization problem w.r.t. w and ξ is a standard SVM

3684

problem: minw,ξ
1
2 ||w||22+ C

2

∑n
i=1 ξ

2
i : s.t. siw

′(xi�√
d) ≥ 1 − ξi, i = 1, · · · , n. This problem can be solved

in its dual form: maxα∈A − 1
2 ||

∑n
i=1 αisi(xi �

√
d)||22 −

1
2Cα′α+ α′1, where A = {α|0 ≤ αi, i = 1, · · · , n}.

The separator variables and feature selection variables in
Problem (1) are optimized by our proposed separator gener-
ation and feature generation strategies in the following sub-
sections. Moreover, we provide the convergence analysis for
proposed algorithms.

Separator Generation

Given d , we define f(α, s) = − 1
2 ||

∑n
i=1 αisi(xi �√

d)||22 − 1
2Cα′α + α′1. Following the minimax inequal-

ity theorem (Kim and Boyd 2008), the inner minimization
problem w.r.t. s and α of Problem (1) can be lower-bounded
by

max
α∈A

min
s∈S

f(α, s) (2)

By introducing variable θ ∈ R, Problem (2) becomes

max
α∈A,θ∈R

−θ : s.t. − f(α, s) ≤ θ, ∀s ∈ S (3)

(Li et al. 2013) have already shown that problem (3) is the
tight convex relaxation of the inner minimization problem
w.r.t. s, w and ξ of Problem (1). Since problem (3) involves
an exponential number of constraints, the cutting plane algo-
rithm can be used here to solve the above problem. Specif-
ically, given αt−1 and d, the worst-case analysis is to infer
the most-violated st, and add it into the active constraint set
Ct. Then, we update αt by solving the following problem:

max
α∈A,θ∈R

−θ : s.t. − f(α, s) ≤ θ, ∀s ∈ Ct (4)

By introducing dual variable μh for each constraint defined
by sh, we can transform problem (4) to an multiple kernel
learning (MKL) problem (Liu et al. 2015; Liu and Tsang
2017; Gong et al. 2017) as follows:

max
α∈A

min
μ∈M

∑
sh∈Ct

μhf(α, sh) = min
μ∈M

max
α∈A

∑
sh∈Ct

μhf(α, sh)

(5)

where M = {μ|
∑

μh = 1, μh ≥ 0}. The details of the
separator generation are shown in Algorithm 2.

Algorithm 2 Separator Generation
Input: A set of instances {xi}ni=1, where xi ∈ R

m×1. Ini-
tialize α and d.

1: t = 0, Ct = ∅.
2: repeat
3: t = t+ 1.
4: Separator inference: Finding the most violated st and

set Ct = Ct−1 ∪ {st} .
5: Master problem optimization: Solving problem (5)

over Ct.
6: until ε-optimal.

Algorithm 3 Feature Generation
Input: A set of instances {xi}ni=1, where xi ∈ R

m×1. Ini-
tialize α0 and s0.

1: z = 0, Uz = ∅.
2: repeat
3: z = z + 1.
4: Feature inference: Generating a feature selection vec-

tor dz by solving problem (11) based on αz−1 and
sz−1and set Uz = Uz−1 ∪ {dz} .

5: Call Algorithm 2 with ({xi}ni=1,Uz) the input and
obtain the output: (αz, sz).

6: until ε-optimal.

We have the following convergence rate theorem:
Theorem 1. Let Ot be the objective value of Eq.(5) at the t-
th iteration and O∗ be the optimal objective value. Given
−f(α, s) is λ-strongly convex function and L is the Lip-
schitz constant of −f(α, s), algorithm 2 converges in no

more than O1−O∗
ϕ iterations, where ϕ =

(
−c+

√
c2+4ε
2

)2

,

and c = L
√

2
λ .

The proof can be adapted from (Li et al. 2013). We use
the method in (Li et al. 2013) to find the most violated st,
which takes O(n log n) time complexity. To efficiently solve
problem (5), we first transform problem (5) to the equivalent
l22,1-regularized problem and then adapt the fast accelerated
proximal gradient (APG) method (Beck and Teboulle 2009;
Toh and Yun 2009) to solve the reduced problem.

Let x̄i = xi �
√
d, i = 1, · · · , n. Suppose that after t-th

iterations, we generate the separator sequence: s1, · · · , st.
Let wt denote the weight vector w.r.t. x̄i for each iteration
and W = [w1, · · · ,wt]. We define P (W) = C

2

∑n
i=1 ξ

2
i ,

where ξi = max{0, 1−
∑t

h=1 sihw
′
hx̄i}. Then, we present

the following theorem:
Theorem 2. The MKL problem (5) can be equivalently
transformed to the following primal problem:

min
W

1

2

(t∑
h=1

||wh||2
)2

+ P (W) (6)

where dual optimal solution α∗ can be recovered from the
optimal solution ξ∗: α∗ = Cξ∗.

Proof. Let qh = ||wh||2 and q =
∑t

h=1 qh, we have
1
2

(∑t
h=1 ||wh||2

)2

= 1
2q

2. Apparently, we have qh ≥
0 and q ≥ 0. We define the cone C = {(uh, v) ∈
R

m+1, ||uh||2 ≤ v}. Then, Eq.(6) can be transformed to
the following problem:

min
W

1

2
q2 + P (W) : s.t.

t∑
h=1

qh ≤ q, (wh, qh) ∈ C

(7)

By introducing the positive Lagrangian dual variables
α, δ, φ,
 to the corresponding constraints, we find the

3685

Lagrangian function: L(q,W, ξ;α, δ, φ,
) = 1
2q

2 +
C
2

∑n
i=1 ξ

2
i −

∑n
i=1 αi(

∑t
h=1 sihw

′
hx̄i − 1 + ξi) +

δ(
∑t

h=1 qh − q) −
∑t

h=1(φ
′
hwh +
hqh). The derivatives

of the Lagrangian w.r.t. the primal variables have to vanish
which leads to the following KKT conditions: q = δ,
h =
δ, φh = −

∑n
i=1 αisihx̄i, ξi = αi

C , ||φh||2 ≤ δ. By sub-
stituting the above results into the Lagrangian function, we
have

L(q,W, ξ;α, δ, φ,
) = −1

2
δ2 − 1

2C
α′α+ 1′α

Therefore, Eq.(6) can be formulated as:

max
α,δ

−1

2
δ2 − 1

2C
α′α+ 1′α

s.t. ||
n∑

i=1

αisihx̄i||2 ≤ δ, h = 1, · · · , t;

αi ≥ 0, i = 1, · · · , n

(8)

Let θ = 1
2δ

2 + 1
2Cα′α − 1′α and f(α, sh) =

− 1
2 ||

∑n
i=1 αisihx̄i||22 − 1

2Cα′α+ 1′α, we have

max
α,θ

−θ

s.t. − f(α, sh) ≤ θ, h = 1, · · · , t;
αi ≥ 0, i = 1, · · · , n

(9)

By setting A = {α|0 ≤ αi, i = 1, · · · , n}, problem (9) is
indeed in the form of problem (4). Lastly, we produce the
connection between the primal formulation and dual formu-
lation and complete the proof.

Following Theorem 2, we address problem (6) rather than
directly solving problem (5), which has great advantages for
fast optimization. We modify the APG method for solving
Problem (6). Lastly, we use F(x̄) =

∑t
h=1 w

′
hx̄ as the pre-

diction function.

Feature Generation

Next, we focus on feature generation based on the solutions
of Algorithm 2. After finding s and α, we solve the following
problem to obtain the optimal d.

max
d∈D

1

2
||

n∑
i=1

αisi(xi �
√
d)||22 (10)

Let cj = (
∑n

i=1 αisixi,j)
2, j ∈ {1, · · · ,m}, then problem

(10) can be formulated as a linear programming problem:

max
d∈D

1

2

m∑
j=1

cjdj (11)

This problem can be quickly solved by the sorting method,
which takes only O(m logB) time, making it computation-
ally efficient. The feature generation algorithm is presented
in Algorithm 3.

Convergence Analysis

Problem (1) involves separator variables, which are the bi-
nary discrete variables. Therefore, it is non-trivial to pro-
vide the globally convergence guarantee for Problem (1).
This subsection aims to analyze the convergence of Algo-
rithm 3 to the optimum of Problem (1). Let Fs,α(d) =
1
2 ||

∑n
i=1 αisi(xi �

√
d)||22 + 1

2Cα′α − α′1. Recall that
both D and A are convex compact sets, according to
the minimax saddle-point theorem (Sion 1958), we have
mind∈D maxα∈A = maxα∈A mind∈D. Following the min-
imax inequality theorem, we have mins∈S maxα∈A ≥
maxα∈A mins∈S . Thus, Problem (1) can be reformulated as:

min
d∈D

min
s∈S

max
α∈A

−Fs,α(d) =min
s∈S

max
α∈A

min
d∈D

−Fs,α(d)

≥max
α∈A

min
s∈S

min
d∈D

−Fs,α(d)
(12)

Then, we focus on the following problem:

min
α∈A

max
s∈S

max
d∈D

Fs,α(d) (13)

Assume that Algorithm 3 generates a sequence
of d: d1, · · · ,dz , after z iterations. In the z + 1-
th iteration, dz+1 is found in terms of sz and
αz . We define γ

z
= max1≤i≤z Fsz,αz

(di) =

minα∈Amaxs∈Smax1≤i≤z Fs,α(di) and γ̄z =
min1≤j≤z Fsj ,αj

(dj+1) = min1≤j≤z maxd∈D Fsj ,αj
(d).

The following convergence theorem indicates that Algo-
rithm 3 gradually approaches to the optimal solution:

Theorem 3. Let γ∗ = minα∈Amaxs∈Smaxd∈DFs,α(d) be
the optimal objective value of Problem (13), then sequences
{γ

z
} and {γ̄z} have the following property:

γ
z
≤ γ∗ ≤ γ̄z (14)

As the number of iterations z increases, {γ
z
} is monotoni-

cally increasing and {γ̄z} is monotonically decreasing.

We further derive the following lemma:

Lemma 1. Algorithm 3 stops after a finite number of steps
with the global solution of Problem (1).

Generalization Error Bound

To the best of our knowledge, very few work study the
ANN classification error bound by considering the margin,
the capacity of the kernel matrix (Zhuang, Tsang, and Hoi
2011) and the training error loss simultaneously. This sec-
tion aims to provide the generalization error bound for ANN
classification using our learning model from aforementioned
perspectives, and the theoretical justification for learning a
sparse linear hyperplane in each decision node for ANN
classification. Let � be a class of functions mapping from
input space to {±1}. We follow the definitions in (Bartlett
and Mendelson 2002) and use Gn(�) to denote the Gaussian
complexity of � . The generalization error bound for ANN
classification using CD-Tree:

Theorem 4. Let T be a CD-Tree, where the Euclidean norm
of the linear functions in T is at most 1. Suppose that the

3686

depth of T is no more than ν, and every leaf node in T re-
tains one instance. Let (x1, y1), · · · , (xn, yn) be the n train-
ing instances and yi ∈ {±1}, which are generated inde-
pendently according to a probability distribution D. Then,
we can bound the generalization error of ANN classification
using T with probability greater than 1− δ to be less than

∑
l

νl∑
i=1

E l
i +

5cζνGn(T)

2
+

(
(3ν + 1)

√
nζ + 1

)√ ln(6/δ)

2n

where c and ζ are the constants, νl(νl ≤ ν) is the depth
of leaf l, E l

i = 1
nlγl

i

∑nl

j=1 ξ
l
i,j +

4
nlγl

i

√
tr(Kl), nl denotes

the number of instances (xl
1, y

l
1), · · · , (xl

nl
, ylnl

) reaching
leaf l, Kl is the kernel matrix for {xl

1, · · · , xl
nl
}, ξli,j =

max
(
0, γl

i − yli,jg
l
i(x

l
j)
)
, where yli,j represents the correct

output for input xl
j in decision node i and γl

i denotes the
corresponding margin.

Remark. The data dependency of our bound comes
through the training error loss, the margin and the capac-
ity of the kernel matrix defined on the training data which
can be transformed to a budget constraint on the weight co-
efficients. Specifically, our results indicate that decreasing
training error loss and the capacity of the kernel matrix ,
and enlarging the margin can yield better generalization per-
formance, which is equivalent to optimizing Problem (1).
Thus, our results provide the theoretical justification to learn
a CDN, and CD-Tree is able to tighten the generalization er-
ror bound. Furthermore, our analysis reveals a new insight
for the design of ANN classification algorithms.

Computational and Practical Issues

Computational Cost

Let us equally split the instances of each node into left
and right child in Algorithm 1. CD-Tree has a depth of⌈
log n

Nmin

⌉
+1, where �Υ� is the smallest integer not less

than Υ. Assume in each decision node, we select �B fea-
tures. Our proposed CD-Tree takes O(log(n

Nmin
)�B +

Nmin�B) testing time, which is dominated by only a few
selected features. Thus, our algorithm is expected to be
much faster for testing. Following the computational cost
analysis in (Muja and Lowe 2014) and (Zhang et al. 2015),
we make the comparisons shown in Table 1. From this ta-
ble, we can see that 1) The space cost of CD-Tree is lower
than other methods and comparable with KBE; 2) The train-
ing cost of CD-Tree is lower than K-Means Tree, KBE and
KPQ.

Practical Issues

Accessing features in sparse format is very expensive for
high dimensional data sets. This paper proposes two effi-
cient auxiliary data structures to reduce the computation cost
of indexing and accessing features. We first propose a modi-
fied direct indexing method for small and medium-sized data
sets. Let N|T | represent the natural number set which con-
tains |T | numbers from 0 to |T | − 1. Then, we build an in-
jection table: I : T
→ N|T | to compress the whole selected

feature set to a continuous index set. To support direct in-
dexing for every instance, we maintain an array with size
|T |. For each feature that belongs to T , we use I to find out
the index number, and store the feature value at that index
in the array. To handle very high dimensional data sets, in
which the data is usually stored in sparse format, we main-
tain a hash table to store the feature ID as the key and the
feature value for each instance. The method takes O(1) time
to access the features.

Experiment

Data Sets and Baselines

This section evaluates the performance of various methods
on a variety of real world data sets, which fall into two cat-
egories. The first category contains two small data sets and
two medium-sized data sets. The second category contains
three large-scale data sets with millions of dimensions. The
URL data set is prepared by (Ma et al. 2009) and other
data sets are collected from the LIBSVM website1(Du et
al. 2017; Wang et al. 2015). The training/testing partition
is either predefined or the data is randomly split into 80%
training and 20% testing (Wu et al. 2014). Table 3 shows
the statistics of these data sets. We compare CD-Tree with
several state-of-the-art methods: 1) RP+KD-Tree: Bingham
et al. (Bingham and Mannila 2001) have already shown that
projecting the data into a random lower-dimensional sub-
space yields results comparable to conventional dimension-
ality reduction methods such as principal component anal-
ysis (PCA), and using random projection (RP) is computa-
tionally significantly less expensive than using PCA. Thus,
in this experiment, we first randomly project the data into a
lower dimension, then build a KD-Tree on the embedding
space. We run this method three times and take the aver-
age results. 2) FLANN (Muja and Lowe 2014): is a state-
of-the-art library for performing fast KNN in high dimen-
sional space. It contains a collection of algorithms, such as
brute-force KNN (BF-KNN), KD-Tree and a modified K-
Means Tree. 3) KBE and KPQ (Zhang et al. 2015): the Kro-
necker product is an up-to-date technique for hashing (KBE)
and product quantization (KPQ) proposed in (Zhang et al.
2015). 4) MMT (Ram, Lee, and Gray 2012): an advanced
tree-based algorithm. We use solvers provided by the respec-
tive authors.

For RP+KD-Tree, we project the data into 0.1m dimen-
sion for small and medium-sized data sets and 400 dimen-
sion for very high dimensional data sets. Following the pa-
rameter settings in (Li et al. 2013), β is set as 0.3n. The pa-
rameter B is selected using 5-fold cross validation over the
range {20, 50, 100, 200, 400} for small and medium-sized
data sets, and we set B = 400 for very high dimensional
data sets. C is fixed to 5. We set r (the maximum number
of points to examine for K-Means Tree and KD-Tree) as
{5, 10, 30} and we achieve similar prediction performance
for different r. We therefore simply fix r = 5 for fast test-
ing time. Following similar parameter settings to those in
(Zhang et al. 2015) for KBE and KPQ, b is selected over the

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets

3687

Table 2: Testing error rate (in %) of various methods on three of small and medium-sized data sets using 1NN and 5NN.

DATA SET MMT
KD-TREE K-MEANS TREE KBE(b = 256) KPQ CD-TREE

1NN 5NN 1NN 5NN 1NN 5NN 1NN 5NN 1NN 5NN
A7A 22.18 22.80 20.22 22.21 19.84 22.42 20.48 21.03 22.80 21.74 19.66
W8A 2.74 3 3 3 3 3 3 2.95 2.21 2.41 2.12
REAL-SIM 10.83 12.04 10.29 8.21 7.62 14.52 15.92 11.00 13.69 8.75 9.54

Table 3: Data sets.
DATA SET # FEATURES # TRAINING # TESTING
A7A 123 16,100 16,461
W8A 300 45,546 13,699
REAL-SIM 20,958 57,848 14,461
RCV1 47,236 20,242 677,399
NEWS20 1,355,191 15,997 3,999
URL 3,231,961 12,800 3,200
WEBSPAM 16,609,143 28,000 7,000

range {256, 512, 1024} for the first category data sets and
we fix b = 256 for large-scale data sets with fast testing time,
ς = 256 and ϑ = 32. The experiments are performed on a
server with a 3.4GHZ Intel CPU and 94.5GB main memory
running on a Linux platform.

Results on Small and Medium-Sized Data Sets

This subsection studies the performance of various methods
on A7A, W8A, REAL-SIM and RCV1 data sets. To verify
the generalization error analysis in Section , we first com-
pare the classification performance of 1NN and 5NN using
CD-Tree and other main baselines on three data sets. We set
Nmin to one and ten for 1NN and 5NN, respectively. Ta-
ble 2 shows that 1) CD-Tree achieves comparable or better
accuracy than state-of-the-art methods, which verifies our
theoretical analysis. 2) All the main methods obtain similar
classification performance for 1NN and 5NN. Thus, we fix
K = 5 in the following experiment.

We compare our method with MMT on A7A, W8A,
REAL-SIM data sets. The results are shown in Table 2. From
this table, we can see that our method outperforms MMT,
which verify the effectiveness of our proposed method. Be-
cause MMT runs slowly on most data sets, we do not re-
port their results on other data sets. In our experiment, some
methods run out of memory on the RCV1 data set, which
contains a large number of testing instances. We randomly
sample 1%, 5%, 8% and 10% testing instances for compar-
ison. The testing error rate of various methods is listed in
Table 4. From this table, we observe that: 1) With the in-
creasing value of b, the performance of KBE rises, which is
consistent with the empirical results in (Zhang et al. 2015).
2) RP+KD-Tree and KD-Tree achieve similar results, and
KPQ outperforms KBE, RP+KD-Tree and KD-Tree. 3) CD-
Tree improves the results of KD-Tree and RP+KD-Tree by
more than 10% on medium-sized data sets and is compara-
ble to the best results on all data sets.

Table 5 shows the testing time of various methods spent
on all testing instances per small and medium-sized data

sets. From this table, we observe that: 1) With the increas-
ing value of b, the testing time of KBE rises. 2) KD-Tree is
faster than BF-KNN, K-Means Tree and KPQ, while KBE
and RP+KD-Tree are faster than other baseline methods, be-
cause the testing time of KBE and RP+KD-Tree does not
depend on the original high dimensions. CD-Tree obtains
at least four and seven times speedup over RP+KD-Tree and
KBE, respectively. The results verify our computational cost
analysis. 3) CD-Tree improves the classification results of
KD-Tree by more than 10%, while being at least 11 times
faster than the KD-Tree. Furthermore, CD-Tree is at least
100 times faster than KPQ and is three orders of magnitude
faster than BF-KNN.

We next use the RCV1 data set for training time com-
parison. KD-Tree and K-Means Tree takes 95s and 887s for
training, respectively. KBE and KPQ both take 2642s for
training, while CD-Tree takes 550s for training. Thus, the
training of CD-Tree is faster than that of K-Means Tree,
KBE and KPQ, which is also consistent with our compu-
tational cost analysis.

Results on Very High Dimensional Data Sets

In this subsection, we evaluate the performance of various
methods on three large scale data sets: NEWS20, URL and
WEBSPAM. Some methods run out of memory on these
three data sets, thus, we randomly sample the data for com-
parison. The testing error rate and testing time of various
methods on three large scale data sets are listed in Figure 1.
From Figure 1, we can see that: 1) CD-Tree is several times
faster than KBE and RP+KD-Tree. Moreover, CD-Tree is
much more accurate than KBE and RP+KD-Tree. 2) CD-
Tree is three orders of magnitude faster than other baselines
and achieves superior accuracy on the data sets with millions
of dimensions. Finally, we conclude that CD-Tree is effec-
tive and efficient on very high dimensional settings.

Conclusion

This paper proposes a doubly approximation strategy to sub-
sume hashing and tree-based methods, and simultaneously
remedy the defect of these approaches. We also provide a
data-dependent generalization error bound for our model,
which reveals a new insight for the design of ANN classi-
fication algorithms on very high dimensional settings. Our
empirical studies verify our theoretical studies and CD-Tree
is able to precisely and efficiently scale to very high dimen-
sional settings.

3688

Table 4: Testing error rate (in %) of various methods on small and medium-sized data sets. “-” denotes out of memory problem
of baselines.

KBE
DATA SET BF-KNN KD-TREE K-MEANS TREE b = 256 b = 512 b = 1024 KPQ RP+KD-TREE CD-TREE

A7A 19.87 20.22 19.84 20.48 20.38 20.07 22.80 21.86 19.66
W8A 3 3 3 3 3 3 2.21 3 2.12
REAL-SIM 7.3 10.29 7.62 15.92 15.68 14.82 13.69 24.49 9.54
RCV1(1%) 6.72 18.88 8 20.24 18.31 13.06 10.57 21.99 7.59
RCV1(5%) 6.79 21.74 7.47 20.12 17.84 12.19 10.22 21.8 7.68
RCV1(8%) 6.93 23.37 6.68 20.21 17.74 12.24 10.31 22 7.71
RCV1(10%) 6.94 19.24 6.82 22.57 20.61 16.07 10.84 22.21 7.79
RCV1 - - - 22.79 21.32 16.38 - 23.10 7.88

Table 5: Testing time (in seconds) of various methods on small and medium-sized data sets. “-” denotes out of memory problem
of baselines. Numbers in parentheses indicate speedup (×) of CD-Tree over baselines.

KBE
DATA SET BF-KNN KD-TREE K-MEANS TREE b = 256 b = 512 b = 1024 KPQ RP+KD-TREE CD-TREE

A7A 63.97 (400) 17.27 (108) 17.71 (111) 17.29 (108) 18.03(113) 22.90 (143) 17.91 (112) 17.56 (110) 0.16
W8A 242.36 (505) 16.25 (34) 16.32 (34) 41.02 (85) 42.58 (89) 59.58 (124) 47.60 (99) 14.32 (30) 0.48
REAL-SIM 23210.72 (6173) 41.29 (11) 296.72 (79) 57.15 (15) 65.64 (17) 74.00 (20) 414.85 (110) 15.51 (4) 3.76
RCV1(1%) 10743.09 (4495) 25.27 (11) 92.31 (39) 17.77 (7) 22.11 (9) 44.66 (19) 343.02 (144) 9.06 (4) 2.39
RCV1(5%) 37322.88 (4000) 103.10 (11) 552.17 (59) 73.74 (8) 93.59 (10) 169.66 (18) 1667.2 (179) 48.30 (5) 9.33
RCV1(8%) 58496.60 (4009) 187.84 (13) 880.37 (60) 100.93 (7) 149.42 (10) 267.49 (18) 2608 (179) 77.56 (5) 14.59
RCV1(10%) 70352.37 (3722) 350.30 (19) 1905.17 (101) 150.45 (8) 208.10 (11) 372.58 (20) 3260.1 (172) 85.44 (5) 18.90
RCV1 - - - 1838.65 (9) 2174.97 (11) 4549.34 (22) - 882.31 (4) 204.82

Figure 1: Testing error rate (in %) and testing time (in seconds) of various methods on 3 very high dimensional data sets. X and
Y axes are in log scale. BF-KNN, KD-Tree, K-Means Tree, RP+KD-Tree and CD-Tree are abbreviated to BFK, KDT, KMT,
RPKDT and CDT, respectively.

3689

Acknowledgments

This project is supported by the DP170101628,
DP150102728, DP150103071, DP180103096,
DP180100106, NSFC 61232006, NSFC 61672235,
FT130100746 and LP150100671.

References

Andoni, A.; Indyk, P.; Laarhoven, T.; Razenshteyn, I. P.; and
Schmidt, L. 2015. Practical and optimal LSH for angular
distance. In NIPS.
Bartlett, P. L., and Mendelson, S. 2002. Rademacher and
Gaussian complexities: Risk bounds and structural results.
JMLR 3:463–482.
Beck, A., and Teboulle, M. 2009. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM J.
Imaging Sciences 2(1):183–202.
Beyer, K. S.; Goldstein, J.; Ramakrishnan, R.; and Shaft, U.
1999. When is “nearest neighbor” meaningful? In 7th Inter-
national Conference Database Theory, 217–235.
Bingham, E., and Mannila, H. 2001. Random projection
in dimensionality reduction: Applications to image and text
data. In SIGKDD, 245–250.
Charikar, M. 2002. Similarity estimation techniques from
rounding algorithms. In Proceedings on 34th Annual ACM
Symposium on Theory of Computing, 380–388.
Du, B.; Zhang, M.; Zhang, L.; Hu, R.; and Tao, D. 2017.
PLTD: patch-based low-rank tensor decomposition for hy-
perspectral images. IEEE Trans. Multimedia 19(1):67–79.
Gionis, A.; Indyk, P.; and Motwani, R. 1999. Similarity
search in high dimensions via hashing. In VLDB, 518–529.
Gong, C.; Tao, D.; Liu, W.; Liu, L.; and Yang, J. 2017. La-
bel propagation via teaching-to-learn and learning-to-teach.
IEEE Trans. Neural Netw. Learning Syst. 28(6):1452–1465.
Jégou, H.; Douze, M.; and Schmid, C. 2011. Product quan-
tization for nearest neighbor search. IEEE Trans. Pattern
Anal. Mach. Intell. 33(1):117–128.
Kim, S.-J., and Boyd, S. P. 2008. A minimax theorem with
applications to machine learning, signal processing, and fi-
nance. SIAM Journal on Optimization 19(3):1344–1367.
Li, Y.-F.; Tsang, I. W.; Kwok, J. T.; and Zhou, Z.-H.
2013. Convex and scalable weakly labeled SVMs. JMLR
14(1):2151–2188.
Liu, W., and Tsang, I. W. 2016. Sparse perceptron decision
tree for millions of dimensions. In AAAI, 1881–1887.
Liu, W., and Tsang, I. W. 2017. Making decision trees
feasible in ultrahigh feature and label dimensions. JMLR
18(81):1–36.
Liu, X.; Wang, L.; Yin, J.; Dou, Y.; and Zhang, J. 2015.
Absent multiple kernel learning. In AAAI, 2807–2813.
Liu, W.; Shen, X.; and Tsang, I. W. 2017. Sparse embedded
k-means clustering. In NIPS, 3280–3288.
Liu, W.; Tsang, I. W.; and Müller, K.-R. 2017. An easy-
to-hard learning paradigm for multiple classes and multiple
labels. JMLR 18(94):1–38.

Ma, J.; Saul, L. K.; Savage, S.; and Voelker, G. M. 2009.
Identifying suspicious urls: an application of large-scale on-
line learning. In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, 681–688.
Muja, M., and Lowe, D. G. 2014. Scalable nearest neighbor
algorithms for high dimensional data. IEEE Trans. Pattern
Anal. Mach. Intell. 36(11):2227–2240.
Ram, P.; Lee, D.; and Gray, A. G. 2012. Nearest-neighbor
search on a time budget via max-margin trees. In SDM,
1011–1022.
Shen, X.; Liu, W.; Tsang, I. W.; Sun, Q.-S.; and Ong, Y.-S.
2017. Multilabel prediction via cross-view search. TNNLS
1–15.
Sion, M. 1958. On general minimax theorems. Pacific Jour-
nal of Mathematics 8(1):171–176.
Tan, M.; Tsang, I. W.; and Wang, L. 2014. Towards ul-
trahigh dimensional feature selection for big data. JMLR
15(1):1371–1429.
Tan, M.; Wang, L.; and Tsang, I. W. 2010. Learning sparse
svm for feature selection on very high dimensional datasets.
In ICML, 1047–1054.
Toh, K.-C., and Yun, S. 2009. An accelerated proximal gra-
dient algorithm for nuclear norm regularized least squares
problems. Technical report.
Wang, R.; Nie, F.; Yang, X.; Gao, F.; and Yao, M. 2015.
Robust 2DPCA with non-greedy l1-norm maximization for
image analysis. IEEE Trans. Cybernetics 45(5):1108–1112.
Wang, D.; Irani, D.; and Pu, C. 2012. Evolutionary study
of web spam: Webb spam corpus 2011 versus webb spam
corpus 2006. In 8th IEEE International Conference on Col-
laborative Computing: Networking, Applications and Work-
sharing, 40–49.
Weber, R.; Schek, H.; and Blott, S. 1998. A quantitative
analysis and performance study for similarity-search meth-
ods in high-dimensional spaces. In VLDB, 194–205.
Wu, J.; Hong, Z.; Pan, S.; Zhu, X.; Cai, Z.; and Zhang, C.
2014. Multi-graph-view learning for graph classification. In
ICDM, 590–599.
Yang, Y.; Deng, C.; Tao, D.; Zhang, S.; Liu, W.; and Gao,
X. 2017. Latent max-margin multitask learning with
skelets for 3-d action recognition. IEEE Trans. Cybernet-
ics 47(2):1108–1112.
Zhai, Y.; Ong, Y.-S.; and Tsang, I. W. 2014. The emerg-
ing “big dimensionality”. IEEE Computational Intelligence
Magazine 9(3):14–26.
Zhang, X.; Yu, F. X.; Guo, R.; Kumar, S.; Wang, S.; and
Chang, S.-F. 2015. Fast orthogonal projection based on
Kronecker product. In ICCV, 2929–2937.
Zhuang, J.; Tsang, I. W.; and Hoi, S. C. H. 2011. A family
of simple non-parametric kernel learning algorithms. JMLR
12:1313–1347.

3690

